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Abstract: This work presents an experimental and numerical analysis of the mechanical behavior
of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative
numerical–experimental methodology is firstly proposed to assess the material response in the tensile
test using a large strain elastoplasticity-based model solved in the context of the finite element method.
Then, a 3D numerical simulation of the deformation process of the torsion test is tackled with this
previously characterized model that proves to be able to predict the development of a high and
localized triaxial stress and strain fields caused by the presence of high levels of angular deformation.
Finally, the obtained numerical results are analytically studied with the cylindrical components of the
Green–Lagrange strain tensor and experimentally validated with the measurements of shear strains
via Digital Image Correlation (DIC) and the corresponding torque – twist angle curve.

Keywords: torsion test; mechanical characterization; elastoplastic response

1. Introduction

The mechanical characterization of the elastoplastic behavior of a material during the torsion test
is relevant for the analysis and optimization of manufacturing processes that are nowadays carried out.
One of the most elementary cases is the high resistance cables used in cranes, elevators, pulleys, etc.
In the manufacturing of these elements, the material is subjected to extreme large torsion deformations,
which in turn induce high elastoplastic stresses that complicate predicting the mechanical behavior of
the material under service conditions.

In the case of pure torsion of cylindrical bars, it is well-known that the distribution of stresses
is not uniform in the radial direction, leading to a zero value at the center of the specimen and to a
maximum in its periphery, for both the elastic and elastoplastic regimes. Furthermore, some authors
have reported the presence of axial deformations or axial forces, depending on the boundary condition
used, when the cylindrical specimen is under a large torsional state. The most important case that
occurs in the torsion test is the Swift effect [1], in which significant changes are generated in the original
length of a cylindrical bar when it is subjected to large twist (i.e., torsion) angles.

In recent years, the study of torsion has been mainly focused on experiments to analyze the effect
of large deformations on the material response. The large deformations induced in the torsion test were
used to observe the changes in the microhardness on the crystalline structure [2]. Another experimental
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approach has been developed to analyze the changes in the mechanical response of the material by
means of a treatment caused by hot-torsion [3], i.e., a test that is considered as the most common tool
for studying the thermomechanical interaction during the hot rolling and radial casting processes.

Some authors [4,5] have proposed to analytically study the elastoplastic material response in the
torsion test of a cylindrical bar considering both rate-independent and rate-dependent constitutive laws.
More recently, numerical simulations using the finite element method have been reported to study the
differences in the stress and strain patterns when adopting free or fixed ends to account for the Swift
effect [6], the effect of the plastic spin in the macroscopic description of large deformation plasticity for
the treatment of anisotropic hardening [7], the torsion flow curve compared with that observed in the
tensile test [8], the tension–torsion high-cycle fatigue life prediction including anisotropic damage [9],
the use of a model based on the corotational rates of the logarithmic strain and kinematic hardening
to evaluate axial effects [10] and the analysis via polycrystalline plasticiy of the texture development
and length changes in bars subjected to free-end torsion [11]. Although these studies had a solid
mathematical basis, their experimental was in general limited.

Despite the torsion does not induce a necking zone in the specimen, as typically occurs in the
tensile test, a complex stress state in the material is developed due to the zero shear stress condition
present in the central fiber of the sample. This condition generates at high levels of deformation a steep
gradient in the stress field. The literature available to analyse this problem is based on axisymmetric
2D models [8,9], making the quantification of 3D stresses such as those present in the Swift effect
difficult. In spite of what has been mentioned, currently there are no experimental–numerical studies
that analyze large deformations caused by pure torsion, considering a characterization based on the
measurements obtained in the tensile tests, that can later be used to predict a process in which the
material is subjected to large shear strains.

