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Abstract: In this paper, a 2-node beam element is developed based on Quasi-3D beam theory
and mixed formulation for static bending of functionally graded (FG) beams. The transverse
shear strains and stresses of the proposed beam element are parabolic distributions through the
thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the
beam vanish. The proposed beam element is free of shear-looking without selective or reduced
integration. The material properties of the functionally graded beam are assumed to vary according
to the power-law index of the volume fraction of the constituents through the thickness of the beam.
The numerical results of this study are compared with published results to illustrate the accuracy
and convenience rate of the new beam element. The influence of some parametrics on the bending
behavior of FGM beams is investigated.
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1. Introduction

Functionally graded (FG) materials (FGM) are one of the advanced composites. In which the
material properties of FGM vary continuously through one or more directions. A typical, the material
properties of an FGM beam, plate and shell varies continuously through the thickness direction. Due
to their advantages, the FGMs have used widely in many fields such as civil, aerospace, automobile,
engineering, nuclear power plants and so on [1,2]. Since then, many scientists have been focused
on the mechanical analysis of FG beams, plates and shells. In which, they used several theories and
methods, for instance, analytical and numerical methods based on Euler-Bernoulli theory, Timoshenko
theory or first-order shear deformation theory (FSDT), higher-order shear deformation theory (HSDT),
Quasi-3D theory and Carrera Unified Formulation (CUF).

Sankar [3] developed an elasticity solution to analyze a simply supported FG beam subjected to
transverse distribution loading. In his work, Sankar developed new beam theory which was similar
to the Euler-Bernoulli beam theory. Zenkour [4] analyzed an exponentially graded thick rectangular
plate using both 2-D and 3-D elasticity solutions. Zhong et al. [5] analyzed a cantilever FG beam using
a general two-dimensional solution. The free vibration and buckling analysis of FG beams under
mechanical and thermal loads were investigated by Trinh et al. [6] using the analytical method based
on the state space approach and higher-order beam theory.
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The Euler-Bernoulli beam theory ignores the shear deformation so that it provides an acceptable
solution for thin beams only; this model requires a C1 continuity for a compatible displacement
formulation. Kien [7] used the Euler-Bernoulli beam model to analyze large displacement behaviors of
tapered cantilever FG beams by the finite element method. Lee et al. [8] applied Euler-Bernoulli beam
theory for free vibration analysis of FG beam using an exact transfer matrix expression.

Due to the shear deformation effects are more obvious in thick beams and plates, so the FSDT can
be used in these cases. On the other hand, it requires only C0 continuity for the deflection. One of the
shortcomings of the FSDT is the transverse shear strain distributes in an inaccurate and it does not
satisfy the stress-free boundary conditions at the top and bottom surfaces of the structures, so this
model requires a shear correction factor. Menaa et al. [9] used the energy equivalence principle to
derive a general expression for the static shear correction coefficients in FG beams. Modal analysis
of FG beams with shear correction function was studied by Murin et al. [10]. Nguyen et al. [11]
employed FSDT for static and free vibration of axially loaded FG beams. Nam et al. [12] investigated
the mechanical behaviors of variable thickness FG beam using modified FSDT. Due to the simplicity
and effectiveness of FSDT, many scientists have applied FSDT to analyze plates and beams, and it is
still being improved to achieve higher accuracy.

The shear correction coefficients can be removed by using HSDT, which have been developed
by many scientists. In this model, the transverse shear strain varies parabolically through the height
of the structures, and the transverse shear stresses at the top and bottom surfaces of the structures
are neglected so that it need not any shear correction coefficients. Shi [13] proposed a new simple
third-order shear deformation theory (TSDT) to analyze static bending of rectangular plates. Kadoli et
al. [14] used HSDT for static bending analysis of FG beams. Benatta et al. [15] studied static bending of
FG short beam involving the effects of warping and shear deformation. Li et al. [16] investigated static
bending and dynamic response of FG beams using HSDT. Thai et al. [17] applied various HSDT to
analyze static bending and free vibration of FG beams. Refined shear deformation was applied for
static bending and vibration analysis of FG beams by Vo et al. [18]. Tinh et al. [19] used finite element
method (FEM) and a new TSDT for mechanical response analysis of heated FGM plates.

Both FSDT and HSDT ignore the effect of the thickness stretching, which is noticeable in thick
beams and plates. A number of Quasi-3D theories have been developed, in which the effects of shear
deformation and thickness stretching were included. Vo et al. [20] used a Quasi-3D theory with only
four unknown components to investigate the static behavior of FG beams and FG sandwich beams.
Neves et al. [21,22] and Hebali [23] developed a Quasi-3D theory with sinusoidal shear function
and hyperbolic shear deformation theory to analyze the static bending and free vibration of FG
plates. Mantari et al. [24] studied static bending of advanced composite plates using a generalized
hybrid Quasi-3D shear deformation theory. Mantari et al. [25] used a four-unknown Quasi-3D shear
deformation theory for analysis of advanced composite plates. Thai et al. [26] presented a Quasi-3D
hyperbolic shear deformation theory for analysis FG plates. Fang et al. [27] applied Quasi-3D theory
and isogeometric analysis to study thick porous beams. Nguyen et al. [28] and Yu et al. [29] used
Quasi-3D theory and isogeometric analysis to investigate FG microplates and two-directional FG
microbeams. Farzam-Rad et al. [30] applied Quasi-3D theory and isogeometric analysis to study
FG plates based on the physical neutral surface. Tran et al. [31] employed a Quasi-3D model with
six-variable for static analysis of laminated composite plate using isogeometric analysis. The most
outstanding of Quasi-3D theory is applicable to analyze thick plates and beams where the normal
deformation effect is significant.

