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Abstract: Cold spray additive manufacturing is an emerging technology that offers the ability to
deposit oxygen-sensitive materials and to manufacture large components in the solid state. For further
development of the technology, the geometric control of cold sprayed components is fundamental but
not yet fully matured. This study presents a neural network predictive modelling of a single-track
profile in cold spray additive manufacturing to address the problem. In contrast to previous studies
focusing only on key geometric feature predictions, the neural network model was employed to
demonstrate its capability of predicting complete track profiles at both normal and off-normal spray
angles, resulting in a mean absolute error of 8.3%. We also compared the track profile modelling
results against the previously proposed Gaussian model and showed that the neural network model
provided comparable predictive accuracy, even outperforming in the predictions at cold spray profile
edges. The results indicate that a neural network modelling approach is well suited to cold spray
profile prediction and may be used to improve geometric control during additive manufacturing
with an appropriate process planning algorithm.
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1. Introduction

Cold spray is a materials deposition technology that is suitable for coatings and repair and is
widely employed in industrial applications. This technology adopts a supersonic gas jet to accelerate
powder particles to 500–1000 m/s and enables solid-state deposition onto a substrate by kinetic energy
of the particles without melting. This mechanism offers unique characteristics that are difficult to
achieve otherwise, including: Low oxygen-content deposition, the avoidance of melting-induced
microstructure changes, and the ability to handle oxygen-sensitive materials without a protective
atmosphere [1–3]. Furthermore, a high deposition rate can be achieved with a narrow nozzle diameter,
resulting in a well-defined and high-density particle beam at small standoff distances [4].

The characteristics of cold spray are now recognized to offer great potential as an alternative solution
to the field of additive manufacturing, namely Cold Spray Additive Manufacturing (CSAM) [5–9].
The elimination of a protective atmosphere environment provides the ability to fabricate larger
manufactured components that are not possible with other additive manufacturing technologies,
e.g., powder-bed additive manufacturing, while still allowing for excellent flexibility in the selection
of oxygen-sensitive powder materials [9–11]. This benefit of cold spray technology can be further
enhanced by the inclusion of a robotic system in CSAM which also allows the stability of fabrication,
more Degrees of Freedom (DoF) for complex shapes and industrial automation [12–14]. Such robotic
CSAM effectively utilizes its high deposition rate to produce components at industrially relevant
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part turnaround times [7,9]. Owing to the benefits of CSAM, successful demonstrations have been
reported largely in aerospace industries at different levels of fabrication complexity: Simple rotational
structures [15,16] and more complex components (e.g., fin arrays) [17–19].

However, the CSAM technology has not yet reached a mature technology level where it is
considered a viable and reliable replacement to what is currently in use in commercial manufacturing
industries due to a number of fundamental and practical problems. Fundamental problems are
associated with the acceptable range of CSAM materials selection [20,21] and the microstructure
and mechanical properties of deposits under different process parameters [22,23]. In contrast,
practical challenges attract less attention from the CSAM community although providing a solution
to them is a key aspect to facilitating the development of a commercial CSAM technology. One such
practical challenge is the geometric control of as-fabricated components often associated with the
nature of high production rate additive manufacturing technologies: namely, CSAM [8,9,24], Wire and
Arc Additive Manufacturing (WAAM) [13,25] and Laser Cladding (LC) [26,27]. Low geometric control
is attributed to a range of key issues that limit the application of additive manufacturing technologies
such as the necessity of post-machining, difficulty in fabricating complex shapes, geometry-induced
property variations and inconsistent quality of fabricated parts [8,9,28]. Therefore, addressing the
challenge of geometric control is undoubtedly of great importance in CSAM as well as other high-speed
additive manufacturing technologies.

From the perspective of geometric control, the development of a high-accuracy process model
on the smallest processing unit (e.g., single cold spray track) offers a promising solution to
the aforementioned problem since an aggregate of single tracks determines final part geometry.
Furthermore, such a single-track model often plays a key role in the modelling of higher processing unit
(i.e., overlapping and overlayer models) in the literature [25,29]. Previous studies of the single-track
modelling fell into two main approaches: mathematical and data-driven modelling.

