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Abstract: Photocatalytic processes based on various semiconductors have been widely utilized
in different applications, with great potential for use in environmental pollution remediation and
sustainable energy generation. However, critical issues, including low light adsorption capability,
wide energy bandgap, and unsatisfactory physicochemical stability still seriously limit the practical
applications of photocatalysts. As a solution, the introduction of carbonaceous materials with different
structures and properties into a photocatalyst system to further increase the activity has attracted much
research attention. This mini review surveys the related literatures and highlights recent progress
in the development of carbonaceous photocatalysts, which include various metal semiconductors
with activated carbon, carbon dots, carbon nanotubes/nanofibers, graphene, fullerene, and carbon
sponges/aerogels. Moreover, graphitic carbon nitride is also discussed as a carbon-rich and metal-free
photocatalyst. The recently developed synthesis strategies and proposed mechanisms underlying the
photocatalytic activity enhancement for different applications are summarized and discussed. Finally,
ongoing challenges and the developmental direction for carbonaceous photocatalysts are proposed.
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1. Introduction

With the rapid development of economic and industrial techniques, environmental pollution and
energy shortage have emerged as worldwide issues that seriously limit the sustainable development
of human society. To address these problems, the development of industrial techniques must
focus on meeting the demand for clean energy and tackling environmental pollution [1]. Therefore,
photocatalytic processes that can be induced by environmentally friendly and inexhaustible solar energy
have attracted significant research attention owing to their several advantages, such as the renewable
nature of the energy sources, safety, and low operating cost [2,3]. Until now, numerous photocatalytic
processes have been developed for various applications, such as degradation of organic pollutants [4,5],
water splitting [6,7], reduction of CO2 [8,9], bacteria disinfection [10,11], and selective synthesis of
organic compounds [12,13]. Undoubtedly, in all photocatalytic processes, the photocatalyst is the core
and thus, the entire performance of a photocatalytic process is mainly decided by the photocatalytic
activity of the corresponding photocatalysts [2,14]. In general, photocatalysts are prepared from
semiconductors, such as the most popular TiO2, which was first used for photocatalytic water splitting
by Fujishima and Honda in the early 1970s [15]. Subsequently, numerous semiconductors were
developed and utilized for photocatalysis applications. However, there are many problems associated
with the current photocatalysts, such as the quite-low utilization efficiency of visible light from
solar energy, wide energy bandgap, high recombination rate of photogenerated electron–hole pairs,
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and insufficient physicochemical stability of metal semiconductors, which seriously limit the practical
application of photocatalysts [16–18]. Moreover, the urgent development of metal-free photocatalysts
is also crucial owing to the limited storage of the related metals on the earth [19–21]. Therefore,
it is imperative to develop next-generation photocatalysts with high visible-light efficiency, low cost,
and good stability.

Thus far, a variety of strategies, such as coupling semiconductors with carbon [22–24], introducing
co-catalysts [25–27], and constructing heterojunctions [28–30], have been developed to further
improve the performance of photocatalysts. Among which, carbonaceous materials play important
roles in the design and synthesis of novel photocatalysts as they have the advantages of good
electron conductivity, large surface area, excellent physicochemical stability, and facile synthesis
approaches [22]. In general, the micro/macro morphologies and crystal structures of carbonaceous
materials could be well regulated, so that these materials can be facilely synthesized according
to the specific requirements of different applications. Up to now, a great deal of photocatalysts
based on carbonaceous materials with various structures and compositions have been developed.
The most widely used carbonaceous materials for the synthesis of photocatalysts are activated carbons,
carbon dots, carbon nanotube/nanofiber, graphene, fullerene, and three-dimensional (3D) carbons.
Moreover, as a carbon-rich and metal-free photocatalyst, graphitic carbon nitride (g-C3N4) has also
attracted great research attention due to its appealing bandgap property, high physicochemical stability,
facile synthesis approach, and “earth-abundant” nature [31–34]. Owing to the attractive features of
carbonaceous materials for photocatalytic applications, there have been many outstanding studies
focusing on the development of photocatalysts deriving from carbonaceous materials [22]. Therefore,
a timely summary and discussion of the recent progresses on carbonaceous photocatalysts is required.
Moreover, the influence of the morphology and composition of the carbonaceous materials on the
photocatalytic process must be analyzed, as this knowledge is important for the design and synthesis
of new carbonaceous photocatalysts.

