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Abstract: In the field of engineering, the annual economic loss caused by material fatigue failure
reaches 4% of the total economic output. The deep understanding of rubber fatigue failure can
help develop and prepare rubber composites with high durability. The crack precursor sizes within
the rubber composites are vital for the material mechanical and fatigue properties. In this study,
we adopted three different characterization methods to analyze crack precursor sizes and their
distribution. First, based on the theoretical formula of fracture mechanics, the size of the crack
precursor was deduced from 180 µm to 500 µm by the uniaxial tensile experiment combined with tear
test (nicked angle tear, planar tear and trouser tear). Second, by combining the uniaxial fatigue test of
dumbbell specimen with the fatigue crack growth rate test, the average size of the crack precursor
was calculated as 3.3 µm based on the Thomas fatigue crack growth model. Third, the average size
of the crack precursor was 3.6 µm obtained by scanning electron microscope. Through theoretical
calculations and experimental tests, the size and distribution of the crack precursors of rubber
composites were systematically presented. This work can provide theoretical guidance for the
improvement of fatigue performance of rubber composites.
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1. Introduction

Rubber composites are extensively used in the manufacture of vibration isolators, elastic bearings,
tires, seals, gaskets, and other rubber products due to its good elastic, mechanical, and dynamic
properties [1,2]. However, the rubber composites materials will gradually break and fail due to the
initiation and growth of cracks in the long-term dynamic processes. The failure of rubber composites
will bring great safety risks and economic losses to society. For example, when silicone rubber prosthetic
materials first entered the market in 1962, there was no in-depth study on the fatigue performance of
the material, which eventually led to many fatigue failure cases. The companies that launched this
product (Corning, Baxter, 3M, etc.) were fined $3.4 billion [3]. So, it is imperative for us to put great
importance on rubber fatigue. Fatigue is a very complicated dynamic process [4] in which the inherent
defects in the materials gradually develop into cracks under cyclic stress and eventually lead to local
fracture [5–7].

Generally speaking, the fatigue failure of rubber composites is divided into two stages: Crack
nucleation stage, the crack precursors inside the rubber composites gradually grow into small cracks
under the dynamic stress. And crack propagation stage, the small cracks expand further under the
dynamic stress until the rubber composites break down. Corresponding to different stages, current
research methods for rubber fatigue include crack nucleation method [8–13] and crack propagation
method [14–17], which are often used to predict the fatigue life of rubber [18–21].
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During the fatigue test, the number of cycles in the crack nucleation stage is more important than
the crack propagation stage. This is because, for specific component geometry and load level, the
fatigue life of the crack nucleation stage accounts for more than 90% of the total fatigue life of the
rubber composite [22]. What is more worth noting is that the crack nucleation stage always occurs
before the component fails, but the crack propagation may not occur (because the small initial crack
may be enough to cause the component to fail due to the stiffness drop). Therefore, prevention of crack
nucleation is often regarded as the main design goal.

Le Cam et al. [23,24] observed the crack propagation process of the rubber composites by in situ
scanning electron microscopy and found that the original internal defects were formed by the interface
slip between zinc oxide and the rubber matrix. Under cyclic dynamic stress, these defects usually
became the initiation points of crack nucleation. These original defects were crack precursors, whose
sizes (c0) were usually ranged from 0.01 mm to 0.1 mm [22]. Although the sizes of the crack precursors
were small, they were fatal for rubber composites. During the fatigue process, after many cycles, the
crack precursors inside the rubber will gradually grow to visible small cracks, which would eventually
lead to the failure of the rubber composites and bring unpredictable dangers.

Besides, in rubber composites, carbon black (CB) particles tend to form CB agglomerates in
processing. The appearance of stress concentration and initial cracks were due to CB agglomerates,
which decreased the mechanical properties of the rubber composites [22,25]. It is evident that
distribution of all components in the rubber matrix has an important influence on the fatigue resistance
of the composites. In addition, it is not difficult to imagine that if the rubber composite was not well
vulcanized, long molecular chains will not form a good cross-linking network, leading to the poor
mechanical properties and fatigue life [26].