Suryakumar et al. approximated the profile of a single symmetric bead as a parabolic model
in WAAM [30]. The model was developed in terms of WAAM process parameters as well as bead
geometric characteristics (i.e., height and width). A second-order regression model was established
with the aid of experiments to express the bead height in terms of the process parameters from which
the bead width was calculated mathematically. This hybrid modelling approach showed reasonable
pictorial agreement with a verification bead profile under the reported experimental conditions. Cai et al.
employed a Gaussian model with a constant scaling coefficient to approximate the profile of a single
symmetric cold spray track under different standoff distance scenarios [31]. The authors integrated the
derived model into their Thermal Spray Toolkit, a software package in ABB RobotStudio®, for offline
programming to predict cold spray track profiles.

Alternatively, a data-driven modelling approach attracted attention as an alternative to
mathematical modelling approach with the increased accessibility of available software options.
Mahapatra and Li applied an Artificial Neural Network (ANN) modelling with back propagation
algorithm to predict the cross-sectional geometry of a single symmetric track profile in highly nonlinear
and multivariate nature Pulsed-Laser Powder Deposition process [32]. The trained ANN model
predicted bead width, cross-sectional area and heights at three segments within mostly 10% mean
absolute error. Xiong et al. highlighted the development of ANN and second-order regression models
in single symmetric bead geometry prediction in WAAM [33]. The authors compared the performance
of the developed models in bead height and width predictions and reported that the ANN model
outperformed in both predictions due to its ability to approximate any nonlinear process.

Despite the great capability of ANN modelling as seen in other additive manufacturing processes,
it has drawn only a small amount of interest as a track modelling approach from the CSAM community.
Furthermore, the application of the ANN modelling in prediction was greatly limited to key geometric
characteristics only, e.g., height and width, in additive manufacturing [27,33]; such observations
formed an underlying motivation to study in mathematical modelling that could describe more
detailed geometric track profiles. This trend can be seen in previous CSAM studies focusing on the
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mathematical approach only (i.e., Gaussian model) to predict a single-track profile at both normal and
off-normal spray angles [24,34]. However, a data-modelling approach can be more competent than
what was previously conceived of in additive manufacturing as recently demonstrated successfully by
Kochar et al. in joining application [35]. The data-driven approach offered great nonlinear mapping
capability and multi-output predictions with affordable model complexity; such advantages are
particularly desirable as asymmetric track profiles resulting from off-normal spray angles have become
more frequent due to the necessity of complex spray strategies in CSAM. An accurate modelling of
both symmetric and asymmetric single-track profiles with high geometric details will contribute to the
improved geometric control in CSAM, enabling the fabrication of more complex and consistent parts
with minimal post-machining.

In this study, we focus on the modelling of a single-track profile with high morphology in CSAM,
both at normal and off-normal spray angles, using an ANN modelling to demonstrate its potential
as a predictive modelling approach in additive manufacturing. The significance of this study is
three-fold: (1) The application of a data-driven modelling approach in the prediction of a track profile
to CSAM, (2) the modelling of an asymmetric track profile using the ANN model instead of the
previous mathematical approach, and (3) the ANN modelling of a detailed track profile rather than
key geometric characteristics only.

2. Materials and Methods

An ANN is a type of data-driven model for supervised machine learning which is sufficiently
capable of handling nonlinearity and constructing an input–output relationship mapping based on
a set of training data. The development of an effective ANN relies on a number of key design
aspects such as input variable selection, data quality and network architecture [36,37]. In this study,
three process variables were chosen as the inputs of the ANN model: spray angle, traverse speed,
and standoff distance. These process variables are precisely controllable in real time with the support
of an appropriate robotic system [12] and have been shown to be influential on cold spray geometric
profiles in previous studies [24,31].

