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Abstract: This research mainly focuses on the successful fabrication of nano-hydroxyapatite (nHA)
reinforced WE43 alloy by two-pass friction stir processing (FSP). Microstructure evolution, mechanical
properties, and in vitro corrosion behavior of FSPed WE43/nHA composite and FSPed WE43 alloy
were studied. The results show that nHA particles are effectively dispersed in the processing zone,
and the well-dispersed nHA particles can enhance the grain refine effect of FSP. The average grain
sizes of FSPed WE43 alloy and WE43/nHA composite are 5.7 and 3.3 µm, respectively. However,
a slight deterioration in tensile strength and yield strength is observed on the WE43/nHA composite,
compared to the FSPed WE43 alloy, which is attributed to the locally agglomerated nHA particles
and the poor quality of interfacial bonding between nHA particles and matrix. The electrochemical
test and in vitro immersion test results reveal that the corrosion resistance of the WE43 alloy is greatly
improved after FSP. With the addition of nHA particles, the corrosion resistance of the WE43/nHA
composite shows an even greater improvement.

Keywords: WE43/HA composite; friction stir processing; microstructure; mechanical properties;
corrosion behavior

1. Introduction

Magnesium and its alloys have several advantages when compared with traditional metal
biomedical materials. The Young’s modulus and density of magnesium and its alloys are similar to that
of natural bone, which can effectively avoid the stress shielding effect [1,2]. Magnesium is biodegradable
in vivo, and the corrosion products have proven to be nontoxic. In addition, magnesium-based
biomedical materials have been widely reported to positively stimulate the formation of new bone,
which is favorable for bone fracture healing [3]. Therefore, magnesium alloys have great potential in
applications as biodegradable metal materials [4,5]. However, biomedical magnesium alloys face the
urgent issue of controlling corrosion behavior by avoiding local corrosion and controlling corrosion
rates, in order to meet the safety and mechanical property requirements for biodegradable metal
materials [6].

Hydroxyapatite (HA), the main inorganic component of human bone tissue and teeth, has emerged
as a promising bioceramic material for its outstanding biocompatibility and bioactivity [7,8]. However,
due to its brittleness and poor strength, HA in biomedical applications is currently limited to non-load
bearing parts or low load-bearing parts. In this case, introducing HA particles into magnesium alloys
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is considered an effective method to improve the corrosion rate and biocompatibility of magnesium
alloys. At present, several processes such as hot extrusion, stirred casting, powder metallurgy, and
other methods are performed to prepare HA magnesium matrix composites with uniform corrosion
behavior, good mechanical properties, and biocompatibility [9–11].

Friction stir processing (FSP) is an emerging solid-state processing technology for preparing
fine-grained metal materials [12]. In recent years, due to its slight interface reaction between
matrix and reinforced particles during processing, FSP has been used for metal matrix composite
preparation [13–15]. For instance, nano-hydroxyapatite (nHA) particles have successfully been added to
pure Mg substrate by multi-pass FSP, and the Mg/nHA composite shows preferable corrosion resistance
in simulated body fluid (SBF) or Dulbecco’s phosphate buffered saline compared to the substrate.
However, the investigations of mechanical properties are not mentioned in these papers [14,15].
As an implant material, the material should have reasonable mechanical properties in order to meet the
clinical requirements of implantation, so investigation of these mechanical properties is also important.
WE43 magnesium alloy with high strength and low cytotoxicity is suitable for biomedical applications.
Therefore, in this research, the casted WE43 alloy was used as matrix, nano-sized HA particles as the
reinforcing phase, and FSP was conducted to prepare WE43/nHA composites. The microstructure
evolution during FSP, the effects of rotation speed on the distribution of nHA particles, and the
effects of dispersed nHA particles on mechanical properties and corrosion behavior of the composites
were studied.

