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Abstract: The three-dimensional vibration of a functionally graded sandwich rectangular plate on an
elastic foundation with normal boundary conditions was analyzed using a semi-analytical method
based on three-dimensional elasticity theory. The material properties of the sandwich plate varied
with thickness according to the power law distribution. Two types of functionally graded material
(FGM) sandwich plates were investigated in this paper: one with a homogeneous core and FGM
facesheets, and another with homogeneous panels and an FGM core. Various displacements of the
plates were created using an improved Fourier series consisting of a standard Fourier cosine series
along with a certain number of closed-form auxiliary functions satisfying the essential boundary
conditions. The vibration behavior of the FGM sandwich plate, including the natural frequencies
and mode shapes, was obtained using the Ritz method. The effectiveness and accuracy of the
suggested technique were fully verified by comparing the natural frequencies of sandwich plates with
results from investigations of other functionally graded sandwich rectangular plates in the literature.
A parametric study, including elastic parameters, foundation parameters, power law exponents,
and layer thickness ratios, was performed, and some new results are presented.

Keywords: three-dimensional plate vibration; Ritz method; general boundary conditions; elastic
foundation; functionally graded sandwich plate

1. Introduction

In previous decades, functionally graded materials (FGMs) have been widely used in aviation,
nuclear energy, and other fields because of their special physical characteristics under high temperatures.
The development of pure functionally gradient materials and FGM sandwich plates has been aimed at
easing large interfacial shear stresses. Compared with pure functionally graded materials, there are
relatively few studies on FGM sandwich structures. Thus, further research on these structures will be
helpful for scientists.

Mechanical properties of sandwich plates with a homogeneous and functionally graded material
core have been investigated in the area of long-span lightweight structures [1–4]. Theoretical models,
such as shear deformation plate theory, energy method, finite element method, and three-dimensional
elastic theory, have been used to investigate the mechanical behavior of FGM structures. To account for
specific deformations and stresses, many specific plate and shell models for sandwich/laminate/FGM
plates have been developed. Four theoretical models are often used to analyze the complex mechanical
behavior of sandwich/laminate/FGM plates: (1) equivalent single-layer theory (ESLT), which can
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be divided into three main categories, namely classical plate theory (CPT) [5,6], first-order shear
deformation theory (FSDT) [7,8], and higher-order shear deformation theory (HSDT) [9–11]; (2) refined
higher-order shear deformation theory (RHSDT) [12–16]; (3) 3D elasticity theory [17,18]; and (4)
layer-wise theory (LWT) [19–22]. In ESLT, the sandwich plate is analyzed in terms of displacement
functions related to a single reference surface. Exact 3D elasticity benchmark solutions for the
staticity, vibrations, and dynamics of sandwich plates have been presented by researchers [9,12].
The unified formulation proposed by Carrera [23,24] provides a procedure to describe and implement
numerous plate/shell theories and finite elements in a unified manner by referring to a few fundamental
nuclei. Individual layers in LWT are considered separately as independent displacement fields with
compatibility enforced by appropriate interface compatibility constraints. In addition to ESLT and LWT,
other theories exist; for example, simplified equivalent single-layer theory (SESLT) [25–27], global–local
higher-order theory [28,29], and mixed layer-wise theory (MLWT) [30,31]. SESLT divides transverse
displacement into bending and shear parts and reduces the displacement field unknowns. By contrast,
MLWT is formulated on the basis of the displacement and transverse stress at interfaces.

The study of vibration characteristics of sandwich rectangular plates with an isotropic or FGM core
has made some improvement in recent years. Guided by Reddy’s third-order shear deformation theory,
Moita et al. [32] researched the vibration characteristics of material sandwich structures with passive
damping by utilizing the finite element method. Taking into account high-order shear deformation
theory (HSDT), Thai et al. [33] studied various properties of sandwich FGM plates, including free
vibration, bending, and buckling, by applying a moving Kriging mesh-free method. Tounsi et al. [34]
proposed a refined trigonometric shear deformation theory (RTSDT) produced using functional gradient
sandwich plates under classical boundary conditions. In the analysis of free and forced vibrations on
an elastic foundation, Trinh and Kim [35] presented analytical closed-form solutions for thin FGM
sandwich shells with a resting double curvature. Aiming at a dynamic, as well as static, analysis
of FGM sandwich plates, Pandey and Pradyumna [36,37] extended the higher-order hierarchical
finite element formula. According to the theory of higher-order shear deformation plates, Daikh and
Megueni [38] applied closed-form analytical solutions to analyze the thermal buckling of functionally
graded sandwich plates with simple support boundary conditions. Using a meshless technique, Neves
et al. [39] investigated the characteristics of free vibration and analyzed the buckling of functionally
graded sandwich plates on the condition that the boundary is simply supported under the guidance of
a theory called quasi-3D higher-order shear deformation. Furthermore, using four-variable refinement
plate theory as a guideline, Bourada et al. [40] determined the thermal buckling characteristics of FGM
sandwich plates. In light of the theory of hyperbolic shear deformation, Houari et al. [41] explored
buckling, as well as the free vibration, of thick FGM sandwich plates under the conditions of an
ordinary supported boundary. Using 3D linear elastic theory, Li et al. [42] adopted the theoretical
content of the Ritz method to study the vibration characteristics of rectangular plates. Jalali et al. [43]
used a pseudo-spectral method to study the thermal stability features of FGM sandwich plates subject
to a uniform temperature. Houari et al. [44] discussed the thermoelastic bending deformation of FGM
sandwich plates under simply supported boundary conditions in detail according to the two-variable
refined plate theory and analyzed stresses. In order to explore the vibration characteristics of FGM
sandwich plates, Thai et al. [45,46], Hadji and Tounsi et al. [47,48] proposed an innovative simple
modified plate theory, which proved to be in good agreement with experiments. Neves et al. [49]
conducted a static analysis of FGM sandwich plates under the guidance of a meshless method with a
radial basis function assignment. For more related research results on sandwich beams and sandwich
shells, see References [50–59].

The above review shows that most existing studies on sandwich rectangular plates are confined
to two-dimensional elastic theory, including the first-order shear deformation theory (FSDT) and the
high-order shear deformation theory (HSDT). So far, only Li’s [42] work has been in accordance with
the theory of three-dimensional elasticity. Besides, most researchers limited their study to classical
boundary conditions, e.g., simply supported boundary conditions. Based on existing research results,
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the main objective of this study was to establish a three-dimensional sandwich rectangular plate
vibration analysis model with general boundary conditions and an elastic foundation. The Pasternak
model was used to model the elastic foundation. Also, general boundary conditions were realized
using three sets of linear springs uniformly distributed at the edges. The theoretical formulation
was achieved based on the Ritz and three-dimensional elasticity theories. Throughout this paper,
the authors aim to enrich existing research results of sandwich rectangular plates and provide reference
data for future follow-up studies.

2. Theoretical Formulations

2.1. Geometrical Configuration

Figure 1 gives a schematic diagram of a three-dimensional sandwich rectangular plate on an
elastic foundation under general boundary conditions. Figure 1a utilizes the Cartesian coordinate
system (x, y, z), with the origin (0, 0, 0) at the bottom of a rectangular plate. The letter a, b, and h
denote the length, width, and thickness of a rectangular plate in the x-, y-, and z-directions, respectively.
Figure 1b shows general boundary conditions using three sets of linear springs (ku, kv, kw). Three elastic
layers make up the sandwich plate; h1 = 0, and h2, h3, and h4 = h represent vertical coordinates from
the bottom to the top, including the two middle interfaces. For the sake of simplicity, a combination
of three numbers (1–0–1, 2–1–2, etc.) are used to represent the thickness ratio of each layer from the
bottom to the top.

