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Abstract: Fused Filament Fabrication (FFF), classified under material extrusion additive
manufacturing technologies, is a widely used method for fabricating thermoplastic parts with
high geometrical complexity. To improve the mechanical properties of pure thermoplastic materials,
the polymeric matrix may be reinforced by different materials such as carbon fibers. FFF is
an advantageous process for producing polymer matrix composites because of its low cost of
investment, high speed and simplicity as well as the possibility to use multiple nozzles with different
materials. In this study, the aim was to investigate the dimensional accuracy and mechanical properties
of chopped carbon-fiber-reinforced tough nylon produced by the FFF process. The dimensional
accuracy and manufacturability limits of the process are evaluated using benchmark geometries
as well as process-inherent effects like stair-stepping effect. The hardness and tensile properties of
produced specimens in comparison to tough nylon without any reinforcement, as well as continuous
carbon-reinforced specimens, were presented by taking different build directions and various infill
ratios. The fracture surfaces of tensile specimens were observed using a Scanning Electron Microscope
(SEM). The test results showed that there was a severe level of anisotropy in the mechanical properties,
especially the modulus of elasticity, due to the insufficient fusion between deposited layers in the
build direction. Moreover, continuous carbon-reinforced specimens exhibited very high levels of
tensile strength and modulus of elasticity whereas the highest elongation was achieved by tough
nylon without reinforcement. The failure mechanisms were found to be inter-layer porosity between
successive tracks, as well as fiber pull out.

Keywords: fused filament fabrication; tensile testing; anisotropy; chopped carbon reinforced
composites; dimensional accuracy

1. Introduction

For many industries where lightweight applications are becoming more important, such as
aerospace, automotive, marine, nuclear, and biomedical industries, combining the advantages of
Additive Manufacturing and composites has the high potential to provide strong opportunities.
The worldwide demand for lightweight PMCs (polymer matrix composites) is growing. For example,
almost 50% of aircraft frames are produced from composite materials, whereas, in the automotive
industry, the annual growth in composite materials exhibits a 5% increase due to their good mechanical
properties, flexibility in design and high performance [1]. However, efficient fabrication methods for
composites still possess some problems. Additive Manufacturing (AM) is defined as the “process of
joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as
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opposed to subtractive and formative manufacturing technologies” [2]. AM has many advantages over
conventional processes such as reduced lead time from design to testing, high level of customization
and automation, and the ability to fabricate very complex designs which may not be possible otherwise.
While AM is a cutting-edge technology with a wide range of applications, there are several barriers
hindering its growth, such as cost of equipment and materials, imperfections like voids, stair-stepping
effect, long production times, and material and size limitations [3]. The most widely preferred AM
process for PMCs is the Fused Filament Fabrication (FFF) method. In FFF, a feedstock filament of
the raw material on a spool is fed into the extrusion head and a heating chamber liquefies the solid
material before it is selectively deposited.

