



PGlu-Modified Nanocrystalline Cellulose Improves Mechanical Properties, Biocompatibility, and Mineralization of Polyester-Based Composites

Mariia Stepanova ¹, Ilia Averianov ¹, Mikhail Serdobintsev ², Iosif Gofman ¹, Natalya Blum ³, Natalya Semenova ³, Yuliya Nashchekina ⁴, Tatiana Vinogradova ², Viktor Korzhikov-Vlakh ^{1,5}, Mikko Karttunen ^{1,6,7,8} and Evgenia Korzhikova-Vlakh ^{1,5,*}

Crystallinity Evaluation

As expected, no diffraction reflexes were observed for PDLLA, indicating the amorphous nature of the polymer. The broad halo at 2θ equal to $10.0-25.0^{\circ}$ was detected. The addition of NCC led to the appearance of the characteristic peak near 23.8° against the background of an amorphous halo. In turn, PCL specimens were characterized with the presence of fairly pronounced diffraction peaks located at 21.4° , 22.1° , and 23.8° . The results are coincided with previously published data [1,2]. This indicates the semi-crystalline nature of the polymer and composite films. The contents of the crystalline and amorphous regions for pure PCL were found to be 35% and 65%, respectively. For PCL-based composite materials containing from 5% to 15% of NCC, these values varied in the range of 40-57% and 60-43%, respectively.

Figure S1. XRD patterns of pure PDLLA and PCL, and their composites with original and modified NCC.

References

- Korzhikov, V.; Averianov, I.; Litvinchuk, E.; Tennikova, T.B.. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. J. Microencapsul. 2016, 33, 199–208.
- 2. Guang-Mei, C.; Tie-Mei, Z.; Lei, C.; Yi-Ping, H. Crystallization properties of polycaprolactone induced by different hydroxyapatite nano-particles. *Asian J. Chem.* **2010**, *22*, 5902–5912.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).