Figure 1. Geometry of a three-dimensional (3D) functionally graded (FG) sandwich rectangular plate:
(a) the geometry and coordinates, and (b) the boundary restraining springs.

In this paper, two common sandwich structures are used to describe the material characteristics
of three-dimensional sandwich rectangular plates, as shown in Figure 2. Two kinds of sandwich
structures are denoted as type A and type B. Type A contains an FGM face sheet and a homogeneous
core; type B contains a homogeneous face sheet and an FGM core. The volume fraction V1 of an FGM
sandwich rectangular plate is defined as:

Type A :


V1

1 =
( z−z1

z2−z1

)p
z ∈ [z1, z2]

V2
1 = 1 z ∈ [z2, z3]

V3
1 =

( z−z4
z3−z4

)p
z ∈ [z3, z4]

 Type B :


V1

1 = 1 z ∈ [z1, z2]

V2
1 =

( z−z3
z2−z3

)p
z ∈ [z2, z3]

V3
1 = 0 z ∈ [z3, z4]

 (1)
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The Voigt criteria can efficiently evaluate the effectiveness of each layer of material, and the
Young’s modulus (Ee), Poisson’s ratio (µe), and mass density (ρe) of the eth layer are given using the
following equationos:

Ee =
(
Ee

t − Ee
b

)
Ve

1 + Ee
b (2a)

µe =
(
µe

t − µ
e
b

)
Ve

1 + µe
b (2b)

ρe =
(
ρe

t − ρ
e
b

)
Ve

1 + ρe
b (2c)

The subscripts b and t represent the bottom face and the top face of each layer, respectively.
In order to highlight the basic principles of Equations (1) and (2), Figure 3 shows the volume fraction
Ve

1 of the FGM sandwich rectangular plate along the thickness direction z as a function of the power
law index p.

Figure 2. The material variation along the thickness of the 3D FG sandwich rectangular plate: (a) FGM
facesheet and homogeneous core, and (b) homogeneous facesheet and FGM core.

Figure 3. Variation of the volume fraction Ve
1 through the thickness for different values of the power

law exponent: (a) type A and (b) type B.

2.2. Admissible Displacement Functions

The Ritz method is suitable for studying the vibration performance of three-dimensional FGM
sandwich rectangular plates under general boundary conditions. Therefore, selecting appropriate
displacement admissible functions is critical [58]. It can be found that the conventional displacement
admissible functions are usually defined according to the boundary conditions, such as a conventional
Fourier series, Chebyshev polynomial, and so on. The latter would cause a tedious formula deduction
and reduce computational efficiency. In previous work, the author’s team proposed a new type of
displacement admissible function by adding an auxiliary function for the boundary based on the
traditional Fourier series [60,61]. In this way, the admissible displacement function and its derivative at
the edges of the structure can be solved mechanically. Therefore, an improved Fourier series is used in
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this study to represent the allowable displacement function of three-dimensional functionally graded
sandwich rectangular plates. The specific expressions are as follows [62]:

u(x, y, z) =

UΩ(x, y, z) +
6∑

q=1

US
q(x, y, z)

Amnq (3a)

v(x, y, z) =

VΩ(x, y, z) +
6∑

q=1

VS
q(x, y, z)

Bmnq (3b)

w(x, y, z) =

WΩ(x, y, z) +
6∑

q=1

WS
q(x, y, z)

Cmnq (3c)

where UΩ, VΩ, and WΩ refer to the internal displacement distribution functions of the functionally
graded sandwich rectangular plate; Uq

S, Vq
S, and Wq

S are the complementary sequences of boundary
displacements of the functionally graded sandwich rectangular plate; and Amnq, Bmnq, and Cmnq are 3D
Fourier coefficient vectors. The following formulas represent the specific parameters of each vector
symbol [61]:

UΩ = VΩ = WΩ =

 cosλa
0x cosλb

0y cosλh
0z, · · · , cosλa

0x cosλb
0y cosλh

Q1
z, · · · ,

cosλa
0x cosλb

N1
y cosλh

Q1
z, · · · , cosλa

M1
x cosλb

N1
y cosλh

Q1
z

 (4a)

UB
1 = VB

1 = WB
1 =

{
sin(λa

−2x) cos(λb
0y), · · · , sin(λa

−2x) cos(λb
ny), · · · ,

sin(λa
−2x) cos(λb

N y), · · · , sin(λa
−1x) cos(λb

N y)

}
(4b)

UB
2 = VB

2 = WB
2 = ΦB

2 = ΘB
2 =

{
cos(λa

0x) sin(λb
−2y), cos(λa

0x) sin(λb
−1y), · · · ,

cos(λa
mx) sin(λb

−2y), · · · , cos(λa
Mx) sin(λb

−1y)

}
(4c)

US
1 = VS

1 = WS
1 =

 sinλa
−2x cosλb

0y cosλh
0z, · · · , sinλa

−2x cosλb
0y cosλh

Q1
z, · · · ,

sinλa
−2x cosλb

N1
y cosλh

Q1
z, · · · , sinλa

−1x cosλb
N1

y cosλh
Q1

z

 (4d)

US
2 = VS

2 = WS
2 =

 cosλa
0x sinλb

−2y cosλh
0z, · · · , cosλa

0x sinλb
−2y cosλh

Q1
z, · · · ,

cosλa
0x sinλb

−2y cosλh
Q1

z, · · · , cosλa
M1

x sinλb
−1y cosλh

Q1
z

 (4e)

US
3 = VS

3 = WS
3 =

 cosλa
0x cosλb

0y sinλh
−2z, cosλa

0x cosλb
0y sinλh

−1z, · · · ,
cosλa

0x cosλb
N1

y sinλh
−2z, · · · , cosλa

M1
x cosλb

N1
y sinλh

−1z

 (4f)

US
4 = VS

4 = WS
4 =

 sinλa
−2x sinλb

−2y cosλh
0z, · · · , sinλa

−2x sinλb
−2y cosλh

Q1
z, · · · ,

sinλa
−2x sinλb

−1y cosλh
Q1

z, · · · , sinλa
−1x sinλb

−1y cosλh
Q1

z

 (4g)

US
5 = VS

5 = WS
5 =

 sinλa
−2x cosλb

0y sinλh
−2z, sinλa

−2x cosλb
0y sinλh

−1z, · · · ,
sinλa

−2x cosλb
N1

y sinλh
−2z, · · · , sinλa

−1x cosλb
N1

y sinλh
−1z

 (4h)

US
6 = VS

6 = WS
6 =

 cosλa
0x sinλb

−2y sinλh
−2z, cosλa

0x sinλb
−2y sinλh

−1z,
cosλa

0x sinλb
−1y sinλh

−2z, · · · , cosλa
M1

x sinλb
−1y sinλh

−1z

 (4i)
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x y z
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λa
m1

= m1π/aλb
n1

= n1π/bλh
l1
= l1π/h (4k)

2.3. Energy Expressions

Based on the theory of 3D elasticity [9], the relationship between linear strain and displacement
for a three-dimensional functional gradient sandwich rectangular plate are given as:

εxx = ∂u
∂x , εyy = ∂v

∂y , εzz =
∂w
∂z

γxy = ∂u
∂y + ∂v

∂x ,γxz =
∂u
∂z + ∂w

∂x ,γyz =
∂v
∂z +

∂w
∂y

(5)

The stress of the three-dimensional FGM sandwich rectangular plate using the theory of
three-dimensional constraint of a linear elastic can be expressed as follows:

σxx

σyy

σzz

σyz

σxz

σxy


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εxx

εyy

εzz

γxy

γxz

γyz


(6)

where the stiffness coefficient Cij is obtained as follows:

C11 = C22 = C33 = λ(z) + 2G(z)
C12 = C13 = C23 = λ(z), C44 = C55 = C66 = G(z)

λ(z) = E(z)
(1+µ)(1−2µ) , G(z) = E(z)

2(1+µ)

(7)

Then, based on the elasticity theory, the strain energy U for a three-dimensional functionally
graded sandwich rectangular plate can be obtained (detailed descriptions of Equation (8) are given in
Appendix A).

