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Abstract: The paper presents experimental investigations concerning the influence of the cement type
(CEMI 42.5 R Portland cement and CEMIII/A 42.5 N slag cement—with 53% granulated blast furnace
slag) on the mechanical and transport properties of heated concretes. The evolution of properties due
to high temperature exposure occurring during a fire was investigated. High temperature exposure
produces changes in the transport and mechanical properties of concrete, but the effect of cement
type has not been widely studied in the literature. In this paper, concretes were made with two
cement types: CEMI and CEMIII, using basalt (B) and riverbed aggregates (RB). The compressive and
tensile strength, as well as the static modulus of elasticity and Cembureau permeability, were tested
after high temperature exposure to 200, 400, 600, 800, and 1000 ◦C. The evaluation of damage to the
concrete and crack development due to high temperature effects was performed on the basis of the
change in the static modulus of elasticity. The test results clearly demonstrated that permeability
increases with damage, and it follows an exponential type formula for both types of cement.
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1. Introduction

Cements with granulated blast furnace slag are widely employed due to their lower carbon
footprint, as a strategy for sustainable development in the field of construction. The use of ground
granulated blast furnace slag (GGBFS), which presents an amorphous structure and shows pozzolan
characteristics, in concrete as an additive has a positive effect on the properties of fresh and hardening
concrete [1,2]. The use of GGBFS provides the important advantage of helping to avoid thermal cracks
in concrete due to the low hydration process [2]. In fact, as previous results have shown, the hydration
of GGBFS is slower than that of ordinary CEMI cement. Concrete with ground granulated blast furnace
slag has a later setting time and a lower stiffness [3].

When equal amounts of cement and water binder (w/b) are used, concretes with slag content
have a lower compressive strength at early ages and higher compressive strength at late ages than
Portland cement [2]. Furthermore, with a specific compressive strength, slag concrete has a better
mechanical performance in terms of tension than concrete made with Portland cement [2]. However,
the study by Shumuye et al. [4] showed that the compressive strength of the concrete decreased as the
slag content increased.

Environmental conditions and the temperature exposure during curing has a strong effect on
concrete mechanical properties [3,5]. When the material is subjected to heating at higher temperatures
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up to 1000 ◦C, like during a fire, thermal damage occurs due to dehydration of the cement paste and
the thermal mismatch of strains between the shrinking cement paste and expanding aggregates, which
induces cracking [6,7]. Moreover, during the phase of cooling down to the ambient temperature,
stresses induced by inversed thermal gradients result in the development of cracks within the cement
paste that will affect permeability, and also may compromise the durability of the material after a
fire [8,9]. The changes of concrete’s mechanical properties at high temperatureshave been widely
investigated [6–12], helping us to better understand the behavior of concrete structuresin a fire situation
and to determine parameters influencing its behavior. The evolution of concrete mechanical properties
in fire depends on the concrete composition: presence of mineral additions [4,13], w/c water cement
ratio [14,15], the nature and type of aggregates [10–12]. Moreover, the concrete heating conditions:
heating rate and maximum temperature of exposure play a major role in concrete strength evolution,
as well as the testing procedure: hot tested concrete or tested after temperature exposure and cooling
down to the ambient temperature [7,15]. Nevertheless, for material mechanical properties testing,
a slow heating rate is recommended in order to ensure limitation of the thermal gradient inside
the specimen. In the literature investigations the heating rates of 0.1–10 ◦C/min are employed.
Nevertheless, the heating rates recommended by RILEM International Union of Laboratories and
Experts in Construction Materials, Systems and Structures [16] depend on the specimen diameter and
are from 0.5 to 2.0 ◦C/min for accidental conditions (fires).

The existing knowledge regarding the behavior of high performance concrete in a fire was recently
reviewed by the RILEM Technical Committee HPB-227 [8], however, there are still no clear reports as
to whether the properties of concretes subjected to high temperatures change in a similar or a very
different way, depending on the cement type used.