2. Experimental Procedure

2.1. Raw Materials

Commercially available WE43 magnesium alloy (as-cast) sheets of size 150 mm × 30 mm × 6 mm
(length ×width × height) were used as the base metal (BM) in this study, and the chemical composition
of the BM is shown in Table 1. Nano-sized HA powders (nHA) with a purity of >99% used in this study
were purchased from Shanxi Baiwei Biotechnology Co., Ltd. (Xi’an, China). The TEM morphology of
nHA particles is shown in Figure 1—the particles were of acicular morphology 20–30 nm in width and
60–120 nm in length.

Table 1. Composites of as-cast base metal (wt. %).

Mg Y Nd Gd Zr Ni Ca Mn Si Zn

Bal. 3.34 2.04 1.27 0.39 0.02 0.02 0.02 0.01 0.01
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2.2. Processing

Figure 2 presents the schematic illustration of the processing steps. To prepare the WE43/nHA
composite, FSP was performed on BM sheets with a groove size of 1 mm × 4 mm (width × depth).
After nHA particles were filled into the groove, a cylindrical and pin-less FSP tool was pressed down
slowly until the shoulder contacted with the material, and it was then processed at a rotation speed
of 600 rpm and a traverse speed of 60 mm/min along the groove direction. After processing, a metal
sealing layer was formed above the groove, which could avoid the nHA particles escaping from the
groove during FSP (Figure 2c). In the next processing step, cylindrical FSP tools with a shoulder
diameter of 15 mm, consisting of a tapered cylindrical pin with a diameter varying from 2 to 5 mm
over the length of 5 mm, were used to perform FSP on the sealed specimens.

A two-pass FSP with optimized processing parameters, including a rotation speed of 1000 rpm
and a traverse speed of 60 mm/min, was employed to obtain WE43/nHA composites with a fine and
uniform microstructure. The plunge depth of 0.8 mm and tilt angle of 2.5◦ relative to the normal
direction of FSP plane were kept constant. The composite specimens obtained by FSP were coded as
WE43/nHA. The same processing parameters and conditions were applied for conducting FSP on BM
without the addition of nHA particles, with the obtained specimens being coded as FSP-WE43.
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Figure 2. Schematic illustration of the processing steps. (a) Step 1; (b) Step 2; (c) Step 3; (d) Step 4.

2.3. Characterization of Microstructure and Phase Composition

The specimens used for microstructure observation were mechanically grinded with emery papers
(up to #5000 grade) and polished on a polishing machine. Further, the polished specimens were
etched by picric acid solution (picric acid 5 g, alcohol 80 mL, acetic acid 10 mL, and deionized water
10 mL). Optical microscope (DM15000M, Leica, Wizlar, Germany) was used to observe microstructure
at lower magnification. The distribution of second phases and reinforcements, as well as the fracture
morphology, were observed by a scanning electron microscope (Nova Nano 430, FEI, Hillsboro, OR,
USA). The morphology of the nHA particles was characterized by a transmission electron microscopy
(JEM-2100F, JEOL, Tokyo, Japan).
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2.4. Mechanical Properties Testing

The microhardness test was conducted on a HVS-1000 digital Vickers microhardness tester
(YouHong, Corp., Shanghai, China) with the application of a load of 0.98 N and a loading cycle of
10 s. The indention interval was selected to be 0.5 mm in stirred zone (SZ), and every indentation
was measured three times and the average value was calculated. Tensile specimens were machined
parallel to the processing direction with the gauge being completely within the stirred zone, the shape
and dimension of a tensile specimen is shown in Figure 3. The tensile test was carried out on a
SANS CMT5105 universal tensile testing machine (MTS, Eden Prairie, MN, USA) with a strain rate of
2 × 10−3 s−1. At least five specimens were tested to evaluate the average property values.

J. Funct. Biomater. 2019, 10, x FOR PEER REVIEW 4 of 13 

 

s. The indention interval was selected to be 0.5 mm in stirred zone (SZ), and every indentation was 
measured three times and the average value was calculated. Tensile specimens were machined 
parallel to the processing direction with the gauge being completely within the stirred zone, the shape 
and dimension of a tensile specimen is shown in Figure 3. The tensile test was carried out on a SANS 
CMT5105 universal tensile testing machine (MTS, Eden Prairie, MN, USA) with a strain rate of 2 × 
10−3 s−1. At least five specimens were tested to evaluate the average property values. 