U =
1
2

∫ h

0

∫ a

0

∫ b

0

(
σxxεxx + σyyεyy + σzzεzz + σxyεxy + σxzεxz + σyzεyz

)
dxdydz (8)

The corresponding kinetic energy (T) function of the three-dimensional FGM sandwich rectangular
plate can be given as follows:

T =
1
2

∫ h

0

∫ b

0

∫ a

0
ρω2





UΩ+
6∑

q=1
US

q

Amnq


2

+




VΩ+
6∑

q=1
VS

q

Bmnq


2

+




WΩ+
6∑

q=1
WS

q

Cmnq


2dxdydz (9)
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The energy (Usp) kept in reserve by the boundary spring during deformation strain vibrations
can be given as follows:

Usp = 1
2

∫ h
0

∫ b
0



ku
x0

UΩ(0, y, z) +
6∑

q=1
US

q(0, y, z)

Amnq

2

+ ku
x1

UΩ(a, y, z) +
6∑

q=1
US

q(a, y, z)

Amnq

2

+

kv
x0

VΩ(0, y, z) +
6∑

q=1
VS

q(0, y, z)

Bmnq

2

+ kv
x1

VΩ(a, y, z) +
6∑

q=1
VS

q(a, y, z)

Bmnq

2

+

kw
x0

WΩ(0, y, z) +
6∑

q=1
WS

q(0, y, z)

Cmnq

2

+ kw
x1

WΩ(a, y, z) +
6∑

q=1
WS

q(a, y, z)

Cmnq

2


dydz

+ 1
2

∫ h
0

∫ a
0



ku
y0

UΩ(x, 0, z) +
6∑

q=1
US

q(x, 0, z)

Amnq

2

+ ku
y1

UΩ(x, b, z) +
6∑

q=1
US

q(x, b, z)

Amnq

2

+

kv
y0

VΩ(x, 0, z) +
6∑

q=1
VS

q(x, 0, z)

Bmnq

2

+ kv
y1

VΩ(x, b, z) +
6∑

q=1
VS

q(x, b, z)

Bmnq

2

+

kw
y0

WΩ(x, 0, z) +
6∑

q=1
WS

q(x, 0, z)

Cmnq

2

+ kw
y1

WΩ(x, b, z) +
6∑

q=1
WS

q(x, b, z)

Cmnq

2


dxdz

(10)

As stated above, the vibration behavior of the 3D functionally graded sandwich rectangular plate
placed on an elastic foundation with a Pasternak type Winkler layer (stiffness Kw) was determined, as
well as for the shear layer (stiffness Ks), drawn in Figure 1. The following formula shows the total
energy stored in the foundation spring:

Uf =
1
2

∫ a

0

∫ b

0

Kw
(
W̃Cmn

)2
+ KS

(
∂W̃
∂x

Cmn

)2

+ KS

(
∂W̃
∂y

Cmn

)2
dxdy (11)

The Lagrangian energy function for the three-dimensional functionally graded sandwich
rectangular plate can be expressed as:

L = U + Usp + Uf −T (12)

2.4. Solution Methodology

By applying the Ritz method, the Lagrangian function (L) should not be variable, i.e, its variety is
equal to zero under time constraint implemented between a fixed primary and final moment of time
t0 and t1. A homogeneous quadratic function of Fourier series coefficients is given by the Lagrange
function L. Partial derivatives of the Lagrangian function L from Equation (12) with respect to Amnq,
Bmnq, and Cmnq is as follows:

∂L
∂Amnq

=
∂L

∂Bmnq
=

∂L
∂Cmnq

= 0 (13)

The controlling eigenvalues matrix can be obtained using:

(K−ω2M)H = 0 (14)

where the parameters of K and M represent the overall stiffness matrix and the mass matrix,
respectively. H is the sealed Fourier coefficient vector. The natural frequencies and mode shapes of the
three-dimensional FGM sandwich rectangular plate can be obtained by solving Equation (14). Due to
space limitations, detailed expressions of matrices K, M, and H are not given here.

3. Numerical Results and Discussion

Section 2 established a theoretical model based on the Ritz method. This section highlights
numerical discussions based on the above-mentioned Ritz method. The discussion can be divided
into three parts: (a) a study of the convergence characteristics of this method, (b) verification of
the correctness and efficiency of the current method using a series of numerical examples, and (c)
further development of new numerical examples and parametric studies. The material constituents
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of the functionally graded layers were set as alumina (top surface) and aluminum (bottom surface)
in the absence of other provisions. During the course of this research, material properties were
defined as follows: aluminum: Em = 70 GPa, µm = 0.3, ρm = 2702 kg/m3; alumina: Em = 380 GPa,
µm = 0.3, ρm = 3800 kg/m3. For simplicity, the dimensionless natural frequency Ω, equivalent shear
KS, and Winkler parameters KW , respectively, are expressed as followings:

Ω = ωb2
√
ρc/Ec/h, KW =

KWb4

Dm
, KS =

KSb2

Dm
, Dm =

Emh3

12(1− µ2)
(15)

In addition, in order to further simplify the study, only one group of foundation coefficients(
KW , KS

)
= (10,10) was adopted for this research. From bottom to top, the proportion of the layer

thicknesses was taken to be 1–2–1 in the absence of other provisions.

3.1. Convergence Study

In theory, the Ritz method can obtain quite accurate solutions by increasing the number of
displacement tolerance function terms. However, due to limited computing hardware resources, too
many expansion terms of displacement admissible functions will greatly reduce the computational
efficiency of the Ritz method. Convergence properties of the Ritz method under the improved
Fourier series were used in this study. Table 1 presents the first six frequency parameters Ω of FGM
sandwich plates with diverse truncated numbers of modified Fourier series. The boundary condition
of the structure was limited to CCCC (four edges clamped) and SSSS (four edges simply-supported).
Furthermore, b/a = 1 and h/a = 0.5 represent geometric parameters, and p = 1 represents a power law
index. Two cases of inelastic and elastic foundations are considered in this case. Table 1 highlights the
advantages of the proposed methodology, e.g., fast convergence characteristics and good numerical
stability. Compared with the 4 × 4 × 4 terms, the 8 × 8 × 8 terms provided a sufficiently accurate
solution. Table 2 shows the convergence of type B FGM sandwich plates with different truncated
numbers. Both geometric parameters and the power law exponents were the same as for Table 1.
The above-mentioned results exhibited the same trend as the Type A FGM plates. Thus, in the example
given below, the admissible function truncated number was chosen as follows: M × N × Q = 8 × 8 × 8.

Table 1. Convergence of frequency parameters Ω of FGM sandwich plates of type A with different
numbers of terms and p = 1.