According to Shumuye et al. [4], the addition of GGBFS seems to improve the resistance of concrete
to fire conditions. It was highlighted that, when the exposure to fire temperature increased from 200 to
400 ◦C, the compressive strength increased for concrete with slag (70% ordinary Portland cement OPC
and 30% slag cement, as well as 50/50 proportions). For the group of concretes with 30% OPC and 70%
slag cement, the opposite behavior was observed. The concrete mix containing GGBFS usually has a
lower thermal expansion coefficient than Portland cement. The 15% and 30% replacement of CEMI
by GGBFS gives coefficients of thermal expansion of 22.7 × 10−6/◦C and 17.2 × 10−6/◦C, respectively,
which is 99.2% and 75.5% of the value obtained for Portland cement paste [4]. However, a recent
study by Asamoto et al. [17] highlighted that the reduction in the elastic modulus and increase in
permeability of the concrete with GGBFS subjected to 65◦Cwere larger than those of concrete without
slag. Indeed, astonishingly, this can be attributed to a larger thermal expansion coefficient and larger
cement paste shrinkage with the slag, leading to the formation of microcracks around the aggregate.

Moreover, it can be concluded that the addition of aluminosilicate minerals like fly ash, ground
granulated blast furnace slag (GGBFS), and silica fume (SF) can affect concrete behavior at high
temperatures in a way that may produce spalling of heated concrete in material that is denser, and thus
less permeable [18–20]. Lower permeability leads to moisture clog occurrence and increase of vapor
pore pressures inside the heated concrete [20]. The moisture clog effect was explained and linked
with the permeability decrease observed in temperature from 100 to 200 ◦C but this effect is observed
when the permeability is tested at hot stage and not after cooling down when the residual values
of permeability are determined, like in present study. An important finding on gas pore pressure
development were provided by works of Kalifa et al. [19,20] and linked with the permeability.

Cases of fires that took place in engineering facilities (Gotthard tunnel, Chunnel tunnel, or Mont
Blanc tunnel, for example) have caused numerous fatalities, but also significant financial losses. During
these fires an important loss of concrete in tunnel linings was observed. The load-bearing capacity of
the structural elements was reduced due to the explosive spalling. The spalling may take different
forms, from small concrete pieces chipping, known as the popcorn effect, to explosive behavior when
larger pieces of concrete are separated from the concrete element with great energy [21–24]. In all
cases, concrete fire spalling leads to the exposure of steel reinforcement, which is sensitive to high
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temperatures [24,25]. So far, it has been confirmed that the type and composition of concrete, including
the aggregate type, water cement ratio, pozzolanic mineral material, and moisture content of concrete,
affect its behavior in fire conditions [8,13,19]. Research aimed at understanding the causes of the
spalling phenomenon, as well as determination of material parameters affecting its intensity, has been
carried out by experiments [21,22,24] and numerical analysis [21,25,26]. Thus, concrete spalling is
one of the most interesting and complex phenomena occurring in concrete exposed to fire conditions.
The RILEM Technical Committee 256-SPF: Spalling of concrete due to fire: Testing and modelling has
been established, and is mainly dedicated to studying this specific behavior.

During heating, the permeability usually progressively increases [27–29], exceptwhenthe
permeability of concrete may decrease [30] due to the moisture clog effect. In this situation the
water vapor pressure increases in the material’s pore network, which may lead to spalling behavior.
It is believed that the interaction of high temperature, an increase in water vapor pressure in the
material pores, and the internal stress state is responsible for the occurrence of concrete spalling [19–26].
It seems that the key parameter governing the occurrence of spalling is its permeability. In denser
and less permeable concretes the risk of spalling is higher. Researchers have shown that in fire
conditions, concretes that are modified with the addition of mineral additives like silica fume and
calcareous filler are prone to spalling behavior. As the spalling behavior of concrete is mainly
governed by its permeability, researchers have been testing the influence of GGBFS addition on concrete
permeability. Recently, Karahan [27] showed an increase of concrete transport properties after exposure
to temperatures of 400 ◦C, accompanied by compressive strength reduction. Moreover, the conclusion
of the authors indicated an optimum GGBFS/cement blend from the point of view of material behavior
in a fire of 50–70% slag content as the cement replacement.