In this study, a full factorial approach was adopted to define the values of the input variables in the
ANN training dataset due to the nonlinear and complex nature of CSAM and the affordable number of
the input variables. In this approach, three levels were defined for traverse speed and standoff distance,
while four levels were employed to capture the effects of spray angle on track profiles more precisely.
The values of the input variables at each level are listed in Table 1. The lowest- and highest-level values
were determined as those of the corresponding operating limits to maintain the sufficient deposit quality
in the CSAM system. Defining the parameter boundaries at these operating limits avoided the weakness
of an ANN model in extrapolation outside the training dataset [38]. The input values of intermediate
levels were equally spaced between the lowest and highest level such that possible interactions between
the input variables were adequately captured [39]. The resulting experiment design matrix required
the fabrication of 36 samples for the ANN training dataset. The details of the experiment design matrix
of each sample can be found in the Supplementary Materials (i.e., Tables S1 and S2).

Table 1. The levels of input variables in the experimental design matrix for the Artificial Neural
Network (ANN) training dataset: 4 levels for spray angles, 3 levels for traverse speed and 3 levels for
standoff distance.

Level Spray Angle (◦) Traverse Speed (mm/s) Standoff Distance (mm)

1 45 25 30
2 60 100 40
3 75 200 50
4 90 - -
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2.1. Sample Preparation

All sample preparations were performed using a commercial Impact Innovations (Haun, Germany)
5/11 cold spray gun guided by an ABB (Zurich, Switzerland) 4600 6-DoF robot. The cold spray gun
was equipped with a long pre-chamber and an Impact Innovation’s OUT1 tungsten carbide de Laval
nozzle with a 6.2 mm exit diameter. Commercial purity grade-2 titanium from AP&C (Boisbriand,
Canada) was selected as the powder feedstock. The particles were prepared by gas atomization
and distributed within the size of 15 to 45 µm: (i.e., D10 = 19 µm, D50 = 34 µm and D90 = 45 µm).
Nitrogen gas was preheated to 600 ◦C at a pressure of 5 MPa to accelerate the particles that were
fed into the upstream of the nozzle at a feed rate of 1.9 kg/h. These spray variables except those
listed in Table 1 were held constant throughout the sample fabrications. The substrate was a strip of
commercial purity grade-2 titanium with a dimension of 6 × 30 × 200 mm. The surface of the substrate
was prepared with a milling machine from Avemax Machinery (Taichung City, Taiwan) followed by
grinding with P120-SiC emery paper from LECO (Moenchengladbach, Germany). Ethanol was used
to clean the surface prior to the sample fabrications. The fabrication of all samples was randomized
to obtain statistically unbiased results and minimize the effects of potential extraneous factors [40].
RobotStudio® software version 6.08 (ABB Robotics, Zurich, Switzerland) was used to verify that there
was sufficient travel past the edge of the substrate to allow for the robot trajectory and traverse speed
to stabilize prior to sample fabrications.

The profile of each sample was measured five times at randomly selected locations using a LEXT
OLS4100 confocal laser scanning microscope from Olympus (Tokyo, Japan) and scanControl 2950-100
laser scanner from Micro-Epsilon (Ortenburg, Germany) with the z-axis measuring precision of at least
12 µm. The obtained measurements were processed with the in-built filtering: Flat Surface filtering
in LEXT OLS4000 and average filtering with a filter size of 7 in scanControl Configuration Tools 6.0.
The filtered profiles were averaged for each sample, resulting in the ANN output profiles considered
in this study.