(
KW , KS

)
M × N × Q CCCC SSSS

1 2 3 4 5 6 1 2 3 4 5 6

(0,0)

4 × 4 × 4 3.970 6.283 6.283 6.532 6.532 7.637 3.000 3.389 3.389 4.781 5.833 5.833
5 × 5 × 5 3.965 6.278 6.278 6.528 6.528 7.636 2.998 3.389 3.389 4.781 5.831 5.831
6 × 6 × 6 3.963 6.277 6.277 6.526 6.526 7.635 2.998 3.389 3.389 4.780 5.831 5.831
7 × 7 × 7 3.962 6.276 6.276 6.525 6.525 7.635 2.998 3.389 3.389 4.780 5.831 5.831
8 × 8 × 8 3.961 6.275 6.275 6.524 6.524 7.635 2.998 3.389 3.389 4.780 5.831 5.831

(10,10)

4 × 4 × 4 4.117 6.336 6.336 6.561 6.561 7.638 3.110 3.389 3.389 4.781 5.870 5.870
5 × 5 × 5 4.105 6.330 6.330 6.555 6.555 7.637 3.104 3.389 3.389 4.781 5.867 5.867
6 × 6 × 6 4.078 6.318 6.318 6.547 6.547 7.636 3.086 3.389 3.389 4.780 5.858 5.858
7 × 7 × 7 4.071 6.315 6.315 6.544 6.544 7.635 3.082 3.389 3.389 4.780 5.857 5.857
8 × 8 × 8 4.052 6.308 6.308 6.540 6.540 7.635 3.069 3.389 3.389 4.780 5.852 5.852
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Table 2. Convergence of frequency parameters Ω of FGM sandwich plates of type B with different
numbers of terms and p = 1.

(
KW , KS

)
M × N × Q CCCC SSSS

1 2 3 4 5 6 1 2 3 4 5 6

(0,0)

4 × 4 × 4 3.590 5.141 5.141 5.823 5.823 5.883 2.736 3.092 3.092 4.151 5.291 5.291
5 × 5 × 5 3.584 5.125 5.125 5.805 5.805 5.864 2.734 3.089 3.089 4.143 5.283 5.283
6 × 6 × 6 3.580 5.123 5.123 5.803 5.803 5.864 2.734 3.089 3.089 4.143 5.283 5.283
7 × 7 × 7 3.575 5.117 5.117 5.792 5.792 5.858 2.732 3.088 3.088 4.140 5.277 5.277
8 × 8 × 8 3.573 5.115 5.115 5.790 5.790 5.857 2.732 3.088 3.088 4.139 5.277 5.277

(10,10)

4 × 4 × 4 3.755 5.151 5.151 5.884 6.013 6.013 2.826 3.092 3.092 4.151 5.342 5.342
5 × 5 × 5 3.739 5.132 5.132 5.865 5.992 5.992 2.818 3.089 3.089 4.143 5.336 5.336
6 × 6 × 6 3.715 5.130 5.130 5.865 5.966 5.966 2.808 3.089 3.089 4.143 5.330 5.330
7 × 7 × 7 3.701 5.124 5.124 5.859 5.943 5.943 2.802 3.088 3.088 4.140 5.321 5.321
8 × 8 × 8 3.683 5.122 5.122 5.857 5.919 5.919 2.794 3.088 3.088 4.139 5.314 5.314

3.2. Validation Studies

The numerical results of the simply supported and clamped FGM sandwich rectangular plates
and pure FGM plates are verified in this section. Table 3 presents the first five frequency parameters Ω
= ωb2/h(1/109)1/2 for a type A FGM sandwich square plate with four edges simply supported, compared
with the clamped boundary conditions. Geometric parameters and material parameters were set as
follows: b/a = 1, h/a = 0.1, and p = 1 and 10. The thickness scheme 2–1–2 was adopted in this example.
Compared with Table 3, the maximum error of the method given in this paper was less than 1%.
Table 4 provides a comparison of frequency parameter Ω for pure FGM plates (type B, 0–1–0) with
different power law exponents p. Geometric and material parameters were set as follows: b/a = 1 and
h/a = 0.5. Table 4 shows four kinds of boundary conditions (SSSS, SCSC, SFSF, and SSSF). Based on the
above study, four elastic boundary conditions and the classical boundary conditions are described as
follow (taking the x = 0 edge as an example): clamped (C): ku = kv = kw = 1015; free (F): ku = kv = kw = 0;
simply-supported (S): ku = 0, kv = kw = 1015; elastic restraint 1 (E1): ku = 1010, ku = kw = 1015; elastic
restraint 2 (E2): kv = 1010, ku = kw = 1015; elastic restraint 3 (E3): kw =1010, ku = kv = 1015; and elastic
restraint 4 (E4): ku = kv = kw = 1010. Tables 3 and 4 shows that the present method was verified as being
able to handle the study problems.

Table 3. Comparison of frequency parameter Ω for type A FGM plates (2–1–2) with a different power
law exponent p.

B.C Method
p = 1 p = 10

1 2 3 4 5 1 2 3 4 5

SS
SS

Ref. [42,59] 1.30182 3.15875 3.15875 4.91659 6.04048 0.94044 2.28616 2.28616 3.56466 4.38441
Present 1.30251 3.15931 3.15931 4.91678 6.04735 0.94075 2.28598 2.28598 3.56405 4.38964

Error (%) 0.05 0.02 0.02 0.00 0.11 0.03 0.01 0.01 0.02 0.12

CC
CC

Ref. [42,59] 2.29049 4.46721 4.46721 6.35053 7.56005 1.66075 3.24938 3.24938 4.6307 5.52175
Present 2.30672 4.50244 4.50244 6.40202 7.61991 1.67303 3.27800 3.27800 4.67538 5.57666

Error (%) 0.71 0.79 0.79 0.81 0.79 0.74 0.88 0.88 0.96 0.99

B.C: Boundary Conditions.

Table 4. Comparison of frequency parameter Ω for type B FGM plates (0–1–0) with different a power-law
exponent p.

p SSSS SCSC SFSF SSSF

Ref. [61] Present Error (%) Ref. [61] Present Error (%) Ref. [61] Present Error (%) Ref. [61] Present Error (%)

0 1.8470 1.8459 0.06 1.9139 1.9139 0.00 1.0652 1.0645 0.06 0.9570 0.9571 0.01
1 1.4687 1.4687 0.00 1.5724 1.5726 0.01 0.8342 0.8342 0.00 0.7937 0.7940 0.03
2 1.3095 1.3101 0.04 1.4026 1.4031 0.04 0.7464 0.7469 0.06 0.7149 0.7153 0.06
5 1.1450 1.1461 0.09 1.2072 1.2085 0.11 0.6687 0.6694 0.10 0.6168 0.6177 0.15
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3.3. Parametric Studies

Based on the above study, this section highlights the parametric study of three-dimensional
functionally graded sandwich rectangular plates. Figure 4 gives variations of the first three frequency
parameters Ω of the 3D FGM sandwich rectangular plate with respect to diverse elastic parameters.
The elastic boundary conditions were as follows: the boundary of x = constant was defined as a fixed
boundary; y = 0 as a free boundary; y = b as an elastic boundary; and only one type of elastic stiffness,
which varied from 104 to 1016, and the remaining type of elastic stiffness was 0. The geometric and
material parameters were consistent with Tables 1 and 2. It can be seen from Figure 4 that the Ω of the
plate increased gradually under the trend where the boundary stiffness coefficient increased. When
the stiffness exceeded 1013, the stiffness coefficient hardly affected the vibration characteristics of the
plate. Based on the above, four elastic boundary conditions and the classical boundary conditions
were taken to be as follows (taking x = 0 edge as an example): clamped (C): ku = kv = kw = 1015;
free (F): ku = kv = kw = 0; simply supported (S): ku = 0, kv = kw = 1015; elastic restraint 1 (E1): ku = 1010,
ku = kw = 1015; elastic restraint 2 (E2): kv = 1010, ku = kw = 1015; elastic restraint 3 (E3): kw = 1010, ku = kv