Hence, the results available do not reflect all the relevant aspects of this topic, and additional
investigation is required. The literature results cannot be compared to each other due to the fact
that the mixes differ. A research programme was therefore proposed which would allow for a clear
comparison of the influence of cement type on the mechanical and physical properties of concrete at
high temperatures. For this we performed various tests on identical concrete mixes, for which the only
changing factor was the cement. Therefore, the main goal of this work is to present the comparison
of the changes in mechanical and physical properties of concretes made with two different cement
types; CEMI and CEMIII. For all four concretes, the composition of cement paste, as well as the volume
of cement paste and mortar, remained the same. Thus, the study reflected solely the cement type
effect of Portland cement versus slag cement on the mechanical performances and permeability of
concretes made with two types of aggregates: crushed basalt (B) and riverbed gravel (RB). For all the
concretes tested, the amount of all components (cement paste and mortar volume) and aggregate type
and nature, as well as the particle size distribution, was identical, apart from the type of cement.

This research investigates the mechanical performances and permeability of concretes made
with different cements, to compare their reference mass transport capacities, strength, and stiffness
after high temperature exposure. The reference values of permeability enable one to assess their
potential for spalling in fire conditions, as denser and less permeable materials are prone to this
behavior. Furthermore, the evolution of permeability with heating temperature was investigated,
as well as the compressive strength and splitting tensile strength. Moreover, the stress strain curves
were determined, and the modulus of elasticity was determined. All residual mechanical performances
(fcT, ftT, ET) were evaluated after heating to temperature T (◦C), which corresponds to the post-fire
performance of concrete in situations where the assessment of material properties is required. In this
specific situation, the residual permeability of concrete is also an issue because it governs all aspects of
durability, and there may be a need for assessment when a decision must be made on the further use of
concrete elements after a fire.
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2. Materials, Specimen Preparation, Curing, and Heating

The concretes investigated in this research were manufactured with the following components:
Portland cement CEMI 42.5R and CEMIII/A 42.5 N containing 53% GGBFS, quartz sand 0/2mm, and one
of two types of coarse aggregate: (B)basalt or (RB) riverbed gravel.

Cements from Lafarge (Małogoszcz, Poland) were used for both the CEMI 42.5 R Portland cement
and CEMIII/A 42.5 N slag cement. The chemical characteristics of these cements are provided in
Table 1, the physical characteristics in Table 2, and the mechanical characteristics in Table 3.

Table 1. The chemical characteristics of CEM I and CEM III cements(oxide analysis, % by mass).

Component CEMI
42.5 R

CEMIII/A
42.5 N

SiO2 18.6 30.0
Al2O3 5.3 6.2
Fe2O3 2.9 1.7
CaO 62.7 50.3
MgO 1.50 4.98
SO3 3.22 2.41

Na2O 0.19 0.37
K2O 0.96 0.70

eqNa2O 0.82 0.83
Cl− 0.060 0.016

Portland clinker content
GGBFS

Gypsum

96
0
4

45
53
2

Table 2. Physical characteristics of CEMI and CEMIII cements.

Parameter CEMI
42.5 R

CEMIII/A
42.5 N

Specific area (Blaine method), m2/kg 340 465
True density, g/cm3 3.09 2.97

Setting time, minutes
-initial 199 221
-final 270 266

Table 3. Mechanical characteristics of CEM I and CEM III cements.

Parameters CEMI
42.5 R

CEMIII/A
42.5 N

Compressive strength, MPa
-after 2 days 29.3 13.7

-after 28 days 55.1 50.7

Two types of aggregates were used in this research programme: gravel from Dunajec River
(Dwudniaki, Poland) and crushed basalt.

