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Abstract: Aiming at the limited mechanical properties of general thermoplastic 3D printed models,
a 3D printing process method for selective enhancement of continuous carbon fiber composite
material is proposed. Firstly, the selective enhanced double nozzle working mechanism and crafts
planning process are put forward. Then, based on the double nozzle carbon fiber 3D printing device,
test samples are printed by polylactic acid (PLA) and carbon fiber material, and the test samples
are enhanced by inserting layers of continuous carbon fiber material. The performance test of the
samples is carried out. Experiment results show that when the volume fraction of continuous carbon
fiber material increases gradually from 5% to 40%, the tensile strength increases from 51.22 MPa
to 143.11 MPa. The performance improvement curve is fitted through experimental data. Finally,
field scanning electron microscopy is used to observe the microscopic distribution of continuous
fibers in the samples. The results of the research lay the foundation for the performance planning of
3D printed models.
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1. Introduction

In the 30 years of the development of additive manufacturing technology, 3D printing has
gradually broken through the product design concepts for manufacturing process and achieved
the product design concepts for the performance of products [1]. This technology is widely used
in automobile manufacturing, aerospace, military, medical, construction, education and scientific
research [2–4]. Carbon fiber (CF) is a new type of 3D printing material. The CF 3D printing products
can have excellent performance and light weight characteristics compared to metal materials [5,6].
The traditional manufacture of carbon fiber models is mostly formed by different molds under a
certain temperature and pressure. In this way, the manufacturing cost is high and the time is long [7,8].
However, carbon fiber materials combined with 3D printing technology can form complex models
at a low cost and high efficiency. According to traditional thermoplastic material 3D printing, it has
the characteristics of low cost and easily used equipment which has been widely used in modeling
design and verification [9,10]. However, it is difficult to satisfy the performance requirements by the
traditional thermoplastic materials 3D printing method [11]. Although the pure continuous carbon
fiber 3D printing models have better performance, this method has weaknesses, such as higher cost,
longer molding time, and a number of key technologies are still being further studied. Therefore,
the 3D printing process reported here, which uses continuous carbon fiber composite material to
selectively enhance the thermoplastic model, can combine the advantages of both the above and further
expand the application range of 3D printing.
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At present, the research on 3D printing of carbon fiber reinforced composite materials in the world
includes two aspects: the short fiber reinforced and the long fiber reinforced 3D printing [12]. For short
fiber reinforcement, short-cut carbon fibers of different lengths and contents are mixed with other
printing materials. Then, they are put into the extruder to obtain a 3D printing filament. This filament
finally is used to print products and experimental samples [13,14]. Karsli et al. prepared carbon
fiber reinforced polyamide 6 (PA6) composites by using melt mixing method. Mechanical test results
showed that increasing CF content increased the tensile strength, modulus and hardness values [15].

