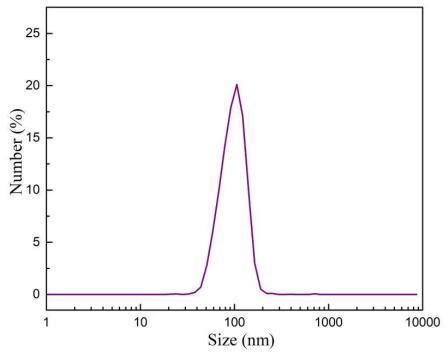


Communication

Loading graphene quantum dots into optical-magneto nanoparticles for real-time tracking in vivo


Yu Wang ^{1,2}, Nan Xu ^{1,2}, Yongkai He ^{1,2,3}, Jingyun Wang ⁴, Dan Wang ^{1,2}, Qin Gao ^{1,2}, Siyu Xie ^{1,2}, Yage Li ^{1,2}, Ranran Zhang ^{3,*} and Qiang Cai ^{1,2,3,*}

- State key laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- ² Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing100084, China
- ³ Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- * Correspondence: biomnano@163.com (R.Z.); caiqiang@mail.tsinghua.edu.cn (Q.C.)

Academic Editor: name

Received: date; Accepted: date; Published: date

Dynamic light scattering (DLS; Malvern Instruments Zetasizer Nano ZS90,UK) was employed to measure the hydrodynamic diameter of the nanocomposites and the result was shown in **Figure** S1 (supporting information). It could be seen that the hydrodynamic diameters of the nanocomposites distributed from 50 nm to 200 nm, which was consistent with the result of HRTEM.

 $\textbf{Figure} \ S1. \ Hydrodynamic size of GQDs-NPs \ nanocomposites.$