Therefore, as shown in Scheme 1 and Table 1, in this mini review we demonstrate a brief summary and
a critical discussion on the recent developments of carbonaceous photocatalysts for various applications,
such as the photodegradation of organic pollutants, water splitting, reduction of CO2, etc. In particular,
much more attention has been paid to the fabrication strategies of different carbonaceous photocatalysts
based on various carbonaceous materials with obviously improved visible-light activity. The demonstrated
carbonaceous materials are commonly used in photocatalysis, including activated carbon, carbon dots,
carbon nanotube/nanofiber, graphene, fullerene, g-C3N4, and carbon sponges/aerogels. Additionally,
the proposed mechanisms of carbonaceous materials for enhancing the photocatalytic performances of the
pristine photocatalysts are discussed simultaneously. Finally, the major challenges and opportunities for
the development of carbonaceous photocatalysts are discussed. Specifically, we anticipate that this mini
review could be helpful for the understanding of the development in the trend of the next generation
of carbonaceous photocatalysts, and thus provide a guidance for the design and fabrication of novel
visible-light photocatalysts with enhanced performance.
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Scheme 1. Carbonaceous materials for photocatalysts. Adapted with permission from Reference [35]
Copyright (2017) Springer; [36] Copyright (2018) Wiley; [37] Copyright (2018) Springer; [38] Copyright
(2018) Wiley; [39] Copyright (2019) American Chemical Society; [40] Copyright (2018) Elsevier; [41]
Copyright (2019) Elsevier.

2. Principles of the Carbonaceous Photocatalysts

To better understand the design criteria of carbonaceous photocatalysts, the basic principle of
photocatalysis is discussed in this section. As we know, the photocatalytic process is a type of advanced
oxidization process (AOP), which is driven by the light energy [14,42,43]. In most cases, as the core of the
various photocatalytic processes, photocatalysts are semiconductors with good light sensitivity owing
to their unique electronic bandgap structure with the filled valence band (VB) and the empty conduction
band (CB) [29,44–46]. As shown in Figure 1, when the light irradiates on the surface of a photocatalyst,
part of it will be absorbed, and if the absorbed light contains photons with energy levels greater than the
bandgap energy (Eb) of the photocatalyst, electrons will generate from the VB and move to the CB, at the
same time, the corresponding holes in the VB will emerge [44]. After that, the generated electron–hole
pairs will migrate to the surface of photocatalyst for the redox reactions [42,47]. During the whole
photocatalytic process, a series of redox reactions will occur depending on the specific applications,
including oxidation induced by the photogenerated holes and reduction caused by the photogenerated
electrons (Figure 1). However, during the migration process of electron–hole pairs, fast recombination
will simultaneously occur, which is negative for the AOPs that are yet to be suppressed [48–50]. On the
other hand, to effectively utilize the redox reactions, a greater number of active sites must be generated
on the surface of the photocatalysts [51]. Consequently, at least five critical aspects must be satisfied
to improve the photocatalytic activities of the corresponding photocatalysts: 1) reduce the Eg of the
catalytic system to increase the visible-light utilization efficiency; 2) increase the light absorption
capacity of the photocatalyst to generate more electron–hole pairs; 3) retard the electron–hole pair
recombination to improve their quantum efficiency; 4) increase the surface area of the photocatalyst
to provide a greater number of reaction sites, and 5) improve the physicochemical stability of the
photocatalyst to ensure a durable service performance during the reaction.
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Figure 1. Schematic illustration demonstrating the photocatalytic process of a semiconductor photocatalysts.
Adapted with permission from Reference [22]. Copyright (2011) Elsevier.

3. Synthesis and Applications of Carbonaceous Photocatalysts

Carbonaceous materials, especially carbonaceous nanomaterials, have attracted much research
attention in the area of photocatalysis owing to their intriguing properties and good tunability by
regulating their structures and compositions [17,22]. Until now, many carbon-based photocatalysts
with different structures and compositions have been invented through a variety of well-designed
synthesis strategies, which will be systematically summarized in this section.