One of the most comprehensive studies in this field carried out by Tekinalp et al. focused on
chopped carbon-fiber-reinforced acrylonitrile butadiene styrene (ABS) polymers at different fiber
loadings in order to evaluate the potential for load-bearing components. The tensile testing results
showed that FFF composites have a significant porosity problem as compared to compression-molding
specimens, whereas a high fiber orientation in the printing direction was encountered with FFF [4].
The tensile properties of ABS reinforced with glass fibers were studied by Zhong et al., showing
that the glass reinforcement could improve the tensile strength and surface rigidity at the expense of
flexibility and handleability [5]. Ning et al. [6] fabricated carbon-fiber-reinforced ABS specimens by
varying the carbon-fiber content between 0% and 15%. The carbon reinforcement increased the tensile
strength and Young’s modulus, whereas the toughness, yield strength and ductility were reduced.
Additionally, porosity was encountered as a severe problem. There were some other studies focusing
on evaluating whether a polymer feedstock is a good candidate for material extrusion methods. Duty
et al. developed a practical model taking typical printing parameters into account to check conditions
for printability such as pressure-driven extrusion flow, bead formation, bead functionality, clogging,
etc. [7]. One of the very widely used matrix materials used with FFF is Poly Lactic Acid (PLA). Ferreira
et al. presented a mechanical characterization and SEM (Scanning Electron Microscope) micrography
of PLA reinforced with short carbon fibers [8]. The results showed that the tensile modulus and shear
modulus of reinforced PLA was increased in comparison to pure PLA. Moreover, consistently with
other studies in the literature, failure in reinforced PLA happened at lower strains than in pure PLA
leading to the fact that the reinforced material became more brittle with the addition of short carbon
fibers. Different reinforcement materials were also studied with PLA matrices. Liu et al. studied the
effect of wood, ceramic, metal and carbon fiber reinforcements on the mechanical properties with
different raster angles. Regarding formability, it was shown that wood-based PLA was the most difficult
due to a delamination effect. However, in this study, it was found that lower mechanical properties
were obtained with carbon and wood reinforced PLA due to high porosity, poor compaction, and poor
adhesion between filaments compared to pure PLA [9]. The fracture toughness in relation to the fiber
content in PLA specimens was studied by Papon and Hague [10]. It was shown that thermoplastic
polymer (PLA) reinforced with short carbon fiber had increased fracture properties (fracture toughness
and energy release rate) in comparison to the baseline polymer when the fiber content was set to
5%. The most critical factors for the fracture toughness seem to be the bead layup sequence, fiber
pullout, interfacial de-bonding, and void formation. Higher fiber contents did not significantly alter
the fracture toughness due to higher intra-bead voids, microcracks, and poor interfacial bonding.
There were also some studies investigating the effect of FFF process parameters. For instance, Rao et al.
investigated the effect of layer thickness, print temperature and infill pattern on the tensile strength of
carbon-fiber-reinforced PLA [11]. The results indicated that the interactions between layer thickness
and infill pattern, and between infill pattern and extrusion temperature had significant effects on
tensile strength. The lowest layer thickness, being the most influential factor as expected, led to the
highest tensile strength due to higher bonding area between layers. In a recent study by Yasa, it was
shown that build orientation has a significant influence of carbon-reinforced tough nylon. The impact
toughness of specimens built vertically was reduced by 90% in comparison to other directions where
the impact was not received in between deposited layers [12].
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More recently, studies on embedding continuous fiber in plastic materials were realized mainly
using FFF for different applications [13–21]. Various matrix materials such as Polyamide (PA), nylon,
ULTEM®, PLA, and Polypropylene (PP) are used whereas the most commonly used reinforcement
material is carbon. The studies mainly focusing on tensile and flexural properties of continuous
fiber-reinforced polymers showed that there are some limitations, such as adhesion between fibers and
the matrix, weak bonding, porosity, problems due to irregularities and discontinuity of the fibers as well
as cutting, etc. However, it was seen that the strength increases significantly while toughness decreases
as a result of continuous fiber reinforcement. In order to overcome some limitations, Rarani et al.
assessed the quality of fused deposition modeling of continuous carbon-fiber-reinforced PLA with
a new extruder design. The experimental results indicated that the tensile and bending strengths were
increased by up to 35% and 108% in comparison to pure PLA, while the predominant failure modes
were delamination and delamination-induced-matrix cracking [22]. Tian et al. showed that temperature
and pressure were critical parameters for the forming process determining the mechanical properties
when 3D printing with continuous carbon fiber-reinforced PLA [16]. In another study by Tian et al. [23],
three-dimensional (3D) printing of recycled carbon fibers was studied. An impregnated carbon fiber
filament was obtained after recycling 3D printed carbon-fiber-reinforced thermoplastic composites
without sacrificing the fiber properties. Despite the fact that aging of the matrix was encountered,
comparable and even higher mechanical properties, such as 25% improvement of flexural strength,
were achieved using the remanufactured composite specimens in comparison to the originally 3D
printed composites. The study by Mori et al. on the tensile and fatigue testing of carbon-fiber-reinforced
ABS material showed that thermal bonding was critical for the increase in mechanical properties [24].

This study mainly focuses on investigating the mechanical properties of tough nylon produced
by the FFF method with the reinforcement of chopped carbon fibers, taking different build directions
and infill ratios into account, in comparison to no reinforcement and continuous carbon-reinforced
specimens. Moreover, dimensional accuracy and geometrical features of built benchmark specimens
were investigated.

2. Materials and Methods

All the specimens used within this study were produced on a Markforged Mark Two®equipment
with standard parameters from carbon fiber-reinforced tough nylon, commercially known as
MarkForged Onyx. The maximum size of the print volume of this printer was 320 × 132 × 154 mm.
The Onyx material is tough nylon pre-impregnated with chopped microcarbon fibers in the filament
form, combining the toughness of nylon with the thermal properties of carbon [25,26]. Various infill
strategies can be used with FFF as depicted in Figure 1 [26,27]. For 100% dense parts, a rectangular
infill is generally preferred, and the deposition orientation is varied from layer to layer, whereas for
lower densities, honeycomb or triangular infills can be used for weight reduction. This is probably due
to the fact that a rectangular pattern allows an infill density of 100% because it does not self-intersect
inside the layer [28]. The nozzles used in Mark Two®are shown in Figure 2. One of the nozzles is
used to print plastic or Onyx fiber whereas the other is used for continuous fiber replacement [29].
The fiber nozzle is different from usual filament extrusion heads due to its cutting mechanism for
cutting the fiber.