Carrera [32] developed Unified Formulation (CUF), which produces any refined theories for many
structures such as beams, plates, and shells. Cerrera et al. [33] applied CUF for free vibration finite
element analysis of beams with a uniform section. Cerrera et al. [34] employed CUF for studying
micropolar beams using an analytical method. The 1D CUF theories were applied to analyze FG beams
using FEM by Giunta et al. [35] and Filippi et al. [36].
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However, in HSDT and Quasi-3D theory, the displacement field is considered by the existence of
the higher order derivative of the deflection of transverse. So that it involves the development of a C1

continuity element, which can cause difficulty to originate the second derivative of deformation in
FEM. To overcome these continuity issues, Hermite interpolation functions with C1 elements and some
C0 approximations have been adopted. Chakraborty et al. [37] developed a new beam element based
on the FSDT and an exact solution of the static part of the governing differential equations for analysis
of FGM structures. Nguyen et al. [38] applied the Timoshenko beam model and FEM for dynamic
response of bi-directional FG beams subjected to moving load. Khan et al. [39] investigated the static
bending and free vibration of FG beams using FEM. Heyliger [40] developed a higher order beam finite
element for bending and vibration of beams. Kapuria et al. [41] studied bending behavior and free
vibration response of layered FG beams using a third order zigzag theory and FEM. Based on refined
shear deformation theory, Vo et al. [42] developed a finite element model to analyze free vibration and
buckling of FG sandwich beams. Moallemi-Oreh et al. [43] used FEM for stability and free vibration
analysis of the Timoshenko beam. Pascon [44] analyzed FG beams with variable Poisson’s ratio
using FEM. Yarasca et al. [45] studied FG sandwich beams using Hermite-Lagrangian finite element
formulation. The use of higher-order shape function will cost much computation effort in comparison
with linear shape function. Furthermore, the linear shape function is simpler in formulation and
transformation than higher-order shape function. However, plate and beam element using linear shape
function are mainly developed based on FSDT and HSDT. To author’s knowledge, there is currently no
beam element using linear shape function based on a Quasi-3D theory. Therefore, the development of
a beam element using linear shape function based on a Quasi-3D theory is necessary.

This paper presents a new beam element based on Quasi-3D theory, which only requires C0 shape
functions. The organization of this study is as follows. Firstly, Section 2 defines the model and material
properties of FG beams. In Section 3, the governing equations of FG beams based on Quasi-3D theory
are given. The finite element formulations of the proposed beam element are presented in Section 4.
In Section 5, some example problems are carried out to show the convergence and accurate rate of
new beam element in comparison with published data. Then, the static bending behaviors of FG
beams using the proposed beam element are studied. The influences of the distribution of materials
properties, length-to-thickness ratio, boundary conditions and effect of normal strain are investigated.
Finally, in the conclusion section, some remarks on the proposed beam element are given.

2. Functionally Graded Material

Consider an FG beam as shown in Figure 1, the length of the beam is L, the width of the beam is b,
and the thickness of the beam is h. The Young’s modulus varies continuously through the thickness of
the beams with a power law distribution [19,20]:

E(z) = Em + (Ec − Em)
( z

h
+

1
2

)p
(1)

in which subscript m denotes the metallic component and c denotes the ceramic component, Em, Ec are
respectively Young’s modulus of the metal and ceramic, p is the power-law index. In this study, the
Poisson’s ratios ν of both components are assumed to be constant and equal.Materials 2019, 12, x FOR PEER REVIEW 4 of 24 

 

Metal

Ceramic

L

z y

h
x

 
Figure 1. The FG beam model. 
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3. Governing Equations
The displacements of a point of the beam are expressed by{

u(x, z) = u(x) + f1(z)β(x) + f2(z)α(x)
w(x, z) = w(x) + g(z)ϕ(x)

(2)

The functions f1(z), f2(z) are given by Shi [13]

f1(z) =
5
4

(
z−

4z3

3h2

)
; f2(z) = −

z
4
+

5z3

3h2 ; g(z) = f ′1(z) (3)

The strain field is obtained as follows
εx = u,x + f1(z)β,x + f2(z)α,x

εz = g′(z)ϕ
γxz = w,x + f ′1ϕ,x + f ′1(z)β+ f2′(z)α

(4)

in which the symbol (,) means the derivatives with respect to the quantity following it and the symbol
(′) means the derivatives with respect to z direction.

Rewrite the strain components in the short form as follows

ε = ε0 + f1ε1 + f2ε2 + g′ε3 (5)

where

ε0 =

{
u,x

0

}
, ε1 =

{
β,x

0

}
, ε2 =

{
α,x

0

}
, ε3 =

{
0
ϕ

}
(6)

Rewrite the transverse shear strain γxz as follows

γxz = f ′1(γ0 + γ1) + f ′2γ2 , γ0 = ϕ,x , γ1 = w,x + β , γ2 = w,x + α (7)

The transverse shear strain is assumed to have a quadratic distribution across the thickness of
the beam. In addition, the transverse shear strain equals to zero at the top and bottom surfaces of the
beam. These conditions lead to

γ2 = w,x + α = 0
γxz = f ′1(z)(γ0 + γ1)

(8)