 
Figure 3. Shape and dimension of tensile specimen. 

2.5. Corrosion Behavior 

2.5.1. Electrochemical Test 

Potentiodynamic polarization curve tests were performed on an electrochemical workstation 
(Vertex.5A. EIX, IVIUM, Eindhoven, the Netherlands) in SBF solution (8.035 g/L NaCl, 0.355 g/L 
NaHCO3, 0.225 g/L KCl, 0.231 g/L K2HPO4·3H2O, 0.311 g/L MgCl2·6H2O, 0.292 g/L CaCl2, 0.072 g/L 
Na2SO4, and 6.118 g/L Tris (HOCH2)3CNH2). The reference electrode was a saturated Ag/AgCl 
electrode and a platinum electrode was used as the counter electrode. One square cm area of the 
specimens was used as the working electrode. Specimens were exposed to the SBF solution for 30 
min prior to the beginning of the experiments to establish open circuit potential. The 
potentiodynamic polarization was done between the potentials −2.5 and 0.5 V with a scanning rate 
of 5 mV/s. 

2.5.2. Immersion Test 

The immersion test was performed per ASTM-G31-72 in SBF at 37 °C for 24, 48, and 72 h, 
respectively. Weight loss specimens of size 6 mm × 4 mm × 2 mm (length × width × height) were cut 
from the SZ of FSP-WE43 and WE43/nHA composite samples and BM as well, for the purpose of 
measuring the corrosion rate of specimens in SBF. After immersion, the corrosion products were 
removed by chromic acid (200 g/L CrO3, 10 g/L AgNO3, and 20 g/L Ba(NO3)2) and then ultrasonically 
cleaned in distilled water and ethanol, respectively. The weight of specimens was measured before 
and after immersion. The corrosion rate was calculated by the following equation: CR = W/Atρ (1) 

where CR is the corrosion rate (mm/year); W represents the weight loss (g); A refers to the surface 
area (cm2); t is the immersion time; and ρ is the standard density of WE43. A density of 1.83 g/cm3 
was used for all specimens in this study. 

The corrosion morphology of specimens was observed by the SEM mentioned above. 

3. Results and Discussion 

3.1. Microstructure Evolution 

Figure 4 shows the optical microstructure of BM and the stir zone of FSP-WE43 and WE43/nHA 
specimens. The average grain size of BM is measured ~50.9 μm. Grain refinement is achieved up to 
~5.7 and ~3.3 μm in the FSP-WE43 specimen and WE43/nHA specimen, respectively. During FSP, 
materials in the stir zone will undergo dynamic recrystallization and coarse second phases will break 
into small particles, resulting from the severe plastic deformation caused by the FSP tool and thermal 
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2.5. Corrosion Behavior

2.5.1. Electrochemical Test

Potentiodynamic polarization curve tests were performed on an electrochemical workstation
(Vertex.5A. EIX, IVIUM, Eindhoven, the Netherlands) in SBF solution (8.035 g/L NaCl, 0.355 g/L
NaHCO3, 0.225 g/L KCl, 0.231 g/L K2HPO4·3H2O, 0.311 g/L MgCl2·6H2O, 0.292 g/L CaCl2, 0.072 g/L
Na2SO4, and 6.118 g/L Tris (HOCH2)3CNH2). The reference electrode was a saturated Ag/AgCl
electrode and a platinum electrode was used as the counter electrode. One square cm area of the
specimens was used as the working electrode. Specimens were exposed to the SBF solution for 30 min
prior to the beginning of the experiments to establish open circuit potential. The potentiodynamic
polarization was done between the potentials −2.5 and 0.5 V with a scanning rate of 5 mV/s.