3.1. Activated Carbon

Activated carbon (AC) is a well-known highly porous carbonaceous material that is widely used
as an adsorbent to remove various organic compounds from both air and water because of its large
surface area, good physicochemical stability, and ease of fabrication [52–56]. Additionally, AC can also
be used as an effective support for various semiconductors to form composite photocatalysts [57–61].
The synergistic effects between AC and semiconductors can further enhance the photocatalytic activity.
In general, the roles that AC plays in a variety of photocatalysis systems are as follows: (1) the ultrahigh
surface area of AC endows the composite photocatalysts with good ability to adsorb or capture
organic molecules in water or in air, thus ensuring a high concentration of organic compounds
around the surface of the photocatalysts, which is critical for the improvement of photocatalytic
reaction rates. (2) The intermediates generated after photocatalysis can be effectively adsorbed
by AC for the subsequent degradation cycle so that the availability of the photocatalyst can be
improved. (3) The combination of AC with semiconductors can partially suppress the combination of
photogenerated electron–hole pairs so that the photocatalytic activity of AC/semiconductors composite
systems can be improved. Consequently, AC has been considered a promising support for the design
and synthesis of novel photocatalysts, and many AC/semiconductors composite photocatalysts with
different properties have been synthesized through various strategies. According to its macroscopic
structure, AC can be clarified as powdered AC or AC fibers. In this review, some representative
AC/semiconductors photocatalysts and their fabrication strategies are discussed.

3.1.1. AC Powder

Powdered AC is the most commonly used adsorbent for environmental pollution remediation.
It is believed that the strong adsorption ability of AC can lead to synergistic effects with various
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photocatalysts to further enhance their performance [22,24]. To date, numerous semiconductors
have been coupled with powdered AC to form composite photocatalysts, among which the TiO2/AC
composite is the most widely reported. In early years, Zhang et al. [62] claimed that a system of particles
suspension was beneficial for mass transfer on the surface of the photocatalysts and for light absorption.
As a result, they synthesized two kinds of TiO2/AC composite photocatalysts using the sol-gel
method and metal organic chemical vapor deposition (MOCVD). They compared the structures and
photocatalytic activities of the obtained composite photocatalysts. The results demonstrated that the
TiO2/AC photocatalysts synthesized by these two methods both exhibited eggshell-like microstructures
and similar activities. However, the composite photocatalysts made by the MOCVD method were
preferred because of the formation of a TiO2+AC hybrid film on the surface of the AC template with the
Ti–O–C bond, which could effectively recapture the intermediates generated from the degradation of
organic compounds and ensure a better stability, while it could not be found in the TiO2/AC composite
produced by the common sol-gel method. Unfortunately, the surface area of the TiO2/AC composite
produced by MOCVD decreased due to the blockage of mesopores by TiO2, which hinders further
enhancement of its photoactivity. To address this problem, Djellabi et al. [63] successfully synthesized
a new kind of TiO2/AC composite photocatalyst via an ultrasonic-assisted sol-gel method followed with
a simple calcination process. The structure characterization results demonstrated that a Ti–O–C bond
was also formed between the TiO2 and the activated carbon template (Figure 2), and a large surface
area was obtained due to the better dispersion uniformity of the TiO2 nanoparticles on the surface of
the AC. Therefore, the obtained TiO2/AC composite photocatalyst exhibited significantly enhanced
photocurrent responses to the visible light compared with the pristine TiO2. Nowadays, apart from the
TiO2, a variety of newly developed semiconductors have also been coupled with powdered AC to
form composite photocatalysts for different applications [58,60,61,64–71].
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Figure 2. Schematic of proposed degradation of pollutants with TiO2/carbon composites. Adapted
with permission from Reference [63]. Copyright (2019) Elsevier.

3.1.2. AC Fiber

Similar to the powdered AC, AC fibers (ACFs) are highly porous carbon materials with a large
surface area, high pore volume, and uniform pore-size distribution [24]. Consequently, ACFs have
similar adsorption capacities to powdered AC, but have a better recyclability owing to their fibrous
structure with a high aspect ratio, thus the ACFs can be easily recovered after use [54,72–74]. Currently,
various ACFs are employed as templates for different semiconductors to fabricate high-performance
ACF/semiconductors composite photocatalysts [35,58,75–77]. For example, Wang et al. [78] loaded
N-doped TiO2 particles on the surface of ACF via a facile impregnation method and the followed heat
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treatment. The obtained N-doped TiO2/ACF retained its large surface area and exhibited enhanced
visible-light photocatalytic activity. Similarly, the synergy effect between the strong adsorption
performance of ACF and the improved photocatalytic property of N-doped TiO2 was the main reason
for the enhanced photocatalytic degradation performance of the composite photocatalysts [24].
Apart from TiO2, other semiconductors can also be loaded on the surface of ACFs. For example,
Zhang et al. [79] fabricated a BiVO4@ACF composite photocatalyst through a facile hydrothermal
immobilization method. As shown in the scanning electron microscope (SEM) images and the
corresponding energy-dispersive spectrometry (EDS) in Figure 3, the BiVO4@ACFs retained intact
fibrous structures and good uniformity of the loaded BiVO4. Moreover, they found that the visible-light
adsorption performance of BiVO4@ACFs was much greater than that of pristine ACFs and individual
BiVO4 and they also claimed that this difference was due to the formation of a heterojunction electric field
between BiVO4 and the ACFs. As a result, the obtained BiVO4@ACFs exhibited intriguing photocatalytic
degradation performance for the organic compound in water. As expected, the ACFs-based composite
photocatalysts demonstrated in those works exhibited durable mechanical properties and could be
easily collected from the reaction solution. Consequently, ACFs can be widely utilized as the support
for all kinds of semiconductors and can also be easily assembled owing to their excellent mechanical
properties and good weaving performance, which is superior to the powdered ACs.
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Figure 3. SEM images (a,b) and corresponding EDS spectra (c,d) original activated carbon fibers (ACFs)
and BiVO4@ACFs. Adapted with permission from Reference [79]. Copyright (2018) Royal Society
of Chemistry.