The constitutive relations between the stress field and the strain field are expressed as follows
σx

σz

τxz

 =


C11 C13 0
C13 C33 0
0 0 C55



εx

εz

γxz

 (9)

In this study, Young’s modulus E of FGM is a function of the coordinate, whereas, the Poisson’s ratio is
assumed to be constant and equal, the coefficients Ci j vary with the position according to the following
formulas [17]

C11 = C33 =
E(z)

1− ν2 , C13 = νC11, C55 =
E(z)

2(1 + ν)
(10)

Equation (9) may be rewritten in the short form as

σ = Dε = D
(
ε0 + f1ε1 + f2ε2 + g′ε3

)
, τxz = f ′1Gγxz (11)

where

D =
E(z)

1− ν2

[
1 ν
ν 1

]
, G = C55 =

E(z)
2(1 + ν)

(12)
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4. Finite Element Formulation

The expression of the strain energy of the beam is

Π =
1
2

∫
V

(
εT.σ+ γxz.τxz

)
dV (13)

The expression of the variation of strain energy can be calculated as follows

δΠ =

∫
V


[
δε0 + f1δε1 + f2δε2 + g′δε3

]T
.D

(
ε0 + f1ε1 + f2ε2 + g′ε3

)
+δ(γ0 + γ1). f1′.G. f ′1.(γ0 + γ1)

dV (14)

After integrating Equation (14) over the beam section and rewriting it in the matrix form, the
variation of the strain energy can be computed as

δΠ =

∫
L

(
δωTR + δγT

01T01
)
dx (15)

where R and T01 are given by

R = b
∫
z


D f1D f2D g′D

f1D f 2
1 D f1 f2D f1g′D

f2D f1 f2D f 2
2 D f2g′D

g′D g′ f1D g′ f2D g′g′D



ε0

ε1

ε2

ε3

dz ,

T01 = b
∫
z

f ′1τdz =b
∫
z

(
f ′1
)2

Gγ01dz

(16)

and

δω =


δε0

δε1

δε2

δε3

 , δγ01 = δϕ,x + δw,x + δβ (17)

where

δε0 =

{
δu,x

0

}
, δε1 =

{
δβ,x

0

}
, δε2 =

{
δα,x

0

}
, δε3 =

{
0
δϕ

}
(18)

As consequence, Equation (16) can be rewritten as

R = Hω ; T01 = Hsγ01 (19)

where

H = b
∫
z


D f1D f2D g′D

f1D f 2
1 D f1 f2D f1g′D

f2D f1 f2D f 2
2 D f2g′D

g′D g′ f1D g′ f2D g′g′D

dz (20)

Hs = b
∫
z

(
f ′1
)2

Gdz (21)

In the current work, a two-node beam element is considered, each node includes five degrees of
freedom. The vector of displacement of node i-th is

{di} =
[

ui wi ϕi βi αi
]T

(22)
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The nodal displacement vector of the proposed beam element, U, is defined by

U =
[

u1 w1 ϕ1 β1 α1 u2 w2 ϕ2 β2 α2
]T

(23)

The isoparametric geometry on two nodes of new beam element and the nodal variables are
given by 

x = N1x1 + N2x2 u = N1u1 + N2u2

w = N1w1 + N2w2 ϕ = N1ϕ1 + N2ϕ2

β = N1β1 + N2β2 α = N1α1 + N2α2

(24)

For the mixed finite element formulation, the authors approve a quadratic interpolation for α, β
with parameters αm, βm and a constant shear resultant T01, which will be eliminated later.

α = N1α1 + N2α2 + Nmαm

β = N1β1 + N2β2 + Nmβm
(25)

T01 = T0 − F(x), δT01 = δT0, F(x) =

x∫
0

q(s)ds (26)

in which, the shape functions N1, N2 and Nm are defined as follows

N1 = 1−ξ
2 , N2 = 1+ξ

2 , Nm = N1N2 = 1−ξ2

4 (27)

where
ξ =

2x− L
L

, dξ =
2
L

dx, dx =
L
2

dξ (28)

The first equation in Equation (8) is imposed in integral form as following

L∫
0

γ2dx =

L∫
0

(w,x + α)dx = 0 (29)

Substitute α and w from Equations (24) and (25) into Equation (29), the parameter αm can be
deduced as

αm =
6
L

(
w1 −w2 −

L
2
(α1 + α2)

)
= B f 0U (30)

where
B f 0 =

[
0 6

L 0 0 −3 0 −6
L 0 0 −3

]
(31)

Substitute Equations (24) and (30), into Equation (17), the strain variation vector, δω, can be
obtained as

δω =


δε0

δε1

δε2

δε3

 (32)

δε0 =

{
δu,x

0

}
, δε1 =

{
δβ,x

0

}
, δε2 =

{
δα,x

0

}
, δε3 =

{
0
δϕ

}
(33)

Using Equation (30), the variable α becomes

α =
∑

Niαi + Nmαm =
∑

Niαi + Nm
(
B f 0U

)
(34)
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Then

δε2 =

{
δα,x

0

}
=

{ ∑
Ni,xδαi

0

}
+

{
Nm,xB f 0δU

0

}
(35)

Using Equations (33) and (35), the strain variation Equation (32) can be expressed as follows

δω = BδU =
(
Bm f + B f

)
δU (36)

where
Bm f =

[
B1

m f B2
m f

]
(37)