= 1015; and elastic restraint 4 (E4): ku = kv = kw = 1010. Figures 5 and 6 present variations of the first
two frequency parameters Ω of type A and type B 3D FGM sandwich rectangular plates with respect
to different foundation parameters, where the foundation parameters were changed from 10−6 to 106.
In Figures 5 and 6, it can be seen that there was an active region for the foundation parameters, which
significantly affected the vibration characteristics of the plate, and the influence of the foundation
parameters could be neglected outside this region. Figures 7 and 8 show changes in the first two
frequency parameters Ω of type A and type B 3D FGM sandwich rectangular plates related to the
power law exponent p. Different boundary conditions were considered, including two classical and
two elastic boundary conditions. It is clear that there was an influence of p on vibration characteristics
of the plate under different boundary conditions. For SSSS and CCCC, vibration characteristics initially
decreased rapidly with the increased gradient coefficient, and then decreased slowly. For the elastic
boundary conditions, the impact of p on the vibration behavior of the plate became more complex.
For example, for the FGM plates with the E1E1E1E1 elastic boundary condition, the increased power
law exponent caused an increase of the first-order frequency parameters, while second-order frequency
parameters were the opposite. Because the vibration of the 3D FGM sandwich rectangular plate was
insufficient, new vibration results are given in Tables 5 and 6 that can provide reference data for a
follow-up study. Tables 5 and 6 show four classical boundaries (CCCC, SSSS, CFCF, and CSCF) and four
elastic boundary conditions (E1E1E1E1, E2E2E2E2, E3E3E3E3, and E4E4E4E4). It is clear that increasing
the thickness of the functionally graded layer reduced the Ω of the 3D FGM sandwich rectangular
plate. This phenomenon can be directly seen from the modal shapes, as shown in Figures 9 and 10.
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Table 5. Frequency parameter Ω of the FGM plates of type A with different boundary conditions.

h1–h2–h3 Mode
Boundary Conditions

CCCC SSSS CFCF CSCF E1E1E1E1 E2E2E2E2 E3E3E3E3 E4E4E4E4

1 3.006 2.277 2.154 2.204 0.735 0.735 0.851 0.729
1–0–1 2 4.579 2.509 2.277 2.400 2.551 2.551 1.930 0.825

3 4.804 3.523 2.301 2.907 2.667 2.667 2.945 1.034

1 3.598 2.612 2.529 2.584 0.702 0.702 0.816 0.698
1–1–1 2 5.602 3.109 2.673 2.972 3.017 3.017 2.124 0.796

3 5.881 4.348 2.843 3.418 3.228 3.228 3.411 0.990

1 3.906 2.873 2.739 2.800 0.687 0.687 0.800 0.684
1–2–1 2 6.095 3.350 2.902 3.202 3.288 3.288 2.274 0.784

3 6.398 4.704 3.064 3.746 3.456 3.456 3.682 0.969

1 4.188 3.172 2.937 3.008 0.673 0.673 0.784 0.670
1–4–1 2 6.532 3.561 3.130 3.405 3.555 3.555 2.447 0.772

3 6.870 5.023 3.258 4.097 3.657 3.657 3.957 0.950

1 4.403 3.433 3.091 3.172 0.662 0.662 0.772 0.660
1–8–1 2 6.848 3.707 3.315 3.545 3.771 3.771 2.603 0.763

3 7.174 5.240 3.393 4.391 3.796 3.796 4.181 0.935

Table 6. Frequency parameter Ω of the FGM plates of type B with different boundary conditions.

h1–h2–h3 Mode
Boundary Conditions

CCCC SSSS CFCF CSCF E1E1E1E1 E2E2E2E2 E3E3E3E3 E4E4E4E4

1 3.673 2.775 2.521 2.585 0.694 0.694 0.808 0.690
1–0–1 2 5.050 3.068 2.587 2.980 3.094 3.094 2.209 0.791

3 5.760 4.088 3.120 3.588 3.191 3.191 3.527 0.979

1 3.399 2.612 2.339 2.405 0.707 0.707 0.822 0.702
1–1–1 2 4.733 2.855 2.408 2.779 2.885 2.885 2.119 0.803

3 5.442 3.805 2.949 3.382 2.991 2.991 3.317 0.995

1 3.287 2.561 2.270 2.336 0.713 0.713 0.829 0.708
1–2–1 2 4.617 2.758 2.338 2.689 2.804 2.804 2.090 0.810

3 5.267 3.696 2.861 3.299 2.900 2.900 3.233 1.004

1 3.187 2.525 2.212 2.277 0.720 0.720 0.836 0.714
1–4–1 2 4.511 2.662 2.278 2.600 2.734 2.734 2.069 0.817

3 5.103 3.594 2.768 3.225 2.810 2.810 3.159 1.013

1 3.116 2.500 2.171 2.237 0.725 0.725 0.842 0.720
1–8–1 2 4.430 2.583 2.237 2.528 2.685 2.685 2.054 0.823

3 4.977 3.513 2.686 3.168 2.736 2.736 3.106 1.021
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Figure 4. Variation of the non-dimensional frequency parameter Ω of a 3D FG sandwich rectangular
plate with respect to different elastic parameters: (a) type A and (b) type B.
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Figure 5. Variation of the non-dimensional frequency parameter Ω of a 3D FG sandwich rectangular
plate of type A with respect to different foundation parameters: (a) CCCC and (b) E4E4E4E4.

Figure 6. Cont.
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Figure 6. Variation of the non-dimensional frequency parameter Ω of a 3D FG sandwich rectangular
plate of type B with respect to different foundation parameters: (a) CCCC and (b) E4E4E4E4.

Figure 7. Variation of the non-dimensional frequency parameter Ω of a 3D FG sandwich rectangular
plate of type A with respect to different volume fraction indices: (a) CCCC, (b) SSSS, (c) E1E1E1E1,
and (d) E4E4E4E4.
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Figure 8. Variation of the non-dimensional frequency parameter Ω of a 3D FG sandwich rectangular
plate of type B with respect to different volume fraction indices: (a) CCCC, (b) SSSS, (c) E1E1E1E1,
and (d) E4E4E4E4.

Figure 9. Cont.
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Figure 9. Mode shapes of CCCC 3D FG sandwich rectangular plates of type A with different laminated
distribution parameters.

Figure 10. Mode shapes of E4E4E4E4 3D FG sandwich rectangular plates of type B with different
laminated distribution parameters.
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4. Conclusions

We studied the vibration characteristics of FGM sandwich rectangular plates on an elastic
foundation under general boundary constraints. According to the power-law distribution, it was
assumed that the material characteristics vary continuously throughout the thickness range. This paper
has studied four common kinds of sandwich FGM plates. The FGM plates’ displacement was
represented as the superposition of a Fourier series and an auxiliary polynomial that was used to
account for discontinuities of the original displacement function and its related derivatives. In order to
overcome the problem of convergence caused by the discontinuity of boundary conditions, the authors
have adopted an improved Fourier series based on a traditional Fourier series. The unknown Fourier
series expansion coefficients were obtained using the Rayleigh–Ritz method. The technology of an
artificial virtual spring could be used to imitate the general boundary constraints of FGM sandwich
rectangular plates. It was concluded that the natural characteristics of the FGM sandwich rectangular
plate with elastic properties were affected by different boundary conditions, foundation coefficients,
material schemes, and elastic restraints. By comparing results existing in the available literature
and results obtained by the method used in this paper, the accuracy of the method in predicting the
vibration characteristics of FGM sandwich rectangular plate on an elastic foundation was verified.
The influence of elastic parameters, foundation parameters, power-law exponents, and layer thickness
ratios were studied in detail in this paper, and some important results have been obtained.

Author Contributions: Conceptualization, J.C. and R.Y.; methodology, R.Y.; software, Z.L.; validation, Z.L., T.Z.
and R.Y.; formal analysis, J.C.; investigation, R.Y.; resources, J.C.; data curation, S.T.; writing—original draft
preparation, R.Y.; writing—review and editing, O.G.; visualization, S.T.; supervision, O.G.; project administration,
J.C.; funding acquisition, J.C.