In the present work we analyze the mechanical response of the SAE 1045 steel in the torsion test
using cylindrical samples. To this end, a twofold objective is pursued: to characterize the material
hardening behavior through the tensile test and to carry out numerical 3D simulations of the torsion test
by analyzing and validating the numerical results with the experimental curves. Therefore, this study
encompasses experiments as well as numerical simulations. Uniaxial tensile tests have been firstly
performed to calibrate, via an iterative experimental–numerical methodology that not only accounts
for the engineering and true stress-strain curves but also for the ratio of current to initial diameter
evolution at the necking zone, the material parameters of a large strain elastoplastic constitutive model
based on the von Mises yield function including a Hollomon hardening law. Then, torsion tests with
a fixed-end condition have been carried out where the previously characterized model is used for
describing the material response under large angular deformations. In particular, the validity of some
analytical expressions of the cylindrical components of the Green–Lagrange strain tensor is assessed
by measuring the strain field using a 2D Digital Image Correlation (DIC). Moreover, the numerical
prediction of the torque-torsion angle curve is experimentally validated while radial profiles of axial
and shear stresses together with axial force evolution during the test are also computed and discussed.
This manuscript is organized as follows. Section 2 describes the material and methods used, while the
experimental and numerical results are presented and discussed in Section 3. Finally, the concluding
remarks are drawn in Section 4.

2. Material and Methods

2.1. Experimental Procedure

2.1.1. Material

The material used for the mechanical tests (tensile and torsion) corresponds to a commercial
as-received SAE 1045 steel, whose average chemical composition is shown in Table 1,
considering cylindrical specimens as sketched in Figure 1. A nearly linear gradual reduction in
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diameter is chosen in order to force the specimen fracture in the middle zone for both tests. This tapered
profile fits the ASTM standards [12].

Figure 1. Geometric configuration of the SAE 1045 steel tensile/torsion cylindrical specimen
(dimensions in mm).

Table 1. Average chemical composition of SAE 1045 steel (% in weight).

C [%]
0.433

Si [%]
0.218

Mn [%]
0.73

P [%]
0.01

S [%]
0.013

Cr [%]
0.019

Mo [%]
0.014

Ni [%]
0.044

Al [%]
0.0023

Cu [%]
0.042

Nb [%]
<0.001

Ti [%]
0.0009

V [%]
0.0022

W [%]
<0.007

Pb [%]
<0.001

Sn [%]
0.0059

B [%]
0.0027

Co [%]
0.0088

Fe [%]
98.3

2.1.2. Tensile Test

The tensile test is used here to establish the constitutive law of the material. Figure 2 shows the
setup for the tests performed on a tensile machine. To check repeatability, 5 samples were used. A low
load cell speed value of 2 mm/min was adopted to preclude rate-dependent effects (value within
the range specified by the ASTM standards [12]). The number of measurements was 600 per minute
The tests were carried out with an initial extensometer length l0 = 50 mm, recording the force and
displacement with precisions of 0.1 N and 1 µm, respectively. The load cell used in the testing machine
has a maximum capacity of 100 kN. In addition, the external diameter evolution at the necking zone,
whose initial value was D0 = 4.95 mm, was recorded using a optical digital caliper with a precision of
±1 µm. The data acquisition was calibrated to gather 10 data per second.

In this test, the engineering stress and strain are respectively defined as P/A0 and ε = (l −
lo)/lo, where P is the recorded axial force, A0 = πD2

0/4 is the initial transversal area and l is the
instantaneous extensometer length measured during the test. As it is well known, the true stress and
strain (logarithmic) are respectively defined as σ = P/A and e = −2ln(D/Do), where A = πD2/4
is the current transversal area at the necking zone with instantaneous diameter D. The following
properties are obtained from this test: Young’s modulus, Poisson’s ratio and yield limit with the
following ASTM standards 132-97 [13], 111-17 [14], 8M [12], respectively.
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Figure 2. Setup of the tensile test.

2.1.3. Torsion Test

The torsion test provides the relationship between the torque and the angular deformation of the
sample. It should be noted that larger homogeneous deformations are achieved in this case compared
to those of the tensile test since no necking is developed in the sample. Figure 3 shows the setup
of this test. Once again, 5 samples were considered. The angular velocity used was set to 1.5 rpm.
The number of measurements was 600 per minute. The tests were carried out recording the torque
and the angular motion of the jaws with a precision of 0.01 Nm and ±0.001◦, respectively. The torque
cell used in the testing machine has a maximum capacity of 45 Nm.

Figure 3. Setup of the torsion test.