B1
m f =



N1,x 0 0 0 0
0 0 0 0 0
0 0 0 N1,x 0
0 0 0 0 0
0 0 0 0 N1,x
0 0 0 0 0
0 0 0 0 0
0 0 N1 0 0


, B f =



01×10

01×10

01×10

01×10

Nm,xB f 0
01×10

01×10

01×10


(38)

The shear strain variation δγ01 can be obtained as

δγ01 = δϕ,x + δw,x + δβ (39)

Rewrite Equation (39) into the matrix form as below

δγ01 = BsδU (40)

where
Bs =

[
0 N1,x N1,x N1 0 0 N2,x N2,x N2 0

]
(41)

Using Equation (25) the strain fields δε, δγ01 become

δω = BδU + Bmδβm , Bm =
[

0 0 Nm,x 0 0 0 0 0
]T

(42)

δγ01 = BsδU + Nmδβm (43)

The variation of strain energy Equation (15) becomes

δΠ =

L∫
0

(
δωTR + δγ01T01 + δT01

(
γ01 −

T01

Hs

))
dx (44)

Substituting T01 = T0 − F , δT01 = δT0 into Equation (44) we get

δΠ =

L∫
0

(
δωTR + δγ01(T0 − F) + δT0

(
γ01 −

T0 − F
Hs

))
dx (45)

δΠ =
L∫

0

(
δUTBTHBU + δUTBTHBmβm+

δβmBT
βmHBU + δβmBT

βmHBβmβm+

δUTBs
TT0 − δUTBs

TF + δβm
TNmT0 − δβm

TNmF+
δT0BsU + δT0Nmβm − δT0

1
Hs

T0 − δT0
−1
Hs

F
)
dx

(46)
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Rewritten Equation (46) in the matrix form

δΠ =

L∫
0


[
δUT δT0 δβm

] 


Kuu KuT Kuβ

KT
uT KTT KTβ

KT
uβ KTβ Kββ




U
T0

βm

−


fu

fT
fβ



dx (47)

where Kuu, KuT, Kuβ, KTT, KTβ, Kββ, fu, fT and fβ are calculated as follows

Kuu =

1∫
−1

BTHB
L
2

dξ =

1∫
−1

(
Bm f + B f

)T
H

(
Bm f + B f

)L
2

dξ (48)

KuT =

1∫
−1

BT
s

L
2

dξ (49)

Kuβ =

1∫
−1

BTHBβm
L
2

dξ (50)

KTT = −

1∫
−1

1
Hs

L
2

dξ (51)

KTβ =

1∫
−1

Nm
L
2

dξ (52)

Kββ =

1∫
−1

BT
βmHBβm

L
2

dξ (53)

fu =

L∫
0

NT
wqdx +

L∫
0

BT
s Fdx (54)

fT =
−1
Hs

L∫
0

F(x)dx (55)

fβ =

L∫
0

Nm(x)F(x)dx (56)

where
Nw =

[
0 N1 0 0 0 0 N2 0 0 0

]
(57)

The parameter T0 and rotation βm are then removed in two steps as below.
Step 1: eliminate rotation parameter βm

βm =
1

Kββ

(
fb −KT

uβU−KTβT0
)

(58)
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Substitute Equation (58) into Equation (47), we get

δΠ =

L∫
0

{[
δUT δT0

]([ K11 K12

KT
12 K22

][
U
T0

]
−

[
f1

f2

])}
dx (59)

where K11, K12, K22, f1 and f2 are expressed as

K11 = Kuu −KuβK−1
ββKT

uβ (60)

K12 = KuT −KuβK−1
ββKTβ (61)

K22 = KTT −KTβK−1
ββKTβ (62)

f1 = fu −KuβK−1
ββ fβ (63)

f2 = fT −KTβK−1
ββ fβ (64)

Step 2: eliminate the stress resultant constant T0

T0 = K−1
22

(
f2 −KT

12U
)

(65)

Substitute Equation (65) into Equation (59), the expression of the variation of strain energy is
manifested as

δΠ = δUT
(
K11 −K12K−1

22 KT
12

)
U− δUT

(
f1 −K12K−1

22 f2
)

(66)

The stiffness matrix of new beam element K is now calculated as

K = K11 −K12K−1
22 KT

12 (67)

The nodal load vector of the beam element is expressed as

f = f1 −K12K−1
22 f2 (68)

5. Numerical Results and Discussion

5.1. Convergence Study

In this subsection, some examples are given to determine the convergence rate of the proposed
beam element. A homogeneous beam with the width b = 1 m, Young’s modulus E = 29000 Pa,
Poisson’s ratio ν = 0.3 as in the work of Heyliger [40] is considered here.

Firstly, a cantilever beam subject to a concentrated load P = 100 N at the free end side is
considered. Secondly, a simply supported beam under a uniform load q = 10 N/m is investigated.
The numerical results for some cases of L/h ratios and number of elements are shown in Tables 1 and 2.
The numerical results are compared with results of Heyliger [40] using two-node beam C1 continuous
formulation element based on HSDT. The comparison shows that the new beam element has an
excellent convergence rate. Although the new proposed beam element uses linear shape functions, it
has a better convergence rate than that of the beam element using higher-order shape function, thus it
costs less effort and time of computation.
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Table 1. Comparison of maximum displacement for cantilever beams.