Firstly, the benchmark specimens were built to test the capability of dimensional accuracy and
producing proper geometrical features. In order to understand the minimum wall thickness achievable
with FFF of Onyx material, as well as other geometrical limitations, a benchmark geometry, which
is well known in the AM of metals, was used as shown in Figure 3a [30]. There were many features
on this benchmark ranging from sharp corners to thin bosses, holes, inclined surfaces, etc. It was
manufactured with a 50% triangular infill strategy for maximum dimensional/geometrical accuracy as
shown in Figure 3b. On the second benchmark (see Figure 4), walls with thicknesses of 0.3–3.0 mm
were produced with a height and width of 12 mm and 100 mm, respectively. Moreover, the stair effect
was studied on inclined walls with different inclination angles (5–35 degrees).
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Figure 4. Benchmark-2 geometry used to test the capability to produce thin walls.

Tensile specimens were manufactured from Onyx and tough nylon material in addition to
continuous carbon-fiber-reinforced nylon. A total of 30 specimens were produced under six different
configurations as shown in Table 1. The first specimens (E_Nylon_R_100_XY) were built as lying
specimens from tough nylon only without any reinforcement at 100% density. Moreover, specimens
were built in two directions, either lying (XY plane) (A_Onyx_R_100_XY) or standing on their long side
(XZ plane) (B_Onyx_R_100_XZ). The other build direction could not be tested due to the maximum
build volume of the equipment. The fabricated specimens on the print bed are shown in Figure 5.
The use of a brim, the surrounding peripheral deposition around the specimens, was necessary as
an anchor of print bed, which is especially critical for parts tending to warp. Brims were used in
producing tensile specimens to increase the area of the first layers as a precaution to deformation. In
addition to the build direction, the density effect was also tested at 75% (C_Onyx_T_75_XY) and 50%
(D_Onyx_T_50_XY) infill density values with lying specimens. Lastly, lying tough nylon specimens
(F_Nylon_CF_R_100_XY) were produced by concentric reinforcement of continuous carbon fiber.

During tensile testing, the EN ISO 527-4 standard entitled “Determination of tensile properties of
plastics Part 4: Test conditions for isotropic and orthotropic fiber-reinforced plastic composites” was
used. The tensile test equipment was a universal Zwick-Roell equipment with a loading capacity of
250 kN. After the tensile testing was complete, the broken specimens were investigated by optical
microscopy and scanning electron microscopy. For the hardness testing, a hardness tester from Bareiss
Digi Test was used to measure Shore D hardness as per the TS EN ISO 868 standard with a contact
pressure force of 5100 g.

Table 1. Tensile Specimen Fabrication Parameters.

No. Part Name Material Infill % Density Fiber Layer
Thickness

Build
Direction

1 E_Nylon_R_100_XY NYLON Rectangular 100% None 0.1 mm XY plane

2 A_Onyx_R_100_XY ONYX Rectangular 100% None 0.1 mm XY plane

3 B_Onyx_R_100_XZ ONYX Rectangular 100% None 0.1 mm XZ plane

4 C_Onyx_T_75_XY ONYX Triangular 75% None 0.1 mm XY plane

5 D_Onyx_T_50_XY ONYX Triangular 50% None 0.1 mm XY plane

6 F_Nylon_CF_R_100_XY NYLON Rectangular 100% Carbon 0.125 mm XY plane
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3. Results