However, the reinforced effect of the short fiber is far less than the long fiber. Bade et al. prepared
a pure polylactic acid (PLA) tensile test model and a PLA/CF tensile test model reinforced by carbon
fiber bundle through melt molding. Comparing the tensile performance test of the above two models,
the tensile strength of the carbon fiber reinforced experimental sample increased by 73% compared to
the pure PLA experimental sample [16]. Xia created an additive manufacturing device for continuous
fiber reinforced composite material by fusing resin and fiber materials together and extruding them
from the nozzle. He explored the effects of printing speed, temperature, fiber pre-tightening force
on the shape quality of the formed sample; fiber neutrality, tensile strength and bending strength
of the formed sample [17]. Matsuzaki et al. introduced a 3D printing method for continuous fiber
reinforced thermoplastics based on fused deposition modeling. The carbon fiber material and PLA
material were separately fed. Then, they were heated and mixed in the nozzle. Compared to the PLA
3D printing sample without fiber material, the properties of the models which contained these two
materials considerably improved [18]. Mori et al. studied this method and first manufactured a lower
plate and upper plate by fused deposition modeling (FDM), thereafter, CCF was sandwiched between
both plates; and finally, the three parts were bonded by thermal treatment. The results showed that
the strength increased to almost double of the previous values by using this method [19]. Hu et al.
proposed a printing method for continuous carbon fiber composite models by modifying the 3D
printer extrusion head to achieve long fiber bundle printing. After testing, they discovered that the
flexural strength and flexural modulus of printed composites significantly improved with the proposed
method with specified printing parameters, and the layer thickness had the greatest contribution
towards the final flexural strength [20]. Tian et al. proposed a method for preparing continuous fiber
reinforced thermoplastic composite (CFRTPC) material based on 3D printing technology. Continuous
carbon fiber and PLA filaments were used as the reinforced phase and matrix respectively, and they
were simultaneously extruded by FDM 3D printing process to achieve integrated preparation and
the forming of composite materials [21]. Pruβ et al. designed a new type of 3D printer head able to
transport fiber bundle on both sides of the original machine head to achieve continuous fiber reinforced
printing [22]. Brooks and Molony adopted another methodology which was to design channels within
the parts that may be filled with continuous reinforcement [23]. Yang et al. designed a continuous
fiber reinforced thermoplastic composite extrusion head. Then, they made composite material samples
and performed multiple mechanical experiments. The results showed that continuous fibers had a
considerable degree of enhancement on the flexural strength and tensile strength of thermoplastic
materials [24]. All the above 3D printing research for long fiber materials made structural modifications
or designs for a single nozzle. The carbon fiber composite material could not be selectively filled in the
model at the time of printing. In this way, the cost of forming a model is high. Markforged released the
desktop carbon fiber 3D printer Mark One. One of the nozzles extruded the nylon material and the
other nozzle extruded the special fiber reinforced material [25]. However, the method of reinforced
material filling was a single contour filling pattern. In summary, the research for long-fiber 3D printing
in the world is mainly based on the printing of single-filament bundle carbon fiber. However, in this
way, the forming time is long, the printing cost is high, and the model cannot be selectively enhanced.
Therefore, the dual-nozzle FDM 3D printing technology for thermoplastic material and continuous
carbon fiber composite material is studied here. A new, selectively enhanced method is proposed,
which can be applied to different reinforced materials. Different layers can be flexibly selected to
print the reinforced material, and the appropriate filling method can be selected according to the
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material properties. Through this selective insertion of continuous carbon fiber composite material
into thermoplastic material, the specific enhancement method is proposed and the performance test
is designed.

2. Continuous Carbon Fiber Reinforced 3D Printing Process

2.1. Materials

PLA has been widely used in many thermoplastic 3D printing applications. However, the mechanical
properties of models printed by PLA are limited. Due to this reason, PLA is chosen in this study as the
matrix material to be reinforced by continuous carbon fibers. The PLA 4032D particles material comes
from American Nature Works and the carbon fiber material (T700) comes from Toray Japan. The data
of two materials are shown in Table 1. The dry carbon fiber tow is firstly let to pass through the entire
preparation device. Then, the PLA particles are placed in a closed container and heated to a molten
state at 210 ◦C. The two materials are mixed at the same temperature. They will then pass through a
nozzle of 0.6 mm at a speed of 10 mm/s. They are finally cooled in normal room (25 ◦C) temperature
water to form continuous carbon fiber PLA composite material (black filament in Figure 1). The whole
material preparation process is shown in Figure 2.

Table 1. The data sheets of PLA (polylactic acid) particles and carbon fiber material.

Mechanical Property PLA [26] Carbon Fiber [27]

Density/ (g/cm3) 1.24 1.8
Melting Point/ (◦C) 155~230

Fracture Elongation/ (%) 7.0 2.1

Tensile Strength/ (MPa) 53 4900

Tensile Modulus/ (GPa) 3.5 230

Rockwell Hardness 88
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2.2. Methods