Additionally, a 2D Digital Image Correlation (DIC) has been carried out, in which the Lagrangian
strain tensor of the central region of the specimen is obtained. The image correlation technique used
considers a 2-D analysis that is comparable to the case of 3-D twisting under certain assumptions that
have been corroborated. First of all the diameter of the specimen does not change during the test,
which has been experimentally verified; see Figure 4. Secondly, the angular deformation considering
a small axial deformation can be defined according to the expression: tan(γ) = (dφ/dz)r = dS/dz
where r is the radius of the specimen, γ is the shear deformation and dφ is the angular variation
in a cross section of width dz in the axial direction; see Figure 5. The term dS corresponds to the
infinitesimal path of a point on the surface of the specimen. This path is perfectly circumferential
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under the assumption that the diameter of the specimen does not change during the test such that the
path of a point on the surface of the specimen is given by the red arch.

Figure 4. Failure condition of the torsion sample.

Figure 5. kinematics of the torsion test for 2D Digital Image Correlation (DIC) measurements.

The magnitude h can be measured directly with the DIC software. It should be noted that the
displacement Y is the projection of the arch S. This displacement can be obtained using a 2D DIC
analysis for any axial position. It can be shown that the displacement Y and the torsion angle (φ) can
be geometrically related as: φ = acos(1− Y/r− h/r)− acos(1− h/r); S = rφ. Therefore, using this
equation, the DIC measurement in 2-D can be related to the angular path S for all the z positions visible
in the video considered in the DIC analysis (see Figure 6). Thus, an indirect measurement of the shear
deformation is obtained by numerical differentiation of S with respect to z, between points belonging
to adjacent cross sections in areas of interest, such as the middle zone of the specimen where the
deformation is concentrated. In this zone, the deformation measurement is averaged and correlated to
a theoretical expression of the Green–Lagrange strain tensor for torsion problems (Equation (8) of the
manuscript). The parameters that where employed in the DIC analysis are a temporal increment of 0.2
s/image, a space discretization of 3 × 3 pixels and a resolution of 0.04 mm/pixels. It should be noted
that these measurements can be made up to torsion angles of about 70◦.
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Figure 6. (a) Initial and (b) deformed DIC images.

2.2. Constitutive Modelling

The mechanical response of the selected material can be described by local governing equations
expressed by the mass conservation, the balance of linear momentum and the dissipation inequality
all described in a Lagrangian specification of motion. In this framework, the Cauchy non-polar stress
tensor σ can be defined in terms of some thermodynamic state variables chosen in this work as the
Almansi strain tensor e (e = 1/2(1− F−T · F−1), where F is the deformation gradient tensor and T
is the transpose symbol) and a set of phenomenological internal variables (usually governed by rate
equations with zero initial conditions) accounting for the non-reversible effects. The stress–strain
relationship and the evolution laws for the internal variables adopted here to simulate the material
behaviour are briefly described below (see [15] for further details).

In this work, the expression for the stress tensor σ (neglecting initial stresses) is given by:

σ = C : (e− ep) (1)

where C is the isotropic elastic constitutive tensor and ep is the plastic Almansi strain tensor.
The chosen internal variables were ep and the effective plastic deformation ē p. Their evolution

equations are defined within the associate rate-independent plasticity theory context as:

Lv(ep) = λ̇
∂F
∂σ

, ˙̄ep = −λ̇
∂F
∂σh

(2)

where Lv is the well-known Lie (frame-indifferent) derivative, λ̇ is the plastic consistency parameter,
σh is the isotropic hardening stress and F(σ, σh) is the plastic flow potential. In this framework, F is
also assumed as the yield function such that no plastic evolutions occur when F < 0. In metal plasticity,
F is usually chosen as the von Mises function:

F =
√

3J2 − σh − σy (3)

where J2 is the second invariant of the deviatoric part of σ (σeq =
√

3J2 is the so-called equivalent
or von Mises stress), σy is the initial yield strength and σh can be written according to the Hollomon
law as:

σh = Ap(ēp)np
(4)

where Ap and np are the parameters aimed at characterizing the hardening behaviour of the material.
These hardening parameters can be directly obtained, as described in Section 3.1, through an
experimental–numerical procedure.

The governing equations, together with the material constitutive model presented above,
are discretized within the framework of the finite element method according to the numerical approach
detailed in [15]. The computational implementation of the corresponding discretized equations is
performed in an in-house code extensively validated in many engineering applications reported by the
authors elsewhere. In this case, the equilibrium equation is solved in the material configuration where
a B-bar type technique is used to avoid numerical locking due to plastic incompressibility. Furthermore,
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the integration of the plastic rate equation is carried out with the generalized midpoint rule algorithm
choosing the parameter that makes the return mapping procedure unrestricted stable.