Funding: This study was financially supported by the National Natural Science Foundation of China
(grant no. 51109101/51779111/51622902), the Key University Science Research Project of Jiangsu Province
(grant no. 17KJA416003), and the Key Laboratory Foundation of Jiangsu Province (grant no. CJ1601).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Materials 2019, 12, x FOR PEER REVIEW 18 of 21 

 

22 2

S S11 22 33S6 66

1 11

S12 6

1

+ +

2

1
2

mnq mnq mnq
q qq

q qq

mnq
q

q

yx z
C C C

x zy

x
C

x

ΩΩ Ω

= ==

Ω

=

     ∂   ∂ ∂++ +        ∂∂ ∂        
        ∂ ∂∂
             ∂ ∂∂        

∂ ∂ + ∂ +
 ∂
 ∂ 

=

 



VU W

A B CU WV

U

AU

U

S S12S 6 66

1 11

S12 66S S66 6

11 1

2

2

mnq mnq mnq
q qq

q qq

mnq mnq
qq q

qq q

y x z
C

x zy

y yz
C C

zy y

Ω Ω Ω

= ==

Ω ΩΩ

== =

     ∂ ∂+ + +     ∂ ∂ ∂     +     ∂ ∂∂
       ∂ ∂∂     

  ∂ ∂ ∂+ ++   ∂ ∂∂   + +   ∂∂ ∂
     ∂∂ ∂  

 

 

V U W

B A CU WV

V UW

B CWV U

2 2

S55 6

1

2 2

S S66 44 556 6

1 1

mnq mnq
q

q

mnq mnq
q q

q q

z
C

z

x z x
C C C

x z

Ω

=

Ω Ω Ω

= =

    ∂ +     ∂     +     ∂
         ∂    

      ∂ ∂ ∂+ + +      ∂ ∂ ∂      + + +      ∂ ∂ ∂
         ∂ ∂      



 

U

A AU

V V W

B BV V W

2

S6

1

2

S55 66S S 66 6

11 1

S55 6

1

2

2

mnq
q

q

mnq mnq mnq
qq q

qq q

q

q

x

y y x
C C

xy y

z
C

z

=

Ω Ω Ω

== =

Ω

=

  
  
  
  
   ∂  

    ∂ ∂  ∂+ + +      ∂ ∂ ∂      + + +      ∂∂ ∂
           ∂∂ ∂      

 ∂ + ∂ 
 ∂
 ∂ 



 



C

W U V

C A BVW U

U

U

0 0 0

S S55 S6 6 6

1 1 1

+2

b a

mnq mnq mnq mnq
q q q

q q q

yx z
C

x z y

ΩΩ Ω

= = =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∂   ∂ ∂ ++ +      ∂∂ ∂      
    ∂ ∂ ∂ 
       ∂ ∂ ∂      

 

  

WW V

A C B CW V W

h
dxdydz

  

References 

1. Tian, A.; Ye, R.; Chen, Y. A new higher order analysis model for sandwich plates with flexible 
core. J. Compos. Mater. 2016, 50, 949–961. 

2. Cui, J.; Ye, R.; Zhao, N.; Wu, J.; Wang, M. Assessment on energy absorption of double layered 
and sandwich plates under ballistic impact. Thin-Walled Struct. 2018, 130, 520–534. 

3. Tian, A.; Ye, R.; Ren, P.; Jiang, P.; Chen, Z.; Yin, X.; Zhao, Y. New higher-order models for 
sandwich plates with a flexible core and their accuracy assessment. Int. J. Struct. Stab. Dyn. 2019, 
19, 1950024. 

4. Zhao, N.; Ye, R.; Tian, A.; Cui, J.; Ren, P.; Wang, M. Experimental and numerical investigation 
on the anti-penetration performance of metallic sandwich plates for marine applications. J. 
Sandw. Struct. Mater. 2019; doi:10.1177/1099636219855335. 

5. Kirchhoff, V.G. Uber das gleichgewicht und die bewegung einer elastischen scheibe. J. Fur Die 
Reine Und Angew. Math. 1850, 40, 51–88. 

6. Mohammadi, M.; Saidi, A.R.; Jomehzadeh, E. Levy solution for buckling analysis of functionally 
graded rectangular plates. Appl. Compos. Mater. 2010, 17, 81–93. 

7. Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic 
plates. J. Appl. Mech. 1951, 18, 31–38. 

8. Ardestani, M.M.; Soltani, B.; Shams, S. Analysis of functionally graded stiffened plates based on 
FSDT utilizing reproducing kernel particle method. Compos. Struct. 2014, 112, 231–240. 

9. Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 
745–752. 

10. Najafizadeh, M.M.; Heydari, H.R. Thermal buckling of functionally graded circular plates based 
on higher order shear deformation plate theory. Eur. J. Mech. A/Solids 2004, 23, 1085–1100. 



Materials 2019, 12, 3401 18 of 20

References

1. Tian, A.; Ye, R.; Chen, Y. A new higher order analysis model for sandwich plates with flexible core. J. Compos.
Mater. 2016, 50, 949–961. [CrossRef]

2. Cui, J.; Ye, R.; Zhao, N.; Wu, J.; Wang, M. Assessment on energy absorption of double layered and sandwich
plates under ballistic impact. Thin-Walled Struct. 2018, 130, 520–534. [CrossRef]

3. Tian, A.; Ye, R.; Ren, P.; Jiang, P.; Chen, Z.; Yin, X.; Zhao, Y. New higher-order models for sandwich plates
with a flexible core and their accuracy assessment. Int. J. Struct. Stab. Dyn. 2019, 19, 1950024. [CrossRef]

4. Zhao, N.; Ye, R.; Tian, A.; Cui, J.; Ren, P.; Wang, M. Experimental and numerical investigation on the
anti-penetration performance of metallic sandwich plates for marine applications. J. Sandw. Struct. Mater. 2019.
[CrossRef]

5. Kirchhoff, V.G. Uber das gleichgewicht und die bewegung einer elastischen scheibe. J. Fur Die Reine Und
Angew. Math. 1850, 40, 51–88.

6. Mohammadi, M.; Saidi, A.R.; Jomehzadeh, E. Levy solution for buckling analysis of functionally graded
rectangular plates. Appl. Compos. Mater. 2010, 17, 81–93. [CrossRef]

7. Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech.
1951, 18, 31–38.

8. Ardestani, M.M.; Soltani, B.; Shams, S. Analysis of functionally graded stiffened plates based on FSDT
utilizing reproducing kernel particle method. Compos. Struct. 2014, 112, 231–240. [CrossRef]

9. Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752.
[CrossRef]

10. Najafizadeh, M.M.; Heydari, H.R. Thermal buckling of functionally graded circular plates based on higher
order shear deformation plate theory. Eur. J. Mech. A/Solids 2004, 23, 1085–1100. [CrossRef]

11. Matsunaga, H. Free vibration and stability of functionally graded shallow shells according to a 2D higher-order
deformation theory. Compos. Struct. 2008, 84, 132–146. [CrossRef]

12. Carrera, E.; Pagani, A.; Petrolo, M.; Zappino, E. Recent developments on refined theories for beams with
applications. Mech. Eng. Rev. 2015, 2, 14-00298. [CrossRef]

13. Al Khateeb, S.A.; Zenkour, A.M. A refined four-unknown plate theory for advanced plates resting on elastic
foundations in hygrothermal environment. Compos. Struct. 2014, 111, 240–248. [CrossRef]