In Table 4, the concrete mixes are presented. The cement paste volume was 300 dm3/m3 and the
mortar volume was 550 dm3/m3. The concretes are denominated as B CEMI, B CEMIII, RB CEMI,
and RB CEMIII. Plasticizer (BASF BV 18 (Myślenice, Poland) and superplasticizer (BASF Glenium SKY
591 (Myślenice, Poland) were used and the water-cement ratio (w/c) of the concretes was equal to 0.3.
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Table 4. Mix composition of the test concretes.
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All concrete cubic and cylindrical specimens were cast in plastic molds and stored for 24 h.
After preliminary 24 h curing, the molds were covered with plastic lids for 7 days to prevent water
evaporation. Samples were stored in laboratory conditions at T = 20 ± 5 ◦C and relative humidity
HR = 50% ± 5%. Cylindrical specimens dedicated to permeability measurements were cut into discs
with a diameter of 150 mm and thickness of 50 mm at the age of 28 days. At 90 days, all specimens
for mechanical performance testing and permeability were heated in an electric furnace to T = 200,
400, 600, 800, and 1000 ◦C. As recommended by RILEM [16], a heating rate of 0.5 ◦C/min was applied.
A slow heating rate is applied for concrete mechanical behavior testing at high temperatures in order
to ensure limitation of the thermal gradient inside the specimen. When the target temperature was
reached it was maintained for three consecutive hours in order to obtain a homogenous temperature in
the whole cross section of the specimen. Afterwards, all specimens were cooled down inside of the
furnace chamber.

3. Testing Procedures

3.1. Concrete Permeability

The permeability test used nitrogen as a gas media and the Cembureau method was applied [31].
The testing set-up used is presented in detail in Figure 1.
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In Equation (1), the permeability (k) was determined:

k =
2QPaηL

A
(
P2
− P2

a

) (m2
)
, (1)

where:

Q: the measured gas flow intensity Q = V/t (m3/s);
V: gas volume (m3)
t: time (s)
Pa: atmospheric pressure (1 bar = 105 Pa);
P: absolute pressure (Pa);
A: cross section area of the specimen (m2);
η: nitrogen viscosity; η = 17.15 (Pa·s);
L: thickness of the specimen (m).

The initial reference permeability of the concrete in the samples at 90 days old was determined
on the specimens that were not pre-dried, in order to represent the non-dried condition in the real
structure. Subsequently, the samples were heated to a temperature ranging from 200 to 1000 ◦C,
and after cooling the permeability was measured. Each measurement value represented the mean
value from three samples.

3.2. Mechanical Tests

The cubic specimens with side a = 150 mm were used for compressive strength determination,
with a diameter (d) of 100 mm and height (h) of 200 mm for the cylindrical samples for the splitting
tensile strength tests. Three samples were used to test unheated concrete and two were used to test
heated concrete. The modulus of elasticity was determined from the stress–strain (σ-ε) using one
cylindrical sample (d = 100 mm; h = 200 mm). All E values were expressed in GPa and calculated
from σ-ε curves as the stress to strain and strain ratio in the range of 10% to 40% of the ultimate
stresses. For all properties six temperature levels were studied: T = 20, 200, 400, 600, 800, and 1000 ◦C.
The compressive strength test procedures applied were presented in EN 12390-3 [32], and the splitting
Brazilian tests were done according to EN 12390-6 [33].

4. Test Results and Discussion

4.1. Initial Properties

For B CEMI, B CEMIII, RB CEMI, and RB CEMIII concretes, the initial physical properties of bulk
density ρo20◦C and permeability k, and the mechanical properties of compressive strength fc20◦C tensile
strength ft20◦C and modulus of elasticity E20◦C were determined after 90 days. The initial measurements,
obtained for non-heated concrete properties, are presented in Table 5 and marked with the symbol
20 ◦C.

Table 5. Initial properties and parameters of the test concretes.

Property Unit
B CEMI B CEMIII RB CEMI RB CEMIII

B Basalt Coarse Aggregate RB Riverbed Coarse Aggregate

Bulk density ρo20◦C kg/m3 2558.8 2533.2 2300.7 2315.6
Compressive strength fc20◦C MPa 84.9 96,2 77.0 87.4

Splitting tensile strength ft20◦C MPa 6.2 6.9 6.0 5.6
Modulus of elasticity E20◦C GPa 44.4 48.9 30.6 29.7

Permeability k20◦C m2 0.70 × 10−17 0.52 × 10−17 1.20 × 10−17 1.00 × 10−17
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4.2. Evolution of Bulk Density with Temperature

The progressive increase of the temperature resulted in free water evaporation and progressive
dehydration of the material. The C-S-H, as well as portlandite and calcium carbonate decomposition,
were progressive in higher temperatures. As a result, weight loss was observed and the progressive
density changes were recorded. The bulk density of B CEMI, B CEMIII, RB CEMI, and RB CEMIII
concretes decreased as a function of the temperature. The mean values of bulk density are presented in
Figure 2.
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Figure 2. Bulk density of riverbed aggregates (RB) and basalt (B) concretes made with CEMI and
CEMIII concretes; mean value of three samples.