2.3. Numerical Modeling of the Tensile and Torsion Tests

The model briefly presented in Section 2.2 is used to simulate the tensile and torsion tests described
in Section 2.1. These numerical analyses are necessary to achieve a proper interpretation of the material
response due to the complex stress and strain patterns that develop in both tests. In particular,
a necking formation under a triaxial stress with a non-homogeneous strain pattern occurs in the tensile
test beyond the point of maximum load whereas a non-uniform axial stress distribution is developed
in the torsion test for high levels of angular deformation. Different mesh sizes were analyzed until
an element size was found to guarantee the convergence of the numerical results. The finite element
meshes and boundary conditions considered in both tests are separately described below.

2.3.1. Tensile Test

The spatially non-uniform finite element mesh shown in Figure 7 has been chosen in order
to correctly describe the large stress and deformation gradients expected in the necking zone [15].
Assuming axisymmetry, a fourth of the specimen is discretized with a height of l0/2 = 25 mm and,
as mentioned in Section 2.1.2, a linear radius variation along the bar length. The domain is discretized
with 868 quadrilateral elements with 944 nodes. An axial displacement, denoted as U, is imposed at
the top boundary up to a value which corresponds to the experimental average fracture elongation.

Figure 7. Tension test: finite element mesh and boundary conditions (dimensions in mm).

2.3.2. Torsion Test

The simulation of the torsion test was performed with a finite element mesh that consisted of
102,600 hexahedral elements with 107,679 nodes for one half of the cylindrical specimen including
30 mm of the hexagonal section that corresponds to the jaws coupling. First, the complete specimen
was simulated with a fixed end and the other one applying the torsion angle. However, deformation
symmetry was observed from the middle of the specimen. Therefore, only half of it was simulated by
applying half of the torsion angle. The imposed boundary conditions and the mesh used are shown in
Figure 8 where, according to the experimental conditions detailed in Section 2.1.3, a half of the twist
angle together with a zero axial displacement were both prescribed on the hexagonal face.
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Figure 8. Torsion test: finite element mesh and boundary conditions (dimensions in mm).

2.4. Fitting Procedure for the Tensile Test

An initial guess of the hardening parameters Ap and np was obtained through the analytical
procedure adopted in [15] that consists in the application of the least squares method on the equivalent
stress–strain curve that results from the tensile test. To compare the results, we compute the
experimental–numerical error as the normalized root-mean-square deviation (NRMSD) given by:

NRMSD =
1
∆

√
1
n

n

∑
i=1

(ŷi − yi)2 (5)

where n represents the number of registered values (it is considered the same for all samples), yi is
the average experimental measurement, for all tested samples ŷi is the numerical fitted value and
∆ = |ymax − ymin|. Since the NRMSD value associated to the parameters of the initial guess was
relatively high (i.e., 30%), another strategy to derive reliable hardening parameters leading to a more
accurate modeling of the material response must be defined [16].

For this purpose, the methodology consists in extending the previous approach to simultaneously
account for three curves: (1) axial engineering stress–strain, (2) axial true stress–strain, and (3) ratio of
current to initial diameter at the necking zone versus axial elongation. These curves are computed via
a numerical simulation of the tensile test since, as already commented, this kind of analysis is needed
to properly describe the complex stress and strain patterns that develop during the elongation process.
The full iterative fitting algorithm is outlined in Figure 9.

With the initial guess of the hardening parameters Ap and np, the following step is the
computation, via the results provided by the simulation of the tensile test, of the NRMSD for the
three above-mentioned curves. The hardening parameters are iteratively modified until a maximum
admissible error of 5% is reached simultaneously for these three calibration curves through a standard
optimization gradient algorithm.
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Figure 9. Iterative experimental–numerical procedure to obtain the hardening parameters Ap and np.