14. Zidi, M.; Tounsi, A.; Houari, M.S.A.; Bedia, E.A.A.; Bég, O.A. Bending analysis of FGM plates under
hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 2014, 34,
24–34. [CrossRef]

15. Bennoun, M.; Houari MS, A.; Tounsi, A. A novel five-variable refined plate theory for vibration analysis of
functionally graded sandwich plates. Mech. Adv. Mater. Struct. 2016, 23, 423–431. [CrossRef]

16. Benachour, A.; Tahar, H.D.; Atmane, H.A.; Tounsi, A.; SidAhmed, M. A four variable refined plate theory for
free vibrations of functionally graded plates with arbitrary gradient. Compos. Part B Eng. 2011, 42, 1386–1394.
[CrossRef]

17. Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessaim, A.; Bedia, E.A. New quasi-3D hyperbolic shear deformation
theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 2014, 140, 374–383.
[CrossRef]

18. Kashtalyan, M.; Menshykova, M. Three-dimensional elasticity solution for sandwich panels with a functionally
graded core. Compos. Struct. 2009, 87, 36–43. [CrossRef]

19. Carrera, E. Evaluation of layerwise mixed theories for laminated plates analysis. AIAA J. 1998, 36, 830–839.
[CrossRef]

20. Yan, Y.; Pagani, A.; Carrera, E. Exact solutions for free vibration analysis of laminated, box and sandwich
beams by refined layer-wise theory. Compos. Struct. 2017, 175, 28–45. [CrossRef]

21. Komarsofla, M.K.; Salami, S.J.; Shakeri, M. Thermo elastic-up to yielding behavior of three dimensional
functionally graded cylindrical panel based on a full layer-wise theory. Compos. Struct. 2019, 208, 261–275.
[CrossRef]

22. Kumar, P.; Srinivas, J. Vibration, buckling and bending behavior of functionally graded multi-walled carbon
nanotube reinforced polymer composite plates using the layer-wise formulation. Compos. Struct. 2017, 177,
158–170. [CrossRef]

http://dx.doi.org/10.1177/0021998315584650
http://dx.doi.org/10.1016/j.tws.2018.06.007
http://dx.doi.org/10.1142/S021945541950024X
http://dx.doi.org/10.1177/1099636219855335
http://dx.doi.org/10.1007/s10443-009-9100-z
http://dx.doi.org/10.1016/j.compstruct.2014.01.032
http://dx.doi.org/10.1115/1.3167719
http://dx.doi.org/10.1016/j.euromechsol.2004.08.004
http://dx.doi.org/10.1016/j.compstruct.2007.07.006
http://dx.doi.org/10.1299/mer.14-00298
http://dx.doi.org/10.1016/j.compstruct.2013.12.033
http://dx.doi.org/10.1016/j.ast.2014.02.001
http://dx.doi.org/10.1080/15376494.2014.984088
http://dx.doi.org/10.1016/j.compositesb.2011.05.032
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000665
http://dx.doi.org/10.1016/j.compstruct.2007.12.003
http://dx.doi.org/10.2514/2.444
http://dx.doi.org/10.1016/j.compstruct.2017.05.003
http://dx.doi.org/10.1016/j.compstruct.2018.10.010
http://dx.doi.org/10.1016/j.compstruct.2017.06.055


Materials 2019, 12, 3401 19 of 20

23. Carrera, E. CZ requirements—Models for the two dimensional analysis of multilayered structures. Compos.
Struct. 1997, 37, 373–383. [CrossRef]

24. Mantari, J.L.; Ramos, I.A.; Carrera, E.; Petrolo, M. Static analysis of functionally graded plates using new
non-polynomial displacement fields via Carrera Unified Formulation. Compos. Part B Eng. 2016, 89, 127–142.
[CrossRef]

25. Thai, H.T.; Choi, D.H. A simple first-order shear deformation theory for the bending and free vibration
analysis of functionally graded plates. Compos. Struct. 2013, 101, 332–340. [CrossRef]

26. Bourada, M.; Kaci, A.; Houari MS, A.; Tounsi, A. A new simple shear and normal deformations theory for
functionally graded beams. Steel Compos. Struct. 2015, 18, 409–423. [CrossRef]

27. Belabed, Z.; Houari MS, A.; Tounsi, A.; Mahmoud, S.R.; Bég, O.A. An efficient and simple higher order shear
and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 2014, 60,
274–283. [CrossRef]

28. Zhen, W.; Wanji, C. Free vibration of laminated composite and sandwich plates using global–local higher-order
theory. J. Sound Vib. 2006, 298, 333–349. [CrossRef]

29. Shariyat, M.; Hosseini, S.H. Accurate eccentric impact analysis of the preloaded SMA composite plates,
based on a novel mixed-order hyperbolic global–local theory. Compos. Struct. 2015, 124, 140–151. [CrossRef]

30. Brischetto, S.; Carrera, E. Advanced mixed theories for bending analysis of functionally graded plates.
Comput. Struct. 2010, 88, 1474–1483. [CrossRef]

31. Cinefra, M.; Soave, M. Accurate vibration analysis of multilayered plates made of functionally graded
materials. Mech. Adv. Mater. Struct. 2011, 18, 3–13. [CrossRef]

32. Moita, J.S.; Araújo, A.L.; Soares, C.M.M.; Soares, C.A.M. Vibration analysis of functionally graded material
sandwich structures with passive damping. Compos. Struct. 2018, 183, 407–415. [CrossRef]

33. Thai, C.H.; Ferreira, A.J.M.; Wahab, M.A.; Nguyen-Xuan, H. A moving Kriging meshfree method with
naturally stabilized nodal integration for analysis of functionally graded material sandwich plates. Acta Mech.
2018, 229, 2997–3023. [CrossRef]

34. Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Bedia, E. A refined trigonometric shear deformation theory for
thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 2013, 24, 209–220.
[CrossRef]

35. Trinh, M.-C.; Kim, S.-E. Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells
with double curvature. Compos. Struct. 2018, 195, 335–348. [CrossRef]

36. Pandey, S.; Pradyumna, S. Analysis of functionally graded sandwich plates using a higher-order layerwise
theory. Compos. Part B Eng. 2018, 153, 325–336. [CrossRef]

37. Pandey, S.; Pradyumna, S. A finite element formulation for thermally induced vibrations of functionally
graded material sandwich plates and shell panels. Compos. Struct. 2017, 160, 877–886. [CrossRef]

38. Daikh, A.A.; Megueni, A. Thermal buckling analysis of functionally graded sandwich plates. J. Therm.
Stresses 2018, 41, 139–159. [CrossRef]

39. Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Cinefra, M.; Roque, C.M.C.; Jorge, R.M.N.; Soares, C.M.M. Static,
free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D
higher-order shear deformation theory and a meshless technique. Compos. Part B Eng. 2013, 44, 657–674.
[CrossRef]

40. Bourada, M.; Tounsi, A.; Houari, M.S.A.; Bedia, E.A. A new four-variable refined plate theory for thermal
buckling analysis of functionally graded sandwich plates. J. Sandw. Struct. Mater. 2012, 14, 5–33. [CrossRef]

41. Houari, S.A.M.; Tounsi, A.; Bég, O.A. Thermoelastic bending analysis of functionally graded sandwich
plates using a new higher order shear and normal deformation theory. Int. J. Mech. Sci. 2013, 76, 102–111.
[CrossRef]

42. Li, Q.; VIu, P.; Kou, K.P. Three-dimensional vibration analysis of functionally graded material sandwich
plates. J. Sound Vib. 2008, 311, 498–515. [CrossRef]

43. Jalali, S.K.; Naei, M.H.; Poorsolhjouy, A. Thermal stability analysis of circular functionally graded sandwich
plates of variable thickness using pseudo-spectral method. Mater. Des. 2010, 31, 4755–4763. [CrossRef]