2.2. Artificial Neural Network Model Design and Training

In this study, a static multilayer perceptron ANN model was considered due to various successful
demonstrations of its application as a predictive model in manufacturing processes. The model
consisted of three different layer types: input layer, hidden layer, and output layer. Each layer
contained a number of neurons with connections in between through activation functions. The number
of neurons in the input layer corresponded to the number of input variables considered, i.e., 3 neurons
in this study. The neurons in the hidden layer act as computational elements processing nonlinear
mapping between the input and output variables and largely influence the performance and reliability
of an ANN model [41]. Although a higher number of hidden neurons allow more accurate predictions
or the modelling of more complex processes, it poses a higher risk of overfitting that is critical with
only 36 training samples. For developing a reliable ANN model, this study iteratively investigated the
performance of the ANN model with the different number of hidden neurons (i.e., 1 to 15 neurons) for
each hidden layer. Similarly, the number of hidden layers was incrementally changed between 1 to 3
layers to optimize the ANN model architecture. Furthermore, the number of output neurons must
be sufficient to achieve the objective of modelling a detailed track profile in CSAM. We adopted the
area validation methodology proposed by Kochar et al. [35] in which polar lengths were considered as
output neurons, measured from the tool center point as the origin. The number of output neurons
was incrementally changed from 5 neurons with equal angular spacing between each output neuron
(e.g., 45◦ each between 5 neurons) until the sufficient number was reached. Here, the sufficient number
of output neurons was defined as that whose enclosed area reached and maintained at least 99% of the
sample cross-sectional area in the last five consecutive candidates. An activation function is another
critical aspect in an ANN model that computes the output of a neuron given the set of weights and
biases as inputs. In this study, the commonly used hyperbolic tangent sigmoid and linear activation
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functions were chosen for hidden and output layers respectively. With the selected activation functions,
all inputs and outputs variables were scaled to [−1 1] for improved training process [41].

The back-propagation algorithm with Bayesian regularization was selected as the training function
of the ANN model. This algorithm depends on Levenberg-Marquardt optimization for updating
weights and biases. The benefits of this training algorithm are two-fold: Robustness and the elimination
of validation dataset, reducing the number of samples required [42]. In addition, the performance of
the training process was measured using Mean Squared Error (MSE). The training of the ANN model
was conducted using Deep Learning Toolbox in MATLAB® version R2018a and the training dataset in
the supplementary material (i.e., Samples 1 to 36 in Table S1). To avoid the effects of different initial
weights and biases, each ANN candidate model was retrained 100 times.

The performance of the trained ANN model was evaluated using an independent set of testing
samples (see Table S2 in the Supplementary Material). The number of testing samples was determined
according to the 75-25 training-testing data division method [43], resulting in a total of 12 testing samples
(i.e., Samples 37-48). The values of the input variables in the testing dataset were randomly selected
between their minimum and maximum operating limits with the aid of MATLAB® version R2018a.

3. Results and Discussion

3.1. Single-Track Profiles Validation

The quality of the cold spray profile samples was validated against the previous CSAM studies
in terms of the effects of the input variables on the sample profiles. Figure 1 shows the effects of the
following input variables on the profiles of the selected training samples: (a) Spray angle at 25 mm/s
traverse speed and 30 mm standoff distance, (b) Traverse speed at 90◦ spray angle and 30 mm standoff

distance, and (c) Standoff distance at 90◦ spray angle and 25 mm/s traverse speed.
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Figure 1. (a) the effect of spray angle at 25 mm traverse speed and 30 mm standoff distance (45◦—sample
1, 60◦—sample 2, 75◦—sample 3, 90◦—sample 4), (b) the effect of traverse speed at 90◦ spray angle and
30 mm standoff distance (25 mm/s—sample 4, 100 mm/s—sample 8, 200 mm/s—sample 12) and (c)
the effect of standoff distance at 90◦ spray angle and 25 mm/s traverse speed (30 mm—sample 4, 40
mm—sample 16, 50 mm—sample 28).

In Figure 1a, it is clear that the spray angle was positively correlated to the height and negatively
to the width of the sample profiles, being consistent with the previous studies [24,44]. The smaller
effect of spray angle between 75◦ and 90◦ was attributed to the smaller relative deposition efficiency
drop; in comparison, such phenomenon was observed between 80◦ and 90◦ spray angle in [24].

Importantly, the effect of traverse speed was found to be nonlinear and the most influential on the
track profiles in Figure 1b. This observation suggests that the more levels of traverse speed may be
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employed in the experimental design matrix for the ANN training dataset to integrate more relevant
information into an ANN model, especially at low traverse speeds (i.e., between 25 and 100 mm/s).
The lower traverse speed resulted in a thicker and sharper track profile, while widening the track
profile as also seen in [9,24].