Through the proposed method of printing thermoplastic material and carbon fiber composite
material by double nozzle, the enhanced properties of carbon fiber for thermoplastic materials has
been achieved. As shown in Figure 3a, continuous carbon fiber composite materials (black filament)
and thermoplastic materials (white filament) are extruded into the respective nozzles by extrusion
device. The surface resin of the continuous carbon fiber composite is melted by heating with two
heating rods at the nozzle. This allows the layer of continuous carbon fiber material to be bonded to
the layer of thermoplastic material. During the printing process, according to the planning of different
types of material for different layers, the corresponding nozzles are selected to print. By inserting
different layers of continuous carbon fiber composite material into the thermoplastic material model,
the thermoplastic material model can be selectively enhanced. Therefore, in order to complete the
above selectively enhanced process, it is necessary to achieve the printing method of carbon fiber
reinforced material for thermoplastics and the specific planning method.

The two nozzles are rigidly connected as Figure 3b,c shows. These are the nozzle 1 extrude
continuous carbon fiber composite material and the nozzle 1 extrude thermoplastic material. When one
nozzle extrudes, the other nozzle stops extruding. As the carbon fiber reinforced material nozzle is
required to print the reinforced material on the top of the corresponding thermoplastic nozzle printed
layer, it is necessary to set the positional relationship of the two nozzles. Thereby, the carbon fiber
reinforced nozzle can print the carbon fiber reinforced material in the corresponding layer number and
position to achieve selective enhancement in one model.

Since the nozzle moves to the print point in the G code file, the nozzle 1 is the original position of
the coordinate system, and the distance between the two nozzles needs to be set when the nozzle is
switched. The whole nozzle position conversion is shown in Figure 4. Assuming that the origin of the
printing platform is (0, 0, 0), the position of the nozzle 1 is (x1, y1, z1), and assuming that the distance
of the nozzle 2 relative to the nozzle 1 is (∆x, ∆y, ∆z), then the position of the nozzle 2 in the printing
platform is (x1 + ∆x,y1 + ∆y,z1 + ∆z). When the nozzle 1 moves to point A (a, b, c) in the coordinate
system with the nozzle 1 as the origin, the position of the nozzle 1 in the printing platform becomes
(x1 + a, y1 + b, z1 + c). When the nozzle 2 is also moved to point A, nozzle 2 in the printing platform
also becomes (x1 + a, y1 + b, z1 + c). The fixed offset distance ∆x, ∆y, ∆z between the two nozzles is
decided by the printer head design, and ∆z is 0.
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The 3D printing planning process is shown in the Figure 5. First, the models that need to be
printed require three-dimensional modeling. After the modeling is completed, the STL file needs to be
generated. Then the STL file needs to be processed by the slicing software. The positional distance
between the nozzles need to be set first. The number and the position of the layers which need to
be printed with the carbon fiber composite material need to be set after that. The filling pattern that
suits for the carbon fiber composite material needs to be set, such that the G code file is generated
layer by layer. Based on the G code, the entire model is then 3D printed, containing the corresponding
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carbon fiber selectively reinforced layers. Current commercially available continuous carbon 3D
printing technology requires proprietary slicing software to print a model [28]. This software is “closed
source” and does not allow for user adjustment of key printing parameters such as temperature, nozzle
movement or extrusion speed. This limits the printing capabilities as the printing settings cannot
be fully customized [28]. Moreover, for the deposition of carbon fibers, only a circumferential fill
pattern is possible which fills the shape from the outside inward in a spiraling motion. This means
the fiber is always orientated along the outer perimeter of the part. In contrast to this, the selectively
enhanced method reported here, allows for the number and the position of layers for carbon fiber
to be flexibly chosen, and for the content of carbon fiber in the reinforcing layer to be adjusted by
changing the density of this layer. In here, the fiber content is determined by setting the path filling
density. When the filling path density is higher, it means the distance between the two path lines is
shorter, so the filling path is denser and filled fibers are more, and the content of carbon fiber is higher.
Otherwise, when the filling path density is lower, the content of carbon fiber is lower. The filling
pattern for carbon can also be chosen.
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3. Performance Testing of Carbon Fiber Selective Reinforced Models

Different layers of continuous carbon fiber composite material will be selectively inserted to the
model during printing by executing the pre-generated G code command. Through the tensile test,
we will test the reinforced effect of different volume fractions of continuous carbon fiber composite
material for the PLA model test models.