2.5.2. Immersion Test

The immersion test was performed per ASTM-G31-72 in SBF at 37 ◦C for 24, 48, and 72 h,
respectively. Weight loss specimens of size 6 mm × 4 mm × 2 mm (length × width × height) were
cut from the SZ of FSP-WE43 and WE43/nHA composite samples and BM as well, for the purpose
of measuring the corrosion rate of specimens in SBF. After immersion, the corrosion products were
removed by chromic acid (200 g/L CrO3, 10 g/L AgNO3, and 20 g/L Ba(NO3)2) and then ultrasonically
cleaned in distilled water and ethanol, respectively. The weight of specimens was measured before
and after immersion. The corrosion rate was calculated by the following equation:

CR = W/Atρ (1)

where CR is the corrosion rate (mm/year); W represents the weight loss (g); A refers to the surface area
(cm2); t is the immersion time; and ρ is the standard density of WE43. A density of 1.83 g/cm3 was
used for all specimens in this study.

The corrosion morphology of specimens was observed by the SEM mentioned above.
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3. Results and Discussion

3.1. Microstructure Evolution

Figure 4 shows the optical microstructure of BM and the stir zone of FSP-WE43 and WE43/nHA
specimens. The average grain size of BM is measured ~50.9 µm. Grain refinement is achieved up
to ~5.7 and ~3.3 µm in the FSP-WE43 specimen and WE43/nHA specimen, respectively. During FSP,
materials in the stir zone will undergo dynamic recrystallization and coarse second phases will break
into small particles, resulting from the severe plastic deformation caused by the FSP tool and thermal
effect caused by friction [13,16]. This is the main reason for the apparent refinement of grains after
FSP. During FSP of magnesium, the peak temperature of SZ is reported lower than 550 ◦C, at which
temperature the nHA particles remain stable [17–19]. The incorporated insoluble nHA particles act to
stimulate nucleation and impede the migration of grain boundaries [20,21]. As a result, further grain
refinement is achieved on WE43/nHA composites.
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3.2. Distribution of HA Particles

Figure 5 shows the distribution of the second phase particles and its corresponding EDS analysis
in the WE43/nHA specimen. nHA particles are found well dispersed on the matrix after FSP, joined
by only a few clusters with a diameter of less than 10 µm (Figure 5a). The high-angle annular dark
field (HAADF) image and the corresponding EDS analyses of the stir zone (Figure 5b,c) confirm that
nHA particles are successfully added into the WE43 alloy matrix and most nHA particles remain
at nanoscale.
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3.3. Mechanical Properties

3.3.1. Microhardness

The microhardness distribution curves of FSP-WE43 and WE43/nHA specimens are plotted in
Figure 6. After FSP, the Vickers microhardness value of the SZ is significantly increased in FSP-WE43
and WE43/nHA specimens. The microhardness value at the SZ of the FSP-WE43 and WE43/nHA
specimens is relatively stable, while the microhardness value of the base metal region fluctuates.
The region with a higher microhardness value is about 5 mm in width, which is approximately equal
to the diameter of the pin on FSP tool. The mean microhardness value of WE43 substrate is ~62.6 HV,
which increases to ~79.6 HV by FSP without the addition of nHA powder. In the case of introducing
nHA powder during FSP, the mean microhardness value is improved up to ~85.2 HV.

The grain size of as-cast WE43 alloy is coarse and the microstructure is ununiform, so the
microhardness value of the BM zone is lower and fluctuates. After FSP, the grains in the stir zone are
remarkably refined and grain boundary strengthening is considered the main reason for the significant
increase of microhardness value in the stir zone. For the WE43/nHA specimen, the distribution of
microhardness values is related to the dispersion of nHA particles, and a relatively stable microhardness
value fluctuation for the WE43/nHA specimen indicates that nHA particles are dispersed uniformly on
WE43 substrate, which is consistent with the microstructure observation.
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3.3.2. Tensile Properties