Based on the fatigue crack propagation theory, if we obtained the crack precursor size, then
the fatigue life of the rubber composite is available. Besides, we can quickly judge the mixing effect
and stability of the same batch of rubber by the crack precursor sizes, so as to adjust the production
process in time, which is significant for guiding the actual production process. Therefore, a reliable
calculation method for determining the size of crack precursors is very meaningful. Factors that affect
the fatigue life of rubber had been extensively studied [27], but there were few reports on the systematic
characterization and analysis of the crack precursor sizes of rubber composites. Crack precursor is
an important factor in the fatigue failure of rubber. In our previous work [22], we obtained crack
precursor size by computer simulation. However, this method was not easy for laboratory technician
to implement, so we needed to find a simple and fast way to get the crack precursor size.

In this study, we introduced three different methods to characterize the crack precursors sizes. The
first method, based on the fracture mechanics theory, through simple tension, nicked angle tear, planar
tear, and trouser tear experiments, we obtained the crack precursors with sizes of 499.3 µm, 383.6 µm,
and 182.3 µm, respectively. The second method, based on the Thomas model [15,22], through crack
growth rate test and uniaxial tensile fatigue life test, we obtained the average crack precursor size of
3.3 µm. The third method, through observing the low-temperature brittle fracture morphology of the
rubber composites by scanning electron microscopy (SEM), we found that the crack precursor sizes
were normally distributed.

2. Experimental

2.1. Materials

Ethylene propylene diene monomer rubber (EPDM 4045) was supplied by the Petro China Jilin
Petrochemical Co., Ltd (Jilin, China); ethylene content was 53.0–59.0 wt% and Mooney viscosity was
38–52 (ML (1 + 4) @100 ◦C). Carbon black was supplied by Cabot Co., Ltd (Tianjin, China). Other
materials used were all commercial reagents. The specific details of the formula were not shown here
due to commercial protection.
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2.2. Materials Preparation

The EPDM composites were prepared by traditional mixed technology. First, the EPDM rubber
was mixed with carbon black and other agents in an open mixer. When the mixture was uniformly
mixed, a sheet was extruded. Then, the vulcanization characteristics were analyzed with a rotorless
vulcanizer (MR-C3, Beijing Ruida Yuchen Co., Ltd, Beijing, China). Finally, the EPDM compound was
compression-molded and crosslinked at 165 ◦C and the pressure of 15 MPa to obtain rubber composite.

2.3. Characterization

2.3.1. Nicked Angle Tear Test

Nicked angle tear sample was shown in Figure 1. The nicked angle tear energy was measured by
an electronic tensile machine (CMT4104, Xin Sansi Co., Ltd, Shenzhen, China) according to the ISO
34-1: 2010, the test rate was 500 mm/min.
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Figure 1. Nicked angle tear test specimen (length 100 mm, width 19 mm, thickness 2 mm, pre-cut
angle 90◦).

2.3.2. Planar Tear Test

The planar tension specimen with pre-cut was shown in Figure 2a. The width (L) was 100 mm,
the height (h) was 10 mm, the thickness was around 1 mm, and the pre-cut length was 15 mm. The
tear energy was measured by an electronic tensile machine (CMT4104, Xin Sansi Co., Ltd, Shenzhen,
China) with the tensile rate 10 mm/min, the fixture was shown in Figure 2b. The stretching process
was recorded with a camera as shown in Figure 2c.
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2.3.3. Trouser Tear Test

According to the ISO 34-1: 2010, the trouser tear energy was measured by an electronic tensile
machine with the tensile rate 100 mm/min. The trouser tear specimen and the tear process during the
test were shown in Figure 3a and b, respectively.
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Figure 3. (a) Trouser tear test specimen during unloading stage (length 100 mm, width 15 mm, thickness
2 mm, pre-cut 40 mm), and (b) the trouser tear specimen during loading stage.

2.3.4. Simple Tension Test

The mechanical properties were measured by an electronic tensile machine (CMT4104, Xin Sansi
Co., Ltd, Shenzhen, China) according to the ISO 37: 2011.