In contrast, the effect of standoff distance was the least influential on the track profiles in Figure 1c.
With the larger standoff distance, the track profile became shorter and wider as observed in [31].
This phenomenon was previously confirmed by Pattison et al. [45] and indicated that the standoff

distance parameter space covered in this study was in the medium region near the optimal deposition
efficiency point. It is of great interest to study further towards the nonlinear extreme ends (e.g., 10 and
100 mm), maximizing the benefits of nonlinear mapping ability in an ANN model.

In summary, the validation of the selected track profiles confirmed that the fabricated profiles were
consistent with the previously reported trends and therefore of sufficient quality as the output profile
data considered in this study. Note that the track profiles of all samples are presented in Figures S1–S3
in the Supplementary Materials.

3.2. Neural Network Architecture Validation

The area validation method for determining the sufficient number of output neurons was
performed over all the samples and the results of some randomly selected samples are shown in
Figure 2 to illustrate the trend of area convergence. The mean sufficient number of output neurons
was found as 67 over all the samples, while the maximum number was 167. Here, 67 output neurons
were chosen for the ANN model, taking polar lengths from the tool center point at every 2.72◦.
This selection was because the maximum sufficient number of output neurons resulted in capturing too
fine geometric features that could be considered as noises. Furthermore, the fewer number of output
neurons allows a simpler ANN architecture, thereby reducing the computational burden of training
process, while the resulting ANN model is accurate enough to achieve the objective of describing
a detailed CSAM track profile. The resulting output neuron parameters are presented in Tables S3 and
S4 in the Supplementary Materials.

The iterative investigation of different ANN hidden layer topologies concluded that two hidden
layers with 6 and 10 neurons achieved the best predictive performance on the normalized independent
testing dataset with MSE of 0.009454 and R2 coefficient of 0.9493 (see Figure 3). The mean predictive
performance for each output geometric point was evaluated among all 12 testing samples and the
corresponding overall predictive performance for all 67 outputs is summarized in Table 2. Both Mean
Absolute Percent Error (MAPE) and Maximum Absolute Percent Error (MXAPE) were reasonable in
comparison with the previous studies in different manufacturing processes (i.e., MAPE = just below
10%, MXAPE ≈ 11% [35] and MAPE = 6.611%, MXAPE = 10.31% [46]). Consequently, the results
demonstrated the suitability of a data-driven ANN modelling approach to the prediction of a track
profile in CSAM.
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Table 2. Summary of the performance evaluation results of the developed model in Figure 3 in terms of
Mean Absolute Error (MAE), Maximum Absolute Error (MXAE), Mean Absolute Percent Error (MAPE),
and Maximum Absolute Percent Error (MXAPE).

MAE (mm) MXAE (mm) MAPE (%) MXAPE (%)

0.05782 0.1522 8.342 10.20
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3.3. Evaluation of Artificial Neural Network Modelling for Predicting Single-Track Profiles

Figure 4 shows the track profile of the two selected test samples as an illustration: (a) Sample 37
at a nearly normal spray angle (i.e., 86◦) and (b) Sample 39 at a spray angle of 48◦. The developed
ANN model was used to predict the track profiles, resulting in a qualitatively good agreement
with the measured profiles. The MAEs were 0.009550 mm and 0.04256 mm for Sample 37 and 39,
respectively. Thus, it is demonstrated that the application of an ANN modelling approach is possible
to predict both symmetric and asymmetric track profiles at normal and off-normal spray angles.
However, for Sample 39 at a lower spray angle, a larger deviation from the measured profile was
found, as compared to Sample 37, in the high region of the track profile (between 3 and 7 mm on the
substrate). The possible causes for this observation include: (1) The lack of training samples within
this region to provide sufficient robustness to external factors (e.g., robot joint misalignment and tool
centre point variation) at an off-normal spray angle and (2) inefficient experimental design matrix to
capture high nonlinearities in CSAM, e.g., more traverse speed levels may be suitable as discussed in
Section 3.1 towards the low-speed end, resulting in thicker track profiles. The robustness issue was
also raised in the application of ANN modelling in welding [35], but it is more severe when a large
number of ANN output predictions is necessary with a small number of input parameters such as in
this study. Note that the ANN prediction results for all other test samples are presented in Table S5
and graphically shown in Figure S4 in the Supplementary Materials.
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Figure 4. The experimental single-track profiles of the two selected samples are shown as illustrative
examples along with the corresponding ANN (red) and Gaussian (blue) models: (a) Sample 37 (spray
angle: 86◦, traverse speed: 75 mm/s, standoff distance: 45 mm) and (b) Sample 39 (spray angle: 48◦,
traverse speed: 34 mm/s, standoff distance: 41 mm).