Figure 7 shows a comparison of the tensile properties of the base metal and processed WE43
(with or without adding nHA particles) specimens. As plotted in Figure 7, the ultimate tensile strength
(UTS), yield strength (YS), and elongation of specimens after processing are improved in different
degrees compared with the BM. For BM, the YS and UTS are measured as only ~153.3 and ~193.2 MPa,
respectively. After FSP, the YS and UTS of the FSP-WE43 specimen are improved up to ~198.7 MPa
and ~255.4 MPa, respectively. Compared with the FSP-WE43 specimen, a slight decline in strength is
observed on the WE43/nHA specimen, with the YS and UTS being measured as ~185.1 and ~232.3 MPa,
respectively. Furthermore, the value of elongation after fracture is greatly increased by FSP as well.
The elongation of BM is only ~5.2%, while in the FSP-WE43 and WE43/nHA specimen it is 20.2% and
10.1%, respectively.
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3.3.3. Fractographic Studies

Figure 8 shows the fractographic images of tensile specimens. The fractographic of BM (Figure 8a)
consists of a large amount of cleavage facets and voids defects, which indicates that BM fails in a brittle
way. Figure 8b shows the fractographic image of an FSP-WE43 specimen, in which a large amount of
fine equal-sized equiaxed dimples can be observed. The fracture morphology exhibits plastic fracture
characteristics. This confirms the high ductility of the FSP-WE43 specimen as shown in Figure 7.
The fractographic images of the WE43/nHA specimen are represented in Figure 8c,d. Fine dimples
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can also be observed in the WE43/nHA specimen and partially agglomerated nHA particles can be
seen (as shown by white circles). By observing agglomerated nHA particles at higher magnification,
several cracks across the nHA cluster is found (Figure 8d). The loose nHA clusters can be the initiation
source of cracks during failure, which is the main reason for the decline of elongation in the WE43/nHA
specimen compared with that in the FSP-WE43 specimen.

In general, coarse grains and brittle Mg12Nd networks in as-cast WE43 magnesium alloy cause
its poor tensile properties [22]. As shown in Figure 4, remarkable grain refinement is achieved and
coarse Mg12Nd phases are broken into fine particles after FSP. Under the combined effects of grain
boundary strengthening and dispersion strengthening, the tensile strength of processed specimens
(with or without addition of nHA particles) are significantly improved. In addition, FSP eliminates
the voids defects in as-cast WE43, which is beneficial to the improvement of strength and ductility.
However, the localized nHA agglomerates reduce the tensile properties of the composites to a certain
extent compared with those in the FSP-WE43 alloy, while the tensile properties of the WE43/nHA
specimen are still improved compared with those in the BM.
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3.4. Corrosion Behavior

3.4.1. Electrochemical Test

The potentiodynamic polarization curves of as-cast WE43 and processed WE43 specimens are
demonstrated in Figure 9. The corrosion potentials (Ecorr) and corrosion current density (icorr) of
BM are measured as −1.691 mV (vs. Ag/AgCl) and 109.6 µA/cm2, respectively. For the processed
specimens, the Ecorr of the WE43/nHA specimen (−1.661 mV) shifts toward the positive side and the
icorr (46.7 µA/cm2) is lower than that of BM. The Ecorr and icorr values of the FSP-WE43 sample are
measured as −1.678 mV and 53.7 µA/cm2, respectively. The highest Ecorr value and lowest icorr value
indicate that the WE43/nHA composite has the best corrosion resistance in this study.
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As discussed in Section 3.1, grain size is significantly refined by FSP. For magnesium alloy, fine
grains are proved beneficial to the formation of a passive layer, as the result of increasing the number
of grain boundaries per unit volume and reducing the galvanic couple between grain boundary and
grain interior [23,24]. This is the main reason for the increase of corrosion resistance on processed
WE43 specimens. Moreover, tiny dispersed nHA particles can also contribute to uniform corrosion
behavior [25]. Therefore, the combined effects of grain refinement and dispersion of nHA particles
lead to the improvement of corrosion resistance on WE43/nHA composites.