3.1. Dimensional Accuracy and Geometrical Features

As mentioned before, the Benchmark-1 geometry was created to assess different AM technologies
for metallic materials in terms of small bosses/holes, thin walls, stepping effect, surface quality, sharp
corners, etc. [30]. Although there were some studies focusing on the dimensional accuracy of FFF
parts [31], no study was found regarding carbon-fiber-reinforced nylon material. In the pre-processing
software for the utilized equipment, the option of “expand thin features” was enabled. Without this
option, thin walls with a thickness of 250 µm could not be built. This option also had an effect on
the small bosses positioned on top of each other (see Figure 6). The outer cylinder had a nominal
diameter of 5 mm, whereas the diameters of upper cylinders decreased from 5 mm to 2 mm, 1 mm and
0.5 mm. Figure 6a clearly shows that the bosses with a diameter of less than 2 mm could not be realized
without activating the option of “expand thin features”. When this option was active (see Figure 6b),
the obtained diameters, were measured as approximately 5.41 mm, 2.25 mm, 1.33 mm to 1 mm. Thin
bosses could be made at a cost of losing dimensional accuracy for larger bosses since the diameter of
5 mm boss was measured to be 5.13 mm leading to a difference of 280 µm of difference with respect
to the diameter measured with “expand thin features”. This observation was also valid with thin
walls. A thin wall having a nominal thickness of 1 mm was measured to have a thickness 1.56 mm
in one direction and 1.022 mm in the perpendicular one provided that “expand thin features” was
turned on. However, without this option, thin walls of a thickness of 1 mm were measured to be 0.806
and 0.788 mm in two directions as depicted in Figure 7. These results led to the result that “expand
thin features” option had a significant effect on features with dimensions less than 2 mm and could
significantly alter the obtained dimensional accuracy as well as its change along various directions. In
Figure 8, as another detailed view of the benchmark part, sharp corners with the “expand thin features”
option can be observed from top and side views. The first important phenomenon to be observed was
the lack of fusion toward the end of the sharp corners giving some porous areas, which would behave
as weak points in the part performance. The reason for such an occurrence was due to the deposition
strategy, which is illustrated in Figure 9 [32,33]. However, the sharpness that was produced was quite
good from both views; it is even comparable to features obtained with metallic AM systems. As the
last feature from the benchmark part, the circular holes with diameters of 5, 2, 1, and 0.5 mm were
intended to be fabricated as shown in Figure 10 (left). However, only the holes with diameters of 5 and
2 mm could be produced with success. Smaller holes were totally blocked.
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The capability of fabricating thin walls with varying thickness values was demonstrated on the
second benchmark as well as the effect of the inclination angle on the stair-stepping effect. Walls with
thicknesses of 0.3–3.0 mm were planned with a height and width of 12 and 100 mm, respectively.
Unfortunately, the walls with thicknesses of 0.3 and 0.4 mm were impossible to be made. As Figure 11
shows, the deviation of the wall thickness from the nominal value had a decreasing trend as the
thickness increased. It should be noted that the deviations were generally on the positive side, meaning
the walls were almost always thicker than intended (see Figure 12). The trend line fitted to the data
had a very high R2 value of 0.9978, leading to the fact that the error can be compensated by making the
wall thicknesses lower than desired, such that the final wall thickness matched the desired value with
a lower error.

Materials 2019, 12, x FOR PEER REVIEW 8 of 17 

 

 

Figure 9. Illustration of the path influence when seeking to obtain geometric precision or mechanical 
performance [31]. 

 

Figure 10. Circular vertical holes left and overhang surfaces right. 

The capability of fabricating thin walls with varying thickness values was demonstrated on the 
second benchmark as well as the effect of the inclination angle on the stair-stepping effect. Walls with 
thicknesses of 0.3–3.0 mm were planned with a height and width of 12 and 100 mm, respectively. 
Unfortunately, the walls with thicknesses of 0.3 and 0.4 mm were impossible to be made. As Figure 
11 shows, the deviation of the wall thickness from the nominal value had a decreasing trend as the 
thickness increased. It should be noted that the deviations were generally on the positive side, 
meaning the walls were almost always thicker than intended (see Figure 12). The trend line fitted to 
the data had a very high R2 value of 0.9978, leading to the fact that the error can be compensated by 
making the wall thicknesses lower than desired, such that the final wall thickness matched the 
desired value with a lower error.  

 

 
 

(a) (b) 

Figure 11. Nominal versus actual wall thickness values measured on a stereomicroscope (a); graphical
demonstration of the results (b).



Materials 2019, 12, 3885 9 of 16

Materials 2019, 12, x FOR PEER REVIEW 9 of 17 

 

Figure 11. Nominal versus actual wall thickness values measured on a stereomicroscope (a); graphical 
demonstration of the results (b). 

  
(a) (b) 

Figure 12. Thin wall features in Benchmark-2, nominal thickness values of (a) 0.5, 0.6, 0.7 and 0.8 mm; 
(b) 1.5, 2 and 2.5 mm. 