2.3.5. Crack Propagation Test

As was shown in Figure 4, the crack propagation rates of the rubber composites were determined
by a crack extension analyzer (DMA+1000, METRA VIB, France) at a frequency of 20 Hz at 23 ◦C.
The sample size was 2 mm × 6 mm × 40 mm and the pre-cut depth was 1.5 mm [28].
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2.3.6. Fatigue Life Test

The fatigue life [29,30] of rubber composites under the condition of maximum strain 150% were
obtained through fatigue testing machine (FT3000-2, Beijing Ruida Yuchen Co., Ltd, Beijing, China),
according to ISO 6943:2007.

2.3.7. Scanning Electron Microscope

First, the rubber composites were broken into two parts in liquid nitrogen, and then we observed
the fracture surface by scanning electron microscope (S-4800, Hitachi Co., Ltd, Japan). Finally, we
measured and counted the crack precursor sizes.
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3. Results and Discussion

3.1. Method 1: Critical Tear Energy Method

3.1.1. Theoretical Basis

The specimen’s tear energy under uniaxial stretching can be calculated by the following formula:

T =
2πWc
√

1 + ε
(1)

When the sample breaks:

Tb =
2πWbc0
√

1 + εb
(2)

where T was the tear energy, Tb was the tear energy at break, Wb was the strain energy density, c0 was
the crack precursor size, εb was the elongation at break, and σb was the tensile strength. The strain
energy density Wb was the energy stored per unit volume, which can be quickly estimated:

Wb ≈
1
2
σbεb (3)

So
Tb =

πσbεbc0
√

1 + εb
(4)

c0 =
Tb
√

1 + εb
πσbεb

(5)

Suppose
Tb = Tc (6)

where Tc was the critical tear energy, then the crack precursor size:

c0 ≈
Tc
√

1 + εb
πσbεb

(7)

3.1.2. Tear Energy Test

Nicked Angle Tear

The force-displacement curve of nicked angle tear was shown in Figure 5. The force perpendicular
to the plane of the cut was applied to the specimen, and the tear strength was calculated as follows:

Ts =
F
d

(8)

where Ts (kN/m) was the tear strength, F (N) was the maximum force required for the sample to tear,
d (mm) was the thickness of the sample. Because kN/m = kJ/m2, Ts and Tc were numerically consistent,
and the critical tear energy of the nicked angle tear: Tc = 42.4 kJ/m2.
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Figure 5. Force-displacement curve of the ethylene propylene diene monomer (EPDM) rubber composite
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Planar Tear

The stress–strain curve of the plane tear was shown in Figure 6. Where εb was the strain at
break, and σb was the stress at break. The strain energy density W = 3.28 × 106 J/m3 was obtained by
integrating the stress–strain curve. The sample height h was 10 mm, and the critical tear energy of
planar tear specimen was calculated by the following:

Tc = W × h (9)

where Tc = 32.8 kJ/m2.
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Trouser Tear

The force-displacement curve of the trouser tear was shown in Figure 7. The maximum force F was
calculated according to ISO 6133:1998, and the tear strength was calculated according to formula (8), Ts

= Tc, so the critical tear energy of trouser tear sample: Tc = 15.6 kJ/m2.
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3.1.3. Simple Tension Test

The stress–strain curves of simple tension are shown in Figure 8, and the tensile strength and
elongation at break of each sample are shown in Table 1.
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Table 1. Mechanical properties of different samples.