3.2. Carbon Dot

Carbon dots (CDs) are recently developed carbon nanomaterials that possess various
intriguing properties such as unique fluorescence, good conductivity, good physicochemical stability,
and environmental friendliness [80]. Since their invention, CDs have been widely used in various
applications, among which photocatalysis is one of the most extensively researched areas [22,81–83].
Early on, Li et al. [84] fabricated CDs with sizes of 1.2–3.8 nm via a facile one-step alkali-assisted
electrochemical method. Subsequently, a variety of photocatalysts were synthesized based on the
obtained CDs, and the as-prepared composite photocatalysts (TiO2/CDs and SiO2/CDs) both showed
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an effective photoresponse to the full spectrum of sunlight due to the upconversion luminescence
properties of the CDs. Based on these early studies, many novel photocatalysts based on CDs have
been developed in recent years. For example, Zhu et al. [85] fabricated a composite photocatalyst
derived from cadmium sulfide (CdS) nanosheets and CDs (~5 nm) via a simple hydrothermal method.
The employed CDs in this work were synthesized by a typical electrolytic method with graphite
rods as the carbon source. They found that the introduced CDs not only effectively suppressed the
oxidation of CdS but also could react with CdS to form a C–S bond, which showed good inoxidizability.
As a result, the photocorrosion resistance of CdS was significantly enhanced. Moreover, the CDs
could further enhance the light absorption capacity and the strong contact of the CDs with CdS
nanosheets ensured a fast charge transport and a high separation efficiency in addition to promoting
the production of O2 by suppressing the combination of photogenerated holes and S2− to stabilize the
catalysts. These features are of great importance for the enhancement of photocatalytic performance,
therefore the CDs–CdS composite exhibited an excellent photocatalytic water splitting performance
with significantly enhanced stability without the requirement for any sacrificial agents or cocatalysts
(Figure 4). More recently, CDs-based meta-free photocatalysts have also been developed. For example,
Sarma et al. [86] fabricated a new kind of carboxyl-functionalized CDs and investigated their visible-light
photocatalytic activity. The results demonstrated that the functional groups on the surface of the CDs
play a critical role in photocatalytic oxidation reactions and the carboxyl groups on the surface of the CDs
were effective for promoting the transport of photogenerated electrons and inhibiting electron−hole
recombination. As a result, the carboxyl-functionalized CDs exhibited good visible-light-driven aerobic
C−H oxidation performance toward alkyl benzenes. However, due to the nanoscale size of CDs and
the zero-dimensional (0D) structure, the collection of photocatalysts after use is quite difficult, which is
a critical issue that needs to be addressed for practical applications.
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Figure 4. (a) Water splitting performance of the carbon dots (CDs)–CdS under visible light irradiation.
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3.3. Carbon Nanotube/Nanofiber

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are typical one-dimensional (1D)
carbon nanomaterials that possess the characteristics of both nanomaterials and fibrous structures.
With their large surface area, intriguing electronic properties, unique physicochemical properties,
and high aspect ratio, CNTs and CNFs are promising candidates for the design and synthesis of
novel photocatalysts [87–91]. Nowadays, numerous studies have been carried out on the design
and fabrication of CNT- and CNF-based composite photocatalysts. Herein, we will discuss some
representative studies.

Owing to the facile fabrication method and relative low cost, multiwalled carbon nanotubes
(MWCNTs) have been widely employed to prepare the photocatalysts [92,93]. In general, CNTs
mainly act as supports for various semiconductors to form composite photocatalysts. Various synthetic
approaches for CNT-