3.1. Continuous Fiber Reinforced Layer Path Selection

For this, dumbbell type test specimens are 3D printed. The filling patterns that can be selected are
mesh filling, line filling and spiral offset filling as shown in Figure 6.
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Figure 6. Possible filling patterns: (a) mesh filling; (b) line filling; and (c) spiral offset filling.

The red parts in the above figures are the nozzle jump parts. As the composite material is
continuously fiber reinforced, the material needs to be cut. The nozzle jump points means that the
printed head will stop extruding the materials and move to the next print point. Since the extruding
behavior of carbon fiber composite material is different compared to thermoplastic material, it cannot
be pumped back when intercepting the composite filament printing, which means it is necessary to cut
the fiber in advance when the nozzle jumps. Otherwise, the fiber will print in the current layer along
the nozzle path when the nozzle moves. The shape and the properties will be affected by the results
caused by nozzle jump points. Comparing the three filling patterns, it can be seen that when the mesh
filling pattern is chosen, there are many jump points during the model printing, which means that
this filling pattern is not conducive to print continuous long carbon fiber composite material. At the
same time, the filling direction of this filling pattern is not aligned with the central axis direction of
the model, which combined with the anisotropy of the carbon fiber composite materials will cause
reduction of the testing specimen tensile strength. When the line filling and spiral offset filling patterns
are used, the filling direction of the middle stretching section is along the central axis direction, and this
can effectively enhance the tensile performance of the test specimens. However, there are multiple
jump points in the line filling pattern, while there is only one jump point in the spiral offset filling
pattern. Due to this, the spiral offset pattern is more suitable for printing of continuous long carbon
fiber composite materials. After the filling pattern has been selected, the model diagram and dimension
drawing of the models with continuous carbon fiber composite material inserted are shown in Figure 7.
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3.2. Performance Test of Carbon Fiber Reinforced Models

The model is set to 5 mm and the layer thickness is 0.25 mm, such that the total number of layers
per sample is 20. The middle 0 to 8 layers of test models are selected to use continuous carbon fiber
PLA composite for printing. The remaining layers are selected to use PLA material. For example,
we can choose to insert 1 layer of continuous carbon fiber composite material in the 10th layer, insert 2
layers of continuous carbon fiber composite material in the 10th and 11th layers, and insert 3 layers
of continuous carbon fiber composite material in the 9th, 10th and 11th layers and so on. 8 layers of
continuous carbon fiber composite material are inserted into the models, the proportion of the number
layers of carbon fiber material to the total 20 layers is 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
respectively. The specific insertion method is shown in Table 2. In this way, the continuous carbon
fiber composite material with different volume fractions can be inserted into the test models as shown
in Figure 8 (Figure 8a shows the spiral offset filling pattern, also shown in Figure 6c), where this first
layer has not been printed completely. After the outer area in Figure 8a has been printed, the fiber is
cut and then the inner area in Figure 8b is printed. In this printing pattern, due to the anisotropy of
carbon fiber, the carbon fiber filling direction in the middle of this model can be filled along the central
axis direction of the model. Through tensile experiment for test models, the effect of the content of
continuous carbon fiber composite material on the properties of models can be evaluated.

Table 2. Continuous carbon fiber composite material selective insertion layer.

Total Layers
Amount of

Carbon Fiber
Layers

Carbon Fiber
Volume

Fraction (%)

Position of the
Inserted
Layers

Tensile
Strength of

Models (MPa)

Modulus
(GPa)

20 0 0 No inserting 36.89 1.27
20 1 5 10 51.22 1.44
20 2 10 10–11 65.54 2.48
20 3 15 9–11 75.51 2.68
20 4 20 9–12 80.38 2.81
20 5 25 8–12 94.44 3.13
20 6 30 8–13 107.02 3.67
20 7 35 7–13 116.06 3.90
20 8 40 7–14 143.11 4.05
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Figure 8. Printing process: (a) outer area printing process; (b) whole layer printing process; and (c)
middle area of the model.