Samples Tensile Strength
at Failure /MPa

Elongation at
Break/%

Stress at
100%/MPa

Stress at
300%/MPa

1# 13.1 370 4.1 11.4
2# 14.3 432 3.7 11.2
3# 13.4 417 3.7 10.7
4# 13.4 422 3.8 10.8
5# 13.7 444 3.7 10.5
6# 13.5 409 5.2 11.4
7# 13.9 436 5.7 11.8
8# 14.8 431 5.9 12.2
9# 14.6 462 5.7 11.8
10# 15.2 472 6.2 12.5
11# 15.1 439 6.0 12.4
12# 15.1 456 6.0 12.2
13# 15.6 478 6.2 12.5
14# 14.8 459 6.1 12.5
15# 15.7 473 6.7 12.9
16# 14.8 453 6.6 12.8
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It can be clearly observed that the tensile strength and elongation at break of the same batch
of samples were different, which were related to the distribution and size of the crack precursor in
the sample. As shown in Figure 9a, crack precursors (black spots) were randomly distributed in the
specimen. If the crack precursor was in the yellow working area of the sample, stress concentration
would occur at the crack precursor position during the stretching process, thereby the crack precursor
further expanding into larger-sized micro-crack, and finally leading to early fracture failure of the
specimen, showing less elongation at break and tensile strength shown by the second tensile curve in
Figure 9b. The other four samples without crack precursor in work area showed similar elongation at
break and tensile strength. Therefore, more than three samples were needed in the test to reduce the
error caused by the crack precursor distribution.
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The crack precursor sizes of samples can be obtained by substituting tensile strength, elongation
at break, and critical tear energy under three different modes (nicked angle tear, planar tear, and trouser
tear) into formula (7). The crack precursor sizes in different modes were shown in Table 2 and Figure 10.
It can be clearly seen that even in the same mode, the crack precursor sizes were different from each
other due to the differences in tensile strength and elongation at break of the samples. The tear energy
of the same sample in the three modes was also different from each other, therefore, the crack precursor
sizes calculated according to the tear energy also had a big difference. In the nicked angle tear mode,
the average size of the crack precursor was 499.3 µm. In the planar tear mode, the average size of
the crack precursor was 383.6 µm. In the trouser tear mode, the average size of the crack precursor
was 182.3 µm. In simple tension tests, the tensile strength and elongation at break were critical and
directly related to the error in the calculation results. As shown in Figure 10, the more samples tested
for the same sample, the smaller the result error. The linear fitting result of tensile strength and crack
precursor size was shown in Figure 11, where the crack precursor size was negatively correlated with
tensile strength (R2 > 0.9). The larger the crack precursor size, the lower the tensile strength.
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Table 2. Crack precursor size c0 (µm) for different samples.

Sample c0 (Nicked Angle Tear) c0 (Planar Tension) c0 (Trouser Tear)

1# 608.8 467.7 222.2
2# 505.2 388.1 184.4
3# 551.9 423.9 201.4
4# 549.2 421.9 200.5
5# 520.1 399.6 189.8
6# 552.7 424.6 201.7
7# 517.6 397.6 189.9
8# 490.5 376. 8 179.0
9# 477.9 367.2 174.4

10# 451.4 346.8 164.8
11# 474.2 364.3 173.1
12# 464.1 356.5 169.4
13# 438.9 337.2 160.2
14# 473.8 363.9 172.9
15# 437.9 336.4 159.8
16# 475.1 365.0 173.4

average 499.3 383.6 182.3
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3.2. Method 2: Crack Propagation Method

3.2.1. Theoretical Basis

Based on the Thomas fatigue crack growth model [31]:

Tmax = 2πWmaxc (10)

r = rc

(Tmax

Tc

)F
(11)

N f =
∫
∝

c0

1
r dc =

∫
∝

c0

1

rc( Tmax
Tc )

F dc

=
TF

c

(F−1)rc(2πWmax)
F c1−F

0

(12)

c0 =

N f (F− 1)rc(2πWmax)
F

TF
c


1

1−F

(13)

where c0 is the crack precursor size, Nf is the fatigue life, F is the power law index, rc is the critical
crack growth rate, Wmax is the strain energy density [32], and Tc is the critical tear energy measured by
the planar tensile test.

3.2.2. Crack Growth Rate Test

The crack growth rates of rubber composites under different tearing energies were determined by
crack propagation test platform (DMA+1000). First, the Mullins effect was eliminated with 2000 cycles.
Then, the crack growth rates were obtained by observing the distance of the crack tip propagated after
a certain number of cycles by a Leica camera [28,33]. The results were shown in Table 3.

Table 3. Crack growth rates for different tear energy.