Length Height Source
Number of Elements

N = 2 N = 4 N = 8 N = 16

160 12 [40] 30.838 32.368 32.742 32.823
Present 31.566 32.191 32.509 32.666

80 [40] 3.9234 4.1105 4.1506 4.1567
Present 3.9987 4.0772 4.1160 4.1317

40 [40] 0.52266 0.54249 0.54540 0.54588
Present 0.52608 0.53570 0.53907 0.53880

12 [40] 0.023551 0.023741 0.023874 0.023931
Present 0.022902 0.022347 0.021967 0.021840

160 1 [40] 52968.0 55616.0 56278.0 56444.0
Present 54302.8 55380.8 55931.1 56206.2

80 [40] 6621.8 6952.9 7035.6 7056.3
Present 6788.5 6923.3 6992.0 7026.4

40 [40] 828.15 869.53 879.87 882.44
Present 848.88 865.73 874.33 878.62

12 [40] 22.513 23.627 23.897 23.953
Present 23.036 23.492 23.723 23.836

Table 2. Comparison of maximum displacement for simply supported beams.

Length Height Source
Number of Elements

N = 2 N = 4 N = 8 N = 16

160 12 [40] 19.779 20.529 20.691 20.717
Present 20.692 20.690 20.690 20.690

80 [40] 1.3011 1.3415 1.3478 1.3486
Present 1.3425 1.3422 1.3421 1.3421

40 [40] 0.096033 0.097481 0.097670 0.097703
Present 0.096067 0.096060 0.096022 0.096018

12 [40] 0.0022234 0.0022206 0.0022204 0.0022204
Present 0.0018828 0.0019482 0.0019524 0.0019523

160 1 [40] 33549.0 34873.0 35205.0 35287.0
Present 35302.9 35302.9 35302.9 35302.9

80 [40] 2097.7 2180.4 2201.1 2206.3
Present 2207.0 2207.0 2207.0 2207.0

40 [40] 131.31 136.49 137.77 138.08
Present 138.09 138.09 138.09 138.09

12 [40] 1.0860 1.1267 1.1351 1.1364
Present 1.1347 1.1346 1.1346 1.1346

5.2. Validation Study

Continuously, to confirm the accuracy of the proposed beam element, the static bending of an FG
beam subjected to a uniform load q is investigated. The FG beams made of two components, which
are Aluminum and Alumina. The material properties of Aluminum and Alumina are Em = 70 GPa,
Ec = 380 GPa, νm = 0.3, νc = 0.3. Two cases of slenderness ratios L/h = 5 and L/h = 20 of the FG
beams are considered. The displacements and stresses are calculated in the normalized form as.

For simply-simply (SS) and clamped-clamped (CC) supported beams

w∗ =
100Emh3

qL4
w
(L

2
, 0

)
(69)
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For clamped-free (CF) supported beams

w∗ =
100Emh3

qL4
w(L, 0) (70)

For axial, normal and shear stresses

σ∗x =
h

qL
σx

(
L
2

,
h
2

)
, σ∗z =

h
qL
σz

(
L
2

,
h
2

)
, σ∗xz =

h
qL
σxz(0, 0) (71)

The numerical results of dimensionless vertical displacement, normal stress and axial stress of
FG beam using proposed beam are compared with the results of Li et al. [16] and Vo et al. [20] using
analytical and finite element methods, which are given in Tables 3–7. The results in these tables
show that the solutions from the present theory are very close with the results from HSDT of Li et
al. [16] and Quasi-3D solutions of Vo [20] for different values of the power-law index, aspect ratio, and
boundary conditions.

Table 3. The maximum nondimensional vertical displacement of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 3.1657 6.2599 8.0602 9.7802 10.8979
Vo [20] (Navier) , 0 3.1397 6.1338 7.8606 9.6037 10.7578
Vo [20] (FEM) , 0 3.1397 6.1334 7.8598 9.6030 10.7572

Present , 0 3.1388 6.1316 7.8570 9.5992 10.7526

20 Li et al. [16] = 0 2.8962 5.8049 7.4415 8.8151 9.6879
Vo [20] (Navier) , 0 2.8947 5.7201 7.2805 8.6479 9.5749
Vo [20] (FEM) , 0 2.8947 5.7197 7.2797 8.6471 9.5743

Present , 0 2.8938 5.7179 7.2770 8.6435 9.5698

Table 4. The nondimensional normal stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Vo [20] (Navier) , 0 0.1352 0.0670 0.0925 0.0180 −0.0181
Vo [20] (FEM) , 0 0.1352 0.0672 0.0927 0.0183 −0.0179

Present , 0 0.1351 0.0669 0.0924 0.0179 −0.0183

20 Vo [20] (Navier) , 0 0.0337 −0.5880 −0.6269 −1.1698 −1.5572
Vo [20] (FEM) , 0 0.0338 −0.5874 −0.6261 −1.1690 −1.5560

Present , 0 0.0337 −0.5880 −0.6270 −1.1696 −1.5570

Table 5. The nondimensional axial stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 3.8020 5.8837 6.8812 8.1030 9.7063
Vo [20] (Navier) , 0 3.8005 5.8812 6.8818 8.1140 9.7164
Vo [20] (FEM) , 0 3.8020 5.8840 6.8860 8.1190 9.7220

Present , 0 3.7994 5.8793 6.8792 8.1101 9.7108

20 Li et al. [16] = 0 15.0130 23.2054 27.0989 31.8112 38.1372
Vo [20] (Navier) , 0 15.0125 23.2046 27.0988 31.8137 38.1395
Vo [20] (FEM) , 0 15.0200 23.2200 27.1100 31.8300 38.1600