3. Results and Discussion

3.1. Tensile Test

Figures 10–12 respectively present the experimental and numerical results of the engineering
stress–strain, true stress–strain, and ratio of current to initial diameter at the necking zone in terms
of the axial elongation. The numerical curves correspond to the predictions obtained with the final
hardening parameters summarized in Table 2 derived from the application of the iterative procedure
outlined in Figure 9 (it should be noted that the values of E, ν, and σy have also been directly
obtained from the tensile test measurements, where E σy correspond to the stress in a 0.2% level
of deformation). The vertical bars indicate the standard deviation where a low dispersion of the
experimental measurements can clearly be appreciated (i.e., less than 3 % in each curve). In particular,
the D/D0 − (L− L0)/L0 curve was found to be the most sensible to the variation of Ap and np due to
the deformation process is mainly developed in the postnecking range, starting from an elongation
value of 1.5% (that corresponds to the engineering strain the ultimate tensile strength clearly seen
in Figure 10) up to the fracture stage. Overall, it is seen that this fitting procedure provided a good
description of the mechanical response during the whole test.

Table 2. Derived material parameters.

Parameter Value

E 208 GPa

ν 0.271

Tensile strength 840 MPa

σy 560 MPa

np 0.033

Ap 950 MPa
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Figure 10. Average experimental and numerical results for the engineering stress–strain relationship,
normalized root-mean-square deviation (NRMSD) = 4.67%.

 0

 200

 400

 600

 800

 1000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

T
ru

e 
st

re
ss

 P
/A

 [
M

P
a]

True deformation ln(Ao/A)

Experimental
Simulation

Figure 11. Average experimental and numerical results for the true stress–strain relationship,
NRMSD = 0.91%.
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3.2. Torsion Test

The analytical expression for the deformation gradient tensor at the periphery (edge) of the
specimen can be written as [17]:

F =

 1 0 0
0 1 γ

0 0 1

 (6)

where γ is the angular distortion that varies linearly with the torsion angle [17]. Using this relation,
the Green–Lagrange (at first, this tensor is defined as E = 1/2(FT · F− 1)) and Almansi strain tensors
are respectively given by:

E =

 0 0 0
0 0 γ/2
0 γ/2 γ2/2

 (7)

e =

 0 0 0
0 0 γ/2
0 γ/2 −γ2/2

 (8)

i.e., the non-zero components are EθZ = eθZ = γ/2 and EZZ = −eZZ = γ2/2. The evolutions of
these Lagrangian components in terms of the torsion angle are shown in Figure 13 together with
the corresponding DIC measurements and numerical results obtained with the constitutive model
described in Section 2.2. It is seen that the simulated shear component of the strain exhibits, in contrast
to the analytical prediction, a nonlinear response. A significant difference between numerical and
analytical models also occurs for the axial component of the strain. The two models give similar values
for both strain components up to a torsion angle of 20◦. Moreover, the numerical results reasonably
agree with the DIC measurements for both the shear and axial strain components. For the DIC results,
the noise is caused the numerical differentiation method described in the Section 2.

(a) (b)

Figure 13. Average experimental, analytical, and numerical results for the strain components (a) EθZ,
NRMSD = 6.5% and (b) EZZ, NRMSD = 8.6%, expressed as a function of the torsion angle at the edge
of the sample.

Although the simulated EθZ–torsion angle curve is, as already commented above, non linear,
the analytical relationship EZZ = 2E2

θZ is however fulfilled, as shown in Figure 14a. Furthermore,
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considering a monotonic deformation process and negligible elastic strains, the accumulated effective
plastic deformation can be obtained (using standard tensor notation) as [18]:

ēp =

√
2
3

e : e =
γ√

3

√
1 +

γ2

2
≈ γ√

3
(9)

Figure 14b shows that the analytical expression γ = 2EθZ/
√

3 is also verified with EθZ obtained
from the simulation. These results confirms that the elastic part of the deformation is negligible
compared to the plastic part for large torsion angles.
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Figure 14. Verification of the analytical expressions for (a) EZZ and (b) ēp using EθZ obtained from
the simulation.