Tear Energy (J/m2) Crack Growth Rate (m/cycle)

500 1.15 × 10−8

1000 2.06 × 10−8

1500 1.30 × 10−7

2000 4.47 × 10−7

2500 8.72 × 10−7

The linear fitting result of tear energy and crack growth rate was shown in Figure 12. The critical tear
energy was Tc = 3.28 × 104 J/m2, corresponding to the critical crack growth rate rc = 9.73 × 10−4 m/cycle.
The slope of the fitted line was F = 2.83.
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3.2.3. Analysis of Crack Precursor Size

In Figure 8, the curve with a strain range of 0–150% was integrated to obtain an average strain
energy density Wmax = 4.61 × 106 J/m3. The uniaxial tensile fatigue lives of samples at a maximum
strain of 150% was shown in Table 4. It can be seen that the fatigue lives of different samples were
quite different. So, more samples should be tested as much as possible in the experiment to reduce the
error. The above parameters were substituted into the formula (13) to obtain the crack precursor sizes
of different samples. As shown in Table 4, the average size of the crack precursor was 3.3 µm. The
maximum size of the crack precursor was 2.8 µm smaller than the minimum size, but the fatigue life
was reduced by 38,827 cycles. It can be seen that the size of the crack precursor had a direct impact on
the durability of the rubber composite.

Table 4. Fatigue lives (Nf) and crack precursor sizes for different samples.

Sample Nf c0 (µm)

1# 26,978 3.4
2# 29,098 3.2
3# 27,179 3.3
4# 50,921 2.4
5# 21,472 3.8
6# 48,201 2.4
7# 29,881 3.2
8# 30,198 3.2
9# 35,084 2.9
10# 25,064 3.5
11# 24,792 3.5
12# 12,094 5.2
13# 18,025 4.2
14# 33,219 3.0
15# 28,843 3.2
16# 43,005 2.6

The nonlinear fitting result of crack precursor size and fatigue life was shown in Figure 13.
It can be seen that the larger crack precursor size, the shorter the fatigue life of the rubber composite.
This was because, during the cyclic loading process, the stress concentration of the crack precursor
in the larger size of the rubber composite was more obvious. So that the crack precursors rapidly
developed into micro-cracks, which eventually led to the fracture failure of the rubber composites.
In Figure 13, the fitting result was very good (R2 > 0.999), which can be used to predict the fatigue life
of rubber composites.
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3.3. Method 3: Direct Observation Method by SEM

The cross-sectional morphology of the rubber composite was shown in Figure 14. It can be
seen that there were many crack precursors marked by red arrows. These crack precursors were
caused by the interfacial separation of zinc oxide particles or carbon black agglomeration particles [27].
We calculated the crack precursor sizes in 10 different SEM photographs. The result showed that
the average size of the crack precursor was 3.6 µm. The Gaussian function fitting result was shown
in Figure 15, the crack precursor size showed normal distribution, where the correlation coefficient
R2 = 0.97. It showed that for the same batch of rubber, its crack precursor sizes were distributed in a
certain range, and the average size of the crack precursors was closely related to the process.
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Figure 15. Distributions of the crack precursor sizes.

4. Conclusions

(1) The crack precursor size had a great influence on the physical and mechanical properties
and fatigue durability of rubber composites. In this study, we characterized and analyzed the crack
precursor size of rubber composites by three different methods.

(2) The first method is critical tear energy method. Based on the theory of fracture mechanics, the
average size of the crack precursors obtained by the simple tension test and the critical tear energy
in three tear modes were 499.3 µm, 383.6 µm, and 182.3 µm, respectively. The second method is
crack propagation method. Based on the Thomas fatigue crack growth model, the average size of the
crack precursor was 3.3 µm calculated by the fatigue life and crack growth rate test data of the rubber
specimens. The third method is direct observation method by SEM. Observing the cross-section of the
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rubber composite by SEM, we found that the average size of the crack precursor was 3.6 µm and the
crack precursor sizes exhibited a normal distribution.

(3) By using the first method, we can quickly obtain the sizes of the crack precursors, which can be
used for rapid detection of rubber compounding stability. The second method can accurately reflect the
sizes of the rubber crack precursors which can be used for further study of fatigue theory. By using the
third method, we can directly observe the size and distribution of the real crack precursor and verify the
accuracy of the first two methods, but the operation was complicated and time-consuming. Through
the above three methods, we systematically characterized and analyzed the crack precursor sizes, which
provided theoretical guidance for the in-depth study of the fatigue properties of rubber composites.
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