In Figure 2 the bulk densities of the test concretes are presented. The values are mainly related
to the type of aggregate: basalt or riverbed. The density of basalt CEMI concrete was 2558.8 kg/m3

and the B CEMIII 2533.2 kg/m3. The RB CEMI and RB CEMIII concrete were 2300.7 and 2315.6 kg/m3,
respectively. Apart from the initial values of density observed in the non-heated pristine concrete,
the changes of the density with the temperature were quite similar for both cement types.

4.3. Evolution of Compressive Strength and Splitting Tensile Strength with Temperature Exposure

Figure 3 depicts the average and individual values of compressive strength. From the figure it
can be concluded that the compressive strength of unheated concrete was higher for both CEMIII
concretes made with basalt and riverbed aggregates. This tendency is maintained at 200 ◦C. When the
temperature is higher than 400 ◦C, there are few differences in strength between B CEMI and B CEMIII,
as well as between RB CEMI and RB CEMIII concretes. They all presented almost the same strength of
60 MPa.
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Figure 3. The compressive strength evolution CEMI and CEMIII concretes on basalt and
riverbed aggregate.
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In Figure 4, the average and individual values of ftT are presented. Heating resulted in a
progressive reduction in strength, nevertheless, the differences between CEMI and CEMIII concretes
over a whole range of temperatures may be considered insignificant, in the scope of measurement
error, or the scatter of results for this mechanical property.
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Figure 4. The changes in the splitting tensile strength of heated CEMI and CEMIII concretes on basalt
and riverbed aggregate.

As has already been shown in previous research, an important aspect in the high temperature
behavior of concrete is the thermal stability of aggregates at high temperatures. This can be evaluated
by thermo-gravimetric and differential thermal analysis, which indicate the physical or chemical
transformation of aggregates. As has already been reported [10], basalt is thermally stable up to 1000 ◦C;
above this temperature melting is observed at 1050 ◦C and expansion and gas release both occur.

4.4. Relationship between Stress and Strain, and the Modulus of Elasticity Evaluation

The stress–strain relationships for the tested concretes are presented in Figure 5. Along with
the temperature increase, a change of concrete stiffness was observed, as represented by the slope
of the stress–strain curve. For the specimens heated to 600 ◦C and above, the stress–strain curve
presents nonlinear behavior in compression due to the presence of cracks, which are closing partially
when a compressive load is applied during the test. The similar stress–strain behavior of concrete in
compression was observed for hot tested and tested after cooling down [8,15], an important cracking
of samples was observed, especially for concretes with siliceous aggregates, heated without loading.
The cracking of unloaded concrete was confirmed by the thermal strain evolution observation during
heating [6].

The static modulus of elasticity values (ET) of heated B CEMI and B CEMIII, as well as RB CEMI
and RB CEMIII, are shown in Figure 6. The pristine non-heated concretes’ modulus of elasticity (E20◦C)
were 44.4 and 48.9 GPa, respectively, for B CEMI and B CEMIII. For riverbed aggregate RB CEMI
and RB CEMIII they were 30.6 and 29.7 GPa. These results show clearly that for concretes with the
same volume of cement paste, the modulus of elasticity is related to the nature of the aggregate and is
strongly related to concrete density. Higher values of ET were observed for both CEMIII concretes with
RB and B aggregates.

A quasi linear decrease in the ET value over the whole range of heating temperatures was observed.
The slope of ET decrease is most pronounced in the range of temperatures between 400 and 1000 ◦C
(Figure 5). This sharp decrease of stiffness was attributed to crack development due to a mismatch of
the strains between the cement paste and aggregates that is observed in this range of temperatures,
and an increase in thermal strains resulting from cracking [6,7].
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Figure 6. Modulus of elasticity change with the temperature of CEMI and CEMIII concretes.