Figure 15 compares the experimental and computed results (using the parameters listed in Table 2)
of the torque in terms of the imposed torsion angle φ. Both a low deviation in the experimental
measurements and a good numerical prediction can clearly be seen. The main difference between
these curves appear at the beginning of the process when the material starts hardening; this effect is
more pronounced in the experiments than in the simulation. Moreover, the equivalent stress at the
periphery of the sample for the torque value of 14 Nm approximately corresponds, according to the
von Mises criterion, to σy/

√
3 i.e., from this loading state the plastic behavior starts to develop.
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Figure 15. Average experimental and numerical results for the torque as a function of the torsion angle,
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The computed radial profiles for the shear stress at the middle cross section of the sample are
plotted in Figure 16 for different torsion angles. For a torsion angle of φ = 20◦, a linearly elastic
behavior occurs up to almost 0.5R/Ro; from there to the periphery of the sample, an elastoplastic
response develops with a relatively smooth hardening. For the cases with φ = 120◦ and φ = 350◦,
the steep gradient in the center reflects the narrowing of the elastic region whereas the elastoplastic
zone evolves similarly to the case with a small torsion angle. Although the numerical singularity close
to the coordinate R = 0 is, as reported in [8], a challenging aspect in the simulation, note that it is
adequately reproduced by the present model. Moreover, the stress distributions at any plane parallel
to plane 1 along the working zone of the sample are found to follow the same trend as those shown in
Figure 16.

Figure 16. Numerical radial profiles for the shear stress σzθ in plane 1 for different torsion angles.

The development of longitudinal stress has been previously analyzed [6,7,10], reporting the
existence of compression forces in fixed-end torsion tests. This phenomenon is also assessed here
through the computed radial profiles for the longitudinal stress at the middle cross section of the
sample for different torsion angles shown in Figure 17. Although low levels of σzz develop for φ = 20◦

and φ = 120◦, this stress exhibits a noticeable profile for φ = 350◦.
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Figure 17. Numerical radial profiles for the longitudinal stress σzz in plane 1 for different torsion angles.

At R/Ro = 0.1, the effect of compression and shear are relevant for φ = 350◦, making the stress
state clearly triaxial. Once again, this trend is also repeated at any plane parallel to plane 1 along the
working zone of the sample.

The axial component of the stress has a nonlinear behavior with respect to the torsion angle as
seen in the Figure 18 at the center and edge of the sample. It is observed that in the periphery of the
sample, the axial stress is predominant up to approximately φ = 130◦ retaining a linear evolution after
φ = 75◦, while σzz at the center monotonically increases.
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Figure 18. Numerical radial profiles for the longitudinal stress σzz in plane 1 for different
angular deformations.

Figure 19 shows the compressive axial force Fz that results from the area integration of σzz as a
function of the torsion angle. Three stages can clearly be seen in the force evolution: almost negligible
values for low angles due to plastic initiation only at the periphery of the sample (i.e., up to φ = 10◦),
rapid increase due to the radial progress of plastic effects with relatively high hardening evolution
(from φ = 10◦ to φ = 75◦) and continuous increase once almost the entire transversal section linearly
hardens more smoothly (from φ = 75◦ to φ = 350◦); see Figure 19. It should be noted that the highly
non-uniform σzz distribution shown in Figure 17 cannot be appreciated in the Fz curve due to the



Materials 2019, 12, 3200 15 of 16

central localized character of the longitudinal stress, so the behavior of the axial force is quite similar
to that of σzz at the edge as shown in Figure 18.

Figure 19. Numerical results for the axial compression load as a function of the torsion angle.

4. Conclusions

The elastoplastic response in the torsion test of the SAE 1045 steel has been characterized
considering an associated isotropic constitutive model. Based on the tensile test measurements,
an iterative numerical-experimental methodology was firstly used to fit the material hardening
parameters. Then, this calibration procedure was satisfactorily validated in the simulation of the
mechanical behaviour of the material in the torsion test where realistic predictions were obtained for
the whole studied deformation levels. In particular, the shear and axial stresses were evaluated in
the plastic regime. For high torsion angles (close to the material rupture stage), an important stress
localization was observed in the central area of the specimen, an effect that makes numerical modeling
necessary for its interpretation. Finally, relevant effects not included in the present study, such as
kinematic hardening and damage evolution, could be addressed in future research using this test under
cyclic conditions. It is known that due to warping torsion for high levels of deformation, some effects
can appear, such as an asymmetric elastoplastic behavior, restraints due to boundary conditions, and
noncircular section along the specimen length. These effects have not been taken into account in
this study.
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