Figure 13 depicts the stair effect evident mostly as the angle of inclination gets decreased. The 
stair effect, inherent to layered manufacturing, deteriorates the surface quality and dimensional 
accuracy. As mentioned in Reference [33], the stair effect is mainly a function of the layer thickness 
and the angle of inclination. If the layer thickness is increased or the inclination angle is reduced, the 
stair effect becomes more dominant. This was clearly observed in Benchmark-2 as shown in Figure 
13. Moreover, in the wall with an inclination of 35 degrees, a bump was observed as shown by an 
ellipse in the figure. The height of this bump’s location corresponded to the height of 12 mm, which 
was equal to the height of the walls manufactured together with these inclined blocks. The reason for 
such a geometrical inaccuracy may be attributed to the significant change in thermal input and 
resulting shrinkage; however, this needs to be investigated further. 

 

15 degrees 

25 degrees 35 degrees 

Figure 12. Thin wall features in Benchmark-2, nominal thickness values of (a) 0.5, 0.6, 0.7 and 0.8 mm;
(b) 1.5, 2 and 2.5 mm.

Figure 13 depicts the stair effect evident mostly as the angle of inclination gets decreased. The stair
effect, inherent to layered manufacturing, deteriorates the surface quality and dimensional accuracy.
As mentioned in Reference [34], the stair effect is mainly a function of the layer thickness and the
angle of inclination. If the layer thickness is increased or the inclination angle is reduced, the stair
effect becomes more dominant. This was clearly observed in Benchmark-2 as shown in Figure 13.
Moreover, in the wall with an inclination of 35 degrees, a bump was observed as shown by an ellipse
in the figure. The height of this bump’s location corresponded to the height of 12 mm, which was
equal to the height of the walls manufactured together with these inclined blocks. The reason for such
a geometrical inaccuracy may be attributed to the significant change in thermal input and resulting
shrinkage; however, this needs to be investigated further.
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3.2. Tensile and Hardness Testing

The strain-stress curves for a specific configuration (B_Onyx_R_100_XZ specimen) are given
in Figure 14. The repeatability of the tensile testing was satisfactory. The comparison of obtained results
with respect to each other is given in Figures 15–17 for yield stress, elongation at break and modulus of
elasticity, respectively. As evident from these figures, continuous carbon reinforced nylon specimens
yielded a severely higher modulus of elasticity and yield stress at a cost of almost no elongation at break.
With continuous fiber-reinforcement, almost four-fold higher yield stress (190 MPa) was achieved
in comparison to the highest yield stress achieved with chopped carbon fiber-reinforced specimens
(56 MPa). A similar increase rate was achieved in the modulus of elasticity (from 3.15 GPa to 17.7 GPa).
However, the elongation at break deteriorated from 25% to 1% when continuous chopped fibers were
reinforced rather than chopped fibers. Moreover, it should be noted that all specimens broke at their
minimum cross-sections while the continuous fiber-reinforced specimens broke at a higher position
due to the weak interface between the fiber and matrix, as shown in Figure 18.
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Compared to XY specimens, XZ specimens showed an increased Young’s modulus and yield
stress, again at a cost of reduced elongation at break, as expected. Compared to nylon specimens with
no reinforcement, chopped fiber-reinforced specimens built in the same direction (lying specimens
on the XY plane) showed an almost three-fold higher elasticity modulus (1.35 GPa versus 0.47 GPa).
On the other hand, the yield stress of chopped fiber-reinforced specimens was about 25% less than
that of nylon (38 MPa versus 51 MPa). The advantage of using nylon in comparison to chopped
carbon-reinforced nylon lies in the elongation at break, which exhibited a significant difference of 429%
versus 24%, as shown in Figure 16.
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Figure 16. Tensile Test Results–Elongation at break.

The effect of build orientation could be seen by comparing the results of A_Onyx_R_100_XY
and B_Onyx_R_100_XZ specimens. Lying specimens (XY) showed 30% less yield stress compared to
standing specimens (XZ). This effect was more pronounced for Young’s Modulus. XY specimens showed
a modulus of elasticity of 1.35 ± 0.13 GPa, whereas XZ specimens exhibited a modulus of elasticity of
3.15 ± 0.20 GPa. On the other hand, XY specimens broke at almost two-fold higher elongation values
compared to XZ specimens. The other build direction where the tensile direction coincided with the
build direction could not be tested due to the specimen’s dimensions exceeding the build direction. Yet,
a recent study by Yasa showed that the impact toughness of chopped fiber-reinforced nylon produced
in a similar manner to this study was severely affected when the impact was taken in between built
layers leading to significant anisotropy in the obtained toughness [12].