Present , 0 15.0079 23.1970 27.0884 31.7987 38.1176
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Table 6. The nondimensional shear stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 0.7500 0.7500 0.6787 0.5790 0.6436
Vo [20] (Navier) , 0 0.7233 0.7233 0.6622 0.5840 0.6396
Vo [20] (FEM) , 0 0.7291 0.7291 0.6661 0.5873 0.6439

Present , 0 0.7233 0.7233 0.6622 0.5839 0.6396

20 Li et al. [16] = 0 0.7500 0.7500 0.6787 0.5790 0.6436
Vo [20] (Navier) , 0 0.7432 0.7432 0.6809 0.6010 0.6583
Vo [20] (FEM) , 0 0.7466 0.7466 0.6776 0.6036 0.6675

Present , 0 0.7454 0.7457 0.6828 0.6022 0.6595

Table 7. The maximum nondimensional vertical displacement of FG CC and CF beams.

L/h Boundary
Condition Source p=0 p=1 p=2 p=5 p=10

5 CC Vo [20] 0.8327 1.5722 2.0489 2.6929 3.1058
Present 0.8367 1.5787 2.0568 2.7039 3.1193

CF Vo [20] 28.5524 56.2002 71.7295 86.1201 95.7582
Present 28.5743 56.2359 71.7607 86.1492 95.7903

20 CC Vo [20] 0.5894 1.1613 1.4811 1.7731 1.9694
Present 0.5894 1.1612 1.4806 1.7726 1.9689

CF Vo [20] 27.6217 54.6285 69.5266 82.4836 91.2606
Present 27.6087 54.6051 69.4911 82.4327 91.1965

Figure 2 displays the comparison of the distribution of vertical displacement along with the depth
of the FG beam with different values of the power-law index. It can be observed that the vertical
displacements are variable across the thickness of the beam and they are in good agreement with
published results of Li et al. [16] and Vo [20].
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The distributions of shear stress and axial stress along the depth of FG beam are compared with
results of Li et al. [16] and Vo et al. [20] as in Figures 3 and 4. According to Figure 3, the shear stress
distribution is parabolic along with the thickness and asymmetric for the FG beams. From Figure 4,
the axial stress variation is not linear across the thickness of the FG beam, and its variation is linear
across the thickness for isotropic (full ceramic or full metal) beams only. In general, the values of the
axial stress do not equal to zeros at the mid-plane of the FG beams. Both shear stress variation and
axial stress variation through the thickness of the FG beam using the proposed beam element are in
remarkable agreement with those of Vo [20] using Quasi-3D theory.

According to the comparison, the results of the proposed beam element are very close actual
adjacent to the Li et al. [16] and Vo et al. [20] solutions. Therefore, the new beam element can be applied
to analyze FG beams.
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Figure 3. The comparison of the nondimensional shear stress τ∗xz across the depth of FG SS beams
subjected to a uniform load for different values of p with L/h = 5.
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Figure 4. The comparison of the nondimensional axial stress σ∗x across the depth of FG SS beams
subjected to a uniform load for different values of p with L/h = 5.

5.3. Static Behaviour of FG Beams

In this subsection, an FG beam which is produced of Aluminum and Zirconium dioxide (Al/ZrO2)
under uniform distribution load q is investigated using proposed beam element. Various power-law
indexes, slenderness ratios and boundary conditions are considered. The material properties of Al
are Em = 70 GPa, νm = 0.3, and the material properties of ZrO2 are Ec = 200 GPa, νc = 0.3. The
non-dimensional formulas are applied as follows

w∗ =
100h3Em

qL4
w,σx∗ =

h
qL
σx,σz∗ =

h
qL
σz,σxz∗ =

h
qL
σxz. (72)

In this study, some cases of boundary conditions are considered.
For the simply-simply supported (SS) beam: u = w = 0 at x = 0, L;
For the clamped-clamped supported (CC) beam: u = w = α = β = 0 at x = 0, L;
For the clamped-simple supported (CS) beam: u = w = α = β = 0 at x = 0, and u = w = 0 at

x = L;
For the clamped-free supported (CF) beam: u = w = α = β = 0 at x = 0.
The numerical results for bending behaviors of FG beams under uniform load are shown in

Tables 8–11 and Figures 5 and 6. Table 8 and Figure 5 shows the nondimensional maximum vertical
displacement of FG beams for some cases of boundary conditions, power-law index and different
values of the length-to-height ratio. To show more clearly the effect of the power-law index and
slenderness ratio, Figure 6 shows the dependence of nondimensional maximum vertical displacement
of FG beams on the continuous transformation of the power-law index and slenderness ratio. It shows
that the deflection of FG beams increases when increasing the power-law index. This can be explained
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that increasing the value of the power-law index leads to an increase in the component of metal in FGM,
so that the FG beam becomes more flexible. Furthermore, it can be observed that the nondimensional
maximum vertical displacement depends not only on the power law index, slenderness ratio but
also boundary conditions, which is more pronounced for CC and CS beams than SS and CF beams
Furthermore, it can be observed that the nondimensional maximum vertical displacement depends
on power-law distribution index, boundary conditions and the length-to-thickness ratio. In addition,
boundary conditions have more strongly effects on the deflection of CC and CS beams than those of SS
and CF beams.