In Figure 8, the 3D printing quality may not print very well. In (a), some right-angled part is
printed like a rounded shape. This is because the fibers on the front right-angled side are not completely
bonded to the PLA when printing another right-angled side. In (b) and (c), there exists some featuring
filament waviness. These are because the front printed fiber layer is not flat enough. So, the rapid
bonding of fiber materials and PLA, and the flatness of the fiber layer will have an important influence
on model printing. The above tensile test models were tested for mechanical properties on a SmartTest
universal testing machine. The geometry and dimensions of the test specimens are shown in Figure 9.
The tensile loading speed was 5 mm/min. The tensile strength value of the test samples was recorded.
The typical test specimen and tensile test machine gripping are shown in Figure 9.
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3.3. Analysis of Performance Results

The elastic modulus and tensile strength of the test models which are inserted in 0 to 8 layers of
carbon fiber composite material, and the remaining layers of PLA are presented in Table 2.

The corresponding stress-strain curves are shown in Figure 10. It can be seen that the tensile
strength of the pure PLA test model is 36.89 MPa. For the test model in which 1 layer of continuous
carbon fiber composite material is inserted, the number of continuous carbon fiber composite layers
accounts for about 5% of the total number of layers, and tensile strength reaches 51.22 MPa, which is
38.8% higher than that of the pure PLA test sample. For the test sample in which 8 layers of carbon fiber
composite materials were inserted, the number of continuous carbon fiber composite layers accounts
for about 40% of the total number of layers, and the tensile strength reaches 143.11 MPa, which is 287.9%
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higher than that of the pure PLA test sample. The modulus gradually increases when the number of
CF layers increases, as shown in Figure 11. The strength change trend of the test model, in which the
continuous carbon fiber composite material is inserted, is shown in Figure 12. The strength increase
fitting curve is y = 12.02x + 37.49. The tensile strength of the pure carbon fiber composite material test
samples is 291.575 MPa as shown in Figure 13. The result of the 20-layers test model calculated by the
fitting curve is 277.89 MPa, which is in good agreement with the experimental value in Figure 13.
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The test samples of 2 and 4 layers of CF are analyzed through field emission scanning electron
microscopy with model JEM-7500F and shown in Figure 14. It can be seen that the carbon fiber material
in the SEM image, in which the 4-layers carbon fiber composite material is inserted, is denser than
the carbon fiber material in the SEM image in which the 2-layers carbon fiber composite material is
inserted, and the degree of dispersion of the carbon fiber material is low.
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4. Conclusions

In existing research (as [17–24] mentioned), the research for long-fiber 3D printing in the world
is mainly based on the printing of single nozzle. In this study, the dual-nozzle FDM technology is
developed and proposed for 3D printing of continuous carbon fiber composite and thermoplastic
materials. Taking the advantage of the excellent mechanical properties of carbon fiber materials,
the carbon fiber selective insertion for the model has been achieved. By inserting different layers of
carbon fiber composite materials into the test samples, the model contains different volume fractions of
carbon fiber composite materials. When the volume fraction accounts for 40%, the tensile strength is
increased by 287.9% compared to the pure PLA model. Compared with the existing data, this promotion
radio is competitive (e.g., performance improvement ratio is 185.7% [29]). The relationship between
carbon fiber reinforcement ratio, enhancement materials and the tensile strength of the final 3D printed
material is proposed based on fitting the experimental data. Besides, current commercially available
continuous carbon 3D printing technology (Markforged) does not allow the user to change key printing
parameters such as temperature, nozzle movement or extrusion speed (as [28] mentioned), but for
this selectively enhanced method, the number and the position of carbon fiber layers can be user
chosen, and the content of carbon fiber in this layer can be edited by changing the density of this
layer. The filling pattern for carbon can also be chosen. This allows different parameter settings and
path selection for different models. This 3D printing selective reinforcement method is more flexible
compared to existing commercially available similar technology.
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