Regarding the Young’s Modulus and yield stress, the density effect from 75% to 50% was about
5–6%. Yet, the density changing from 100% to 75% resulted in a higher variation, close to 25% in
elongation at break. For porous materials, it is expected that the Young’s modulus and strength increase
as the density increases since the amount of material available to bear the load is higher [35–37].
However, due to the specimen’s geometry being very thin, limiting the effect of the infill density, the
porosity effect was almost negligible in terms of Young’s modulus and strength. Yet, the elongation at
break changed from 25% to 20% when the infill density changed from 75% to 50%. The hardness of the
chopped fiber-reinforced nylon was measured to be 71 Shore D.
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3.3. Microscopy

The samples produced along different directions (A_Onyx_R_100_XY and B_Onyx_R_100_XZ)
were observed with a scanning electron microscope to observe the differences. As seen in Figure 19
(SEM-1), the top side of the tensile specimen showed the top surface of the flat specimens where the
deposited tracks of the material could be distinguished easily. A major amount of inter-layer porosity
in between successive tracks was obvious. The cross-section of flat specimens (XY specimens) showed
a fracture surface (SEM-2) where successive layers of deposited material were clear. In every layer,
the deposition angle was switched from 45 to 135 degrees, making infill vectors in consecutive layers
orthogonal to each other. When the fracture surface was magnified, the broken carbon fibers could easily
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be noticed (see Figure 20, SEM-1). Chopped carbon fibers having an approximate diameter of 9 µm
were in line with the axis of infill vector. This mean value fell in the advertised data (10 ± 2 µm) [38].
Moreover, the individual carbon fibers apparent in Figure 18 SEM-2 may be proof of poor wetting by
the matrix material.
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For the specimens entitled B_Onyx_R_100_XZ, which were built on their thin edges, as shown
in Figure 17 (SEM-3), the cross-section included a higher number of layers, as can be observed. It was
not even possible to see the deposited tracks in the cross-section (SEM-4), as was the case with flat
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specimens (A_Onyx_R_100_XY SEM-2). However, the layers were visible in both views. The side
surface of the tensile specimen (SEM-3) more obviously exhibited the layers with an approximate layer
thickness of about 100 µm, which was well in line with the set value.

The magnified graphs of the side surfaces and cross-sections of the tensile specimens given
in Figure 18 yielded other observations. The crack-like porosities in between successive layers were
visible in both specimens, as shown with black arrows (Figure 18 SEM-3). The contours scanned
around the part to be filled in every layer limited these porosities. Due to the fact that the specimens
were quite thin, the effect of dense contours probably contribute to a higher Young’s modulus and yield
strength (see Figures 15 and 17). The rectangles in Figure 21 indicate the voids due to fiber pull out.
Moreover, fiber failure/fracture and small voids were observed as failure modes. As shown in Figure 16,
the elongation at break was higher for flat specimens (A_Onyx_R_100_XY) than specimens built on
their thin edges (B_Onyx_R_100_XZ). This was also evident from the SEM graphs.Materials 2019, 12, x FOR PEER REVIEW 15 of 17 
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4. Conclusions

This paper presented a study on the dimensional accuracy and mechanical properties of carbon
fiber-reinforced nylon matrix composites produced by fused filament fabrication for use in real-life
applications. The benchmark geometries produced from the chopped fiber-reinforced nylon matrix
composites showed that the process is quite stable, and that the dimensional accuracy can be enhanced
for some features using appropriate compensation techniques. The minimum feature size was observed
as 2 mm for holes and bosses. The tensile test results showed that, compared to nylon without any
reinforcement, the yield strength and modulus of elasticity were greatly enhanced at the cost of
ductility. The enhancement was further increased when the carbon fibers were placed in a continuous
manner. However, these samples showed almost no elongation at break. Scanning electron microscopy
images of the fracture surfaces of tensile specimens indicated poor wetting of fibers based on the
matrix material, fiber pullout, and spherical voids, as well as porosities in between deposited tracks as
a manufacturing defect. Due to the build volume limitations, the testing could not be carried out on
specimens where the axis of tension is parallel to the build axis. Actually, these are considered as the
specimens where the maximum difference in mechanical properties is expected to be observed. Future
work will focus on testing sub-size specimens and correlating the microstructural observations to the
manufacturing defects as well as repeatability of tests.
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