To demonstrate the potential of ANN modelling to predict detailed track profile for the objective
of this study, in Figure 4, we also compared the ANN modelling results against the Gaussian modelling
approach in cold spray proposed by Chen et al. [24]. The details of the Gaussian models can be found
in Table S6 in the Supplementary Material. The ANN modelling approach showed about 2.5 times
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smaller MAE than the Gaussian model for Sample 37, but about 1.3 times larger MAE for Sample 39.
The latter result was mainly attributed to the larger deviation at the high portion of the track profile as
discussed previously. Meanwhile, the ANN modelling showed better predictive performance in the
region of track profile edges than the Gaussian model. Such better predictive performance at profile
edges was most likely due to the ANN model adequately capturing the complex multivariate nature
of cold spray process (e.g., bow shock and compressed gas layer [47]), while this was observed to be
lacking with the Gaussian model used previously in cold spray [24,31]. In summary, the comparative
study of the two modelling approaches in Figure 4 showed that the ANN modelling possessed the
potential to provide the prediction of detailed track profiles in CSAM at the same level of accuracy
or higher.

4. Conclusions

This study demonstrated the potential of a data-driven modelling approach in the prediction of
single-track profiles in CSAM, rather than only key geometric features as in previous studies. The ANN
modelling enabled an accurate description of track profiles at even off-normal spray angles that are
frequently encountered during the cold spray process of complex shapes. Furthermore, the detailed track
profiles predicted by the ANN model were in good qualitative agreement with the measured profiles,
even outperforming at the region of profile edges as compared to the previously proposed Gaussian
modelling approach. Therefore, the data-driven modelling, in combination with an appropriate process
planning algorithm, possesses the potential to improve the problem of geometric control in additive
manufacturing processes and therefore foster the development of a commercial CSAM technology.
With the appropriate adjustment of ANN input feature parameters and architecture, the approach
presented in this study can be extended to other additive manufacturing techniques such as WAAM
and LC.

However, the limitation of the ANN modelling approach was also encountered due to the size of
training dataset and robustness. These issues were more significant in this study as the ANN approach
adopted a larger number of output neurons than previous studies where only key geometric features
were predicted. Therefore, it is of great importance in future works that a more data-efficient modelling
approach is explored, and real-time measurement and a data processing system are developed so
that the data diversity and collection rate increase. Furthermore, the comparative study of the two
models showed that the Gaussian model predicted with better accuracy within the high portion of
track profiles, while the ANN model was more accurate towards the profile edges. This finding triggers
a motivation for exploring a hybrid modelling approach in future works, taking advantages from the
two modelling approaches, while minimizing the disadvantages discussed in this study.

In addition to the aforementioned future works, we plan to extend this study to overlapping
and overlayer modellings and integrate the ANN model from this study into our toolpath planning
algorithm at a system level.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/17/2827/s1,
Figure S1: the measured track profiles of Sample 1 to 18, Figure S2: the measured track profiles of Sample 19 to
36, Figure S3: the measured track profiles of Sample 37 to 48, Figure S4: the predicted track profiles using the
developed ANN model, Table S1: Input parameters in the training dataset, Table S2: Input parameters in the
testing dataset, Table S3: Output parameters in the training dataset, Table S4: Output parameters in the testing
dataset, Table S5: ANN results for all test samples, Table S6: Gaussian model parameters.
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