3.4.2. Degradation in Immersion Test

Figure 10 shows the corrosion weight loss curve of BM, FSP-WE43, and WE43/nHA specimens.
During the immersion period of 120 h, the corrosion weight loss of BM increases rapidly. After immersion
for 120 h, BM specimens are almost completely degraded in the SBF solution. The corrosion weight
loss rates of the FSP-WE43 specimen and WE43/nHA specimen are relatively stable. In the first 72 h,
the weight loss rates of the FSP-WE43 and WE43/nHA specimen are about the same. After immersion
for 72 h, the weight loss rate of the FSP-WE43 specimen increases rapidly, while that of the WE43/nHA
specimen maintains a relatively stable value. The corrosion rates are calculated according to Equation (1).
After immersion for 120 h, the corrosion rate of the BM specimen is 26.8 mm/year, and the corrosion rates
of the FSP-WE43 and the WE43/nHA specimen are 8.1 mm/year and 3.9 mm/year, respectively. Obviously,
the FSP process has greatly improved the corrosion resistance of the casted WE43 alloy, and the addition
of nHA particles has further improved the corrosion resistance of the material.

Corrosion morphologies (with corrosion products) of specimens after immersion in SBF for
72 h are shown in Figure 11. The SEM images of corrosion morphology show that BM experiences
severe localized corrosion after immersion for 72 h and the accumulation of thick corrosion products
occur locally, which are reported to be Mg(OH)2 and calcium phosphate bio-minerals [26,27]. For the
FSP-WE43 specimen, uniform protective films are observed in most areas, while a small number of
protective films fall off locally, which may decrease the protective effect on corrosion attack. For the
WE43/nHA specimen, a dense and uniform protective layer generates on the composite surface. These
results indicate that the corrosion morphology is changed from local corrosion in as-cast WE43 alloy
to uniform corrosion in FSP-WE43 alloy, which is attributed to the fine-grained and homogeneous
microstructure by FSP. With the addition of dispersed nHA particles, the uniform corrosion morphology
on WE43/nHA composite is more obvious.
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Corrosion morphologies (without corrosion products) of specimens after immersion in SBF for
72 h are shown in Figure 12. It can be seen from Figure 12a that the BM specimen experiences extremely
severe corrosion attack and a large amount of material is dissolved in SBF. Deep and large etch pits can
be observed (Figure 12b), proving that the material has been eroded by SBF and the corrosion products
cannot prevent further corrosion. However, the FSP-WE43 specimen still keeps a relatively complete
surface morphology, although parts of materials are dissolved in SBF (Figure 12c,d). For the composite
specimen, the original shape is almost maintained after immersion in SBF for three days and only
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shallow corrosion pits can be observed locally (Figure 12e,f). The corrosion morphology observation
indicates that the corrosion resistance of the WE43/nHA composite is superior to that of the FSP-WE43
alloy and much superior to that of the as-cast WE43 alloy, which is in accord with the electrochemical
test results.J. Funct. Biomater. 2019, 10, x FOR PEER REVIEW 11 of 13 
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4. Conclusions

Fine-grained WE43/nHA composite was successfully prepared through friction stir processing.
Microstructure evolution and mechanical properties as well as in vitro corrosion behavior of WE43/nHA
composite were studied. The main findings are summarized as follows:

1. After friction stir processing, nHA particles disperse uniformly on WE43 matrix, and the dispersed
nHA particles enhance the grain refinement effect during processing.

2. The tensile properties of the WE43/nHA composite are significantly improved compared with
those of the casted WE43 alloy, while experiencing a slight deterioration compared with the
tensile properties of the FSP-WE43 alloy, which are the result of the locally agglomerated nHA
particles and the poor quality of interfacial bonding between nHA particles and matrix.

3. Due to the grain refinement and dispersed nHA particles, the corrosion resistance of the WE43/nHA
composite is superior to that of the FSP-WE43 alloy and much superior to that of the as-cast
WE43 alloy.
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