Table 8. Nondimensional maximum vertical displacement of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 5.9637 5.5917 5.4983 5.4684
1 9.4520 8.9008 8.7625 8.7182
2 10.8090 10.1178 9.9444 9.8888
5 12.1559 11.2427 11.0136 10.9402
10 13.1998 12.1936 11.9411 11.8602

CC 0 1.5898 1.2166 1.1200 1.0877
1 2.4783 1.9253 1.7823 1.7344
2 2.8903 2.2046 2.0270 1.9676
5 3.3827 2.4869 2.2545 2.1770
10 3.6885 2.7014 2.4453 2.3599

CS 0 2.8431 2.4121 2.3013 2.2650
1 4.4681 3.8293 3.6651 3.6114
2 5.1625 4.3680 4.1635 4.0966
5 5.9291 4.8883 4.6201 4.5323
10 6.4522 5.3055 5.0099 4.9132

CF 0 54.2912 52.8297 52.4566 52.3199
1 86.3563 84.1912 83.6384 83.4359
2 98.2871 95.5870 94.8959 94.6463
5 109.4815 105.9308 105.0199 104.6959
10 118.7523 114.8445 113.8429 113.4858

Table 9. Nondimensional axial stress σ∗x(L/2, h/2) of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 3.7994 7.5229 15.0080 74.9791
1 5.1277 10.1431 20.2300 101.0602
2 5.6251 11.1138 22.1592 110.6870
5 6.3879 12.6061 25.1275 125.5017
10 7.2947 14.4105 28.7315 143.5145

CC 0 1.3158 2.5271 5.0069 24.9844
1 1.7824 3.4099 6.7496 33.6740
2 1.9604 3.7389 7.3948 36.8820
5 2.2314 4.2440 8.3871 41.8189
10 2.5409 4.8479 9.5884 47.8209

CS 0 1.9797 3.7881 7.4945 37.3702
1 2.6694 5.1069 10.1027 50.3710
2 2.9383 5.6014 11.0697 55.1718
5 3.3561 6.3638 12.5573 62.5539
10 3.8300 7.2728 14.3568 71.5291

CF 0 −3.7207 −7.5172 −15.0722 −75.4217
1 −5.0080 −10.1282 −20.3126 −101.6530
2 −5.4757 −11.0879 −22.2441 −111.3295
5 −6.1993 −12.5682 −25.2212 −126.2416
10 −7.0995 −14.3779 −28.8453 −144.3695
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Table 10. Nondimensional shear stress σ∗xz(0, 0) of the FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 0.7233 0.7370 0.7454 0.8112
1 0.7233 0.7370 0.7455 0.8143
2 0.6857 0.6989 0.7068 0.7660
5 0.6513 0.6640 0.6714 0.7199
10 0.6821 0.6954 0.7031 0.7536

CC 0 0.3330 0.1316 −0.2769 −4.4717
1 0.3322 0.1283 −0.2900 −4.7991
2 0.3060 0.1198 −0.2567 −4.1445
5 0.2809 0.1137 −0.2160 −3.3285
10 0.2937 0.1179 −0.2275 −3.4354

CS 0 0.3727 0.0596 −0.5617 −6.8939
1 0.3710 0.0544 −0.5814 −7.3858
2 0.3419 0.0525 −0.5203 −6.3910
5 0.3148 0.0542 −0.4483 −5.1543
10 0.3290 0.0550 −0.4717 −5.3222

CF 0 −0.2182 −1.5237 −4.0538 −29.8114
1 −0.2231 −1.5435 −4.1329 −31.7882
2 −0.2098 −1.4184 −3.7546 −27.6572
5 −0.1921 −1.2813 −3.3351 −22.5588
10 −0.2071 −1.3524 −3.5048 −23.3207

Table 11. Nondimensional normal stress σ∗z(L/2, h/2) of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 0.1351 0.0675 0.0337 0.0065
1 0.0499 −0.2005 −0.5512 −2.9963
2 0.0389 −0.2557 −0.6781 −3.6571
5 0.0375 −0.3064 −0.8035 −4.3225
10 0.0788 −0.2659 −0.7435 −4.0561

CC 0 0.1351 0.0675 0.0337 0.0065
1 0.1501 −0.0001 −0.1504 −0.9923
2 0.1611 −0.0112 −0.1890 −1.2118
5 0.1820 −0.0174 −0.2255 −1.4326
10 0.2145 0.0055 −0.2008 −1.3429

CS 0 0.1342 0.0657 0.0300 −0.0121
1 0.1217 −0.0535 −0.2554 −1.5158
2 0.1265 −0.0760 −0.3165 −1.8471
5 0.1405 −0.0942 −0.3763 −2.1831
10 0.1752 −0.0674 −0.3438 −2.0545

CF 0 0.1314 0.0601 0.0189 −0.0678
1 0.3459 0.3915 0.6329 2.9244
2 0.4008 0.4682 0.7696 3.5814
5 0.4653 0.5492 0.9077 4.2336
10 0.4791 0.5346 0.8575 3.9489
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Figure 6. Nondimensional maximum transverse deflection w∗max as a function of the power-law index
and length-to-thickness ratio of FG beams subjected to a uniform load, (a) SS beams, (b) CC beams,
(c) CS beams and (d) CF beams.