From Figure 6 it can be concluded that the relative change of the modulus of elasticity is quasi
identical for the concretes tested, and does not depend on cement type. The differences between the
modulus of elasticity values of RB CEMI and RB CEMIII are not significant except for differences
occurring at 20 ◦C.

4.5. Heated Concrete Permeability Evolution

For RB CEMI and RB CEMIII, the initial reference permeability, measured on non-heated concrete
after exposure to 20 ◦C, reached values of 1.20 × 10−17 m2 and 1.00 × 10−17 m2, respectively. For B CEMI
and B CEMIII this permeability was 0.70 × 10−17 m2 and 0.52 × 10−17 m2. With the increase of heating



Materials 2019, 12, 3021 10 of 14

temperature residual permeability was increased. For the specimens heated to 1000 ◦C the permeability
could not be measured due to crack development, and the gas flows could not be stabilized, so the
permeability could not be measured with the Cembureau set-up. The results of the permeability
measurements are presented in Figure 7. For B CEMIII and RB CEMIII concretes generally, lower values
of permeability were observed. For the riverbed aggregate concrete RB CEMIII, permeability measured
after exposure to high temperatures at 200, 400, 600, and 800 ◦C was systematically slightly lower
than for RB CEMI. Basalt aggregate-based concretes provide lower permeability than riverbed ones.
Nevertheless, these differences could not be considered significant. For all the concretes heated up to
1000 ◦C, the permeability could not be measured with the Cembureau method due to the significant
damage to the concrete and crack development.
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Figure 7. Effect of heating on the permeability of the test materials: RB CEMI and RB CEMIII, B CEMI
and CEMIII. The reference permeability at 20 ◦C and permeability after heating to 200, 400, 600,
and 800 ◦C.

4.6. Permeability vs. High Temperature Damage Factor

Previous studies [34,35] have indicated that the degradation of concrete at high temperatures,
arising from a coupled hygro-thermal, chemical (dehydration) and mechanical interaction, can be
modelled by means of the isotropic damage theory of Mazars [36]. Following Gawin et al. [9], the total
damage D may be described by a multiplicative format of mechanical and thermo-chemical damage
components, as shown in Equation (2):

D = 1−
E(T)

E0(T0)
= 1−

E(T)
E0(T)

E0(T)
E0(T0)

= 1− (1− d) × (1−V), (2)

where V corresponds to the thermo-chemical damage and d to the mechanical damage. The term

(1 – d) corresponds to E(T)
E0(T)

, and (1–V) to E0(T)
E0(T0)

. In the above equation E0(T0) is the initial value of the
static modulus of elasticity, E0(T) is the modulus for mechanically undamaged material expressed in a
function of heating temperature, and E(T) represents the static modulus of elasticity of mechanically
damaged heated concrete.

Following this approach, in Figure 8 the effect of temperature on the damage parameter for heated
concretes is presented. The damage factor was calculated on the basis of the change in the modulus of
elasticity with temperature (see Figure 6), leading to Equation (3), and this evaluates the deterioration
of the stiffness of the heated concrete samples by comparing them with the parameters found in
non-heated concrete:

DE = 1 − ET/E20 ◦C, (3)

where E20◦C is the static modulus of elasticity tested at 20 ◦C and ET is the value obtained for
heated concrete.

The damage factor follows a comparable increasing change for all tested materials and almost
reaches the value of 0.9, which means that 90% of the concrete has deteriorated. However, at 400 ◦C
the damage value becomes much higher for the basalt aggregate concretes in comparison with the
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riverbed aggregate ones. Overall, the damage values for the CEMIII concretes appear to be slightly
lower than for the CEMI concretes, especially for the basalt-based materials.
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Figure 8. Damage factor (DE) as a function of temperature.

These changes may be qualitatively compared to the change of total damage with temperature of
a high performance concrete [9]. However, the damage values obtained and cited in this study are
higher (damage of 0.8 at 600 ◦C). The reason for this difference may be due to the heating conditions,
and notably the heating rate, which was four times higher in the study by Gawin et al. [9] than in our
procedure, and which may provide stronger thermal gradients and therefore greater degradation.