44. Ahmed Houari, M.S.; Benyoucef, S.; Mechab, I.; Tounsi, A.; Bedia, E.A. Two-Variable Refined Plate Theory
for Thermoelastic Bending Analysis of Functionally Graded Sandwich Plates. J. Therm. Stresses 2011, 34,
315–334. [CrossRef]

http://dx.doi.org/10.1016/S0263-8223(98)80005-6
http://dx.doi.org/10.1016/j.compositesb.2015.11.025
http://dx.doi.org/10.1016/j.compstruct.2013.02.019
http://dx.doi.org/10.12989/scs.2015.18.2.409
http://dx.doi.org/10.1016/j.compositesb.2013.12.057
http://dx.doi.org/10.1016/j.jsv.2006.05.022
http://dx.doi.org/10.1016/j.compstruct.2015.01.002
http://dx.doi.org/10.1016/j.compstruc.2008.04.004
http://dx.doi.org/10.1080/15376494.2010.519204
http://dx.doi.org/10.1016/j.compstruct.2017.04.045
http://dx.doi.org/10.1007/s00707-018-2156-9
http://dx.doi.org/10.1016/j.ast.2011.11.009
http://dx.doi.org/10.1016/j.compstruct.2018.04.067
http://dx.doi.org/10.1016/j.compositesb.2018.08.121
http://dx.doi.org/10.1016/j.compstruct.2016.10.040
http://dx.doi.org/10.1080/01495739.2017.1393644
http://dx.doi.org/10.1016/j.compositesb.2012.01.089
http://dx.doi.org/10.1177/1099636211426386
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.004
http://dx.doi.org/10.1016/j.jsv.2007.09.018
http://dx.doi.org/10.1016/j.matdes.2010.05.009
http://dx.doi.org/10.1080/01495739.2010.550806


Materials 2019, 12, 3401 20 of 20

45. Thai, H.-T.; Nguyen, T.; Vo, T.P.; Lee, J. Analysis of functionally graded sandwich plates using a new
first-order shear deformation theory. Eur. J. Mech. A/Solids 2014, 45, 211–225. [CrossRef]

46. Nguyen, V.-H.; Nguyen, T.; Thai, H.; Vo, T.P. A new inverse trigonometric shear deformation theory for
isotropic and functionally graded sandwich plates. Compos. Part B Eng. 2014, 66, 233–246. [CrossRef]

47. Hadji, L.; Hassen, A.A.; Tounsi, A.; Mechab, I.; Bedia, E.A.A. Free vibration of functionally graded sandwich
plates using four-variable refined plate theory. Appl. Math. Mech. 2011, 32, 925–942. [CrossRef]

48. Merdaci, S.; Tounsi, A.; Houari, M.S.A.; Mechab, I.; Hebali, H.; Benyoucef, S. Two new refined shear
displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 2011, 81, 1507–1522.
[CrossRef]

49. Neves, A.M.A.; AFerreira, J.M.; Carrera, E.; Cinefra, M.; Jorge, R.M.N.; Soares, C.M.M. Static analysis of
functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping
effects. Adv. Eng. Softw. 2012, 52, 30–43. [CrossRef]

50. Bhangale, R.K.; Ganesan, N. Thermoelastic buckling and vibration behavior of a functionally graded
sandwich beam with constrained viscoelastic core. J. Sound Vib. 2006, 295, 294–316. [CrossRef]

51. Mahi, A.; Bedia, E.A.A.; Tounsi, A. A new hyperbolic shear deformation theory for bending and free vibration
analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model.
2015, 39, 2489–2508. [CrossRef]

52. Apetre, N.A.; Sankar, B.V.; Ambur, D.R. Low-velocity impact response of sandwich beams with functionally
graded core. Int. J. Solids Struct. 2006, 43, 2479–2496. [CrossRef]

53. Venkataraman, S.; Sankar, B.V. Elasticity Solution for Stresses in a Sandwich Beam with Functionally Graded
Core. AIAA J. 2015, 41, 2501–2505. [CrossRef]

54. Venkataraman, S.; Sankar, B. Analysis of sandwich beams with functionally graded core. AIAA J. 2013, 16–19.
[CrossRef]

55. Vo, T.P.; Thai, H.; Nguyen, T.; Maheri, A.; Lee, J. Finite element model for vibration and buckling of
functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 2014, 64,
12–22. [CrossRef]

56. Loja, M.A.R.; Soares, C.M.M.; Barbosa, J.I. Analysis of functionally graded sandwich plate structures with
piezoelectric skins, using B-spline finite strip method. Compos. Struct. 2013, 96, 606–615. [CrossRef]

57. Ye, T.; Jin, G.; Chen, Y.; Ma, X.; Su, Z. Free vibration analysis of laminated composite shallow shells with
general elastic boundaries. Compos. Struct. 2013, 106, 470–490. [CrossRef]

58. Wang, Q.; Xiaohui, C.; Bin, Q.; Qian, L.; Jinyuan, T. A semi-analytical method for vibration analysis of
functionally graded (FG) sandwich doubly-curved panels and shells of revolution. Int. J. Mech. Sci. 2017,
134 (Suppl. C), 479–499. [CrossRef]

59. El Meiche, N.; Tounsi, A.; Ziane, N.; lMechab, I.; Bedi, E. A new hyperbolic shear deformation theory for
buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 2011, 53, 237–247. [CrossRef]

60. Cui, J.; Li, Z.; Ye, R.; Jiang, W.; Tao, S. A Semianalytical Three-Dimensional Elasticity Solution for Vibrations
of Orthotropic Plates with Arbitrary Boundary Conditions. Shock Vib. 2019, 2019, 1237674. [CrossRef]

61. Baferani, A.H.; Saidi, A.R.; Ehteshami, H. Accurate solution for free vibration analysis of functionally graded
thick rectangular plates resting on elastic foundation. Compos. Struct. 2011, 93, 1842–1853. [CrossRef]

62. Zhao, J.; Xie, F.; Wang, A.; Shuai, C.; Tang, J.; Wang, Q. Vibration behavior of the functionally graded porous
(FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Compos. Part B Eng.
2019, 157, 219–238. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.euromechsol.2013.12.008
http://dx.doi.org/10.1016/j.compositesb.2014.05.012
http://dx.doi.org/10.1007/s10483-011-1470-9
http://dx.doi.org/10.1007/s00419-010-0497-5
http://dx.doi.org/10.1016/j.advengsoft.2012.05.005
http://dx.doi.org/10.1016/j.jsv.2006.01.026
http://dx.doi.org/10.1016/j.apm.2014.10.045
http://dx.doi.org/10.1016/j.ijsolstr.2005.06.003
http://dx.doi.org/10.2514/2.6853
http://dx.doi.org/10.2514/6.2001-1281
http://dx.doi.org/10.1016/j.engstruct.2014.01.029
http://dx.doi.org/10.1016/j.compstruct.2012.08.010
http://dx.doi.org/10.1016/j.compstruct.2013.07.005
http://dx.doi.org/10.1016/j.ijmecsci.2017.10.036
http://dx.doi.org/10.1016/j.ijmecsci.2011.01.004
http://dx.doi.org/10.1155/2019/1237674
http://dx.doi.org/10.1016/j.compstruct.2011.01.020
http://dx.doi.org/10.1016/j.compositesb.2018.08.087
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Formulations 
	Geometrical Configuration 
	Admissible Displacement Functions 
	Energy Expressions 
	Solution Methodology 

	Numerical Results and Discussion 
	Convergence Study 
	Validation Studies 
	Parametric Studies 

	Conclusions 
	
	References