Table 9 shows the nondimensional axial stress σ∗x(L/2, h/2) of FG beams subjected to a uniform
load depends on some parameters and boundary conditions. Table 7 and Figure 7 present the
distributions of nondimensional axial stress along with the depth of the SS and CC FG beams for
different values of the power-law distribution index. The most significant aspect of this figure is that
the axial stress distribution of FG beams is much more different from those of isotropic beams. As seen
from Table 7 and Figure 7, the axial stress variation is not linear along with the thickness of the FG
beams, the tensile stresses at the top are maximum. The values of the axial stresses do not equal to
zeros at the mid-plane of the FG beams. This indicates that the neutral plane of the FG beams does not
appear at the mid-plane, it is near the top face of the FG beams. This can be explained by the variation
of the modulus of elasticity across the depth of the FG beams.
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Figure 7. Nondimensional axial stress σ∗x(L/2, z) through the thickness of FG beams subjected to a
uniform load with L/h = 5, (a) SS beams and (b) CC beams.

The non-dimensional shear stress distributions across the thickness of the beams made of FGM
with different values of the power-law distribution index and some cases of boundary conditions are
presented in Figure 8. The shear stresses of the full ceramic (isotropic) beams are symmetric about
the mid-plane of the beams. In addition, the shear stress distributions are greatly influenced by the
power-law index. In addition, Figure 8 shows the great dependence of the shear stress distribution on
the power-law index.
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Figure 8. Nondimensional shear stress τ∗xz(0, z) across the depth of FG beams subjected to a uniform
load with L/h = 5, (a) SS beams and (b) CC beams.

The non-dimensional normal stresses of the FG beams under uniform distribution load are shown
in Table 11, which highlight the effect of thickness stretching on bending behaviors of FG beam from
Quasi-3D theory. Due to the thickness stretching effect, the vertical displacement obtained from present
Quasi-3D theory is smaller than those of HSDT and FSDT.

The variation of the vertical displacement through the thickness of the FG beam for SS and CC
boundary conditions are shown in Figure 9. According to Figure 9, the difference among the present
Quasi-3D theory and other HSDT or FSDT is meaningful for thickness stretching. In this present
Quasi-3D theory, the vertical displacement is not constant through the thickness of the beams as in
HSDT and FSDT.
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Figure 9. The distribution across the thickness of nondimensional vertical displacement of FG beam
subjected to a uniform load with L/h = 5, (a) SS beams and (b) CC beams.

Finally, to show more obviously the influence of normal deformation on the deflection of FG
beams, we suggest the deflection ratio which is well-defined as the fraction of transverse displacement
obtained by present Quasi-3D beam theory to that calculated by HSDT. The effect of normal deformation
on the deflection of SS and CC supported FG beams is exhibited in Figure 10 for different values of
power-law distribution index and slenderness ratio. Figure 10 shows that the deflection ratio is almost
smaller than unity. It shows that the deflection will be decreased when the normal deformation effect
is included. In the case of CC beams, there is a range of power-law index and slenderness ratio that
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causes the deflection ratio to be greater than unity, which represents that the normal deformation has
more affect strongly than bending and shear deformation in this case.

Materials 2019, 12, x FOR PEER REVIEW 21 of 24 

 

Quasi-3D theory, the vertical displacement is not constant through the thickness of the beams as in 

HSDT and FSDT. 

 

(a) 

 

(b) 

Figure 9. The distribution across the thickness of nondimensional vertical displacement of FG beam 

subjected to a uniform load with / 5,L h =  (a) SS beams and (b) CC beams. 

Finally, to show more obviously the influence of normal deformation on the deflection of FG 

beams, we suggest the deflection ratio which is well-defined as the fraction of transverse 

displacement obtained by present Quasi-3D beam theory to that calculated by HSDT. The effect of 

normal deformation on the deflection of SS and CC supported FG beams is exhibited in Figure 10 for 

different values of power-law distribution index and slenderness ratio. Figure 10 shows that the 

deflection ratio is almost smaller than unity. It shows that the deflection will be decreased when the 

normal deformation effect is included. In the case of CC beams, there is a range of power-law index 

and slenderness ratio that causes the deflection ratio to be greater than unity, which represents that 

the normal deformation has more affect strongly than bending and shear deformation in this case. 

 

(a) 

 

(b) 

Figure 10. The deflection ratio of FG beams subjected to uniform load, (a) SS beams and (b) CC beams. 

6. Conclusions 

In this paper, a new efficient Quasi-3D beam element was developed for static bending analysis 

of FG beams. Using mixed formulation, only 
0C  continuous shape functions are required for finite 

element formulation of the new beam element. In addition, the new beam element presents the 

excellent results of displacement and stress even for a coarse mesh. Therefore, the proposed beam 

Figure 10. The deflection ratio of FG beams subjected to uniform load, (a) SS beams and (b) CC beams.

6. Conclusions

In this paper, a new efficient Quasi-3D beam element was developed for static bending analysis of
FG beams. Using mixed formulation, only C0 continuous shape functions are required for finite element
formulation of the new beam element. In addition, the new beam element presents the excellent results
of displacement and stress even for a coarse mesh. Therefore, the proposed beam element costs less
effort and time of computation than those using higher order shape functions, consequently, it can
be widely applied for complex structural analysis. The shear stresses vary parabolically across the
thickness of the FG beam, and equal to zeros at two free surfaces of beams, so it does not need any
shear correction factors. The new beam element includes shear deformation and normal deformation.
Effect of normal deformation is significant, and it should be considered in the static bending analysis
of FG beams, especially for medium and very thick FG beams. The numerical results of the FG beams
using the proposed beam element are in good agreement with other published results. The new beam
element is accurate and efficient for bending behavior of FG beams. The influences of some parameters
such as the power-law distribution index and length-to-thickness ratio are investigated.
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