It has already been noted that the changes to the inner micro-structure and permeability of the
concrete may be characterized using this mechanistic approach, using damage evaluation to describe
the high temperature degradation and/or micro-cracking effects [9,26,37,38]. The results of such a
correlation are presented in Figure 9 for all the test materials. One may observe that all the data follow
a single master law, independent of cement type or aggregate type. The results follow an exponential
relationship, except for the permeability values obtained at 800 ◦C (Equation (4)):

k
k0

= exp[CDE·DE]. (4)
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In Equation (4) k is the permeability of the heated material, k0 the initial reference permeability,
DE the damage factor, and CDE is the material dependent parameter, here equal to 8, which confirms
the value obtained for another high performance concreteat elevated temperatures, but based only
on the CEMI cement [9]. The CDE value being equal to 8was obtainedfrom the regression curve with
the coefficient of determination R2 of 0.86 value. Therefore, the proposed regression curve is limited
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in the range of temperature from 20 to 600 ◦C.Three points that do not follow the trend in Figure 9
correspond to permeability values obtained at 800 ◦C. At this temperature, important cracking occurs
following the already mentioned nonlinear mechanical behavior.

5. Conclusions

This paper intended to present the study of the influence of the cement types CEMI and slag cement
CEMIII, in which the GGBFS amount reaches 54%, on the mechanical and physical performances of
heated concretes with riverbed (RB) and basalt (B) aggregates. Four concretes with the same volume of
cement paste and mortar were investigated. The only parameter differentiating RB and B concretes was
the cement type. Analysis of the experimental data obtained concerned the mechanical tests, stiffness,
and the permeability test results of the four concretes subjected to high temperature exposure (up to
1000 ◦C). The following main conclusions were drawn:

1. Type of cement influences compressive strength and permeability of 90 day concrete. Concretes
with CEMIII presented lower permeability and higher compressive strength for both basalt and
riverbed aggregate concretes;

2. High temperature exposure strongly influences the mechanical and physical properties of
concretes, and the damage to concrete increases with exposure temperature. A temperature
increase leads to the reduction of strength and modulus of elasticity. The splitting tensile strength
decrease is more pronounced than the compressive strength evolution.

3. Minor differences between the mechanical properties of heated CEMI and CEMIII concretes were
observed. The bulk density values, as well as the mechanical properties fcT, ftT and ET, were very
close or the differences were within the range of measurement error or the scatter of results of the
properties tested;

4. The nature of the aggregate has a dominant influence on the material physical density and
mechanical properties of the tested concretes. The compressive and tensile strengths depend on
the aggregate nature for temperature up to 400 ◦C; above this temperature level, similar values of
strength are observed;

5. The decrease in the mechanical properties is the result of progressive cement paste damage
due to dehydration and chemical changes in the cement paste. Moreover, crack development
due to the thermal mishmash of aggregate and cement paste results in nonlinear behavior of
heated concretes;

6. The course of changes of the relative value in the elastic modulus for all the concretes investigated
was very similar, except for the temperature of 400 ◦C. The riverbed aggregate concretes RB CEMI
and RB CEMIII hada lower damage parameter than that observed for basalt aggregate concretes
(B CEMI and B CEMIII) at this temperature. For 200, 600, 800, and 1000 ◦C, the damage levels
were similar;

7. Important changes of up to six orders of magnitude were observed in permeability values
following heating. However, the differences between the concretes could not be considered
as significant. Indeed, CEMIII concretes presented slightly lower values of permeability in
comparison with the CEMI ones in whole range of temperatures. On the other hand, basalt
aggregate-based concretes have slightly lower permeability than riverbed ones. Concretes with
CEMI: riverbed 1.2 × 10−17 vs. basalt 0.7 × 10−17; concretes with CEMIII: riverbed 0.99 × 10−17

vs. basalt CEMIII 0.53 × 10−17. That difference was be explained by lower permeability of basalt
aggregate itself. This relation was also observed for the temperatures of 200, 400, and 600 ◦C;

8. Analysis of the results allowed the formulation of the constitutive exponential law, presenting the
relationship between the permeability of concrete and damage, which is valid up to 600 ◦C.

9. It can be considered that heating induces damage, which may be represented by changes in the
initial modulus of elasticity, that depends to a small degree on the type of cement. In this range of
damage, the effects of aggregate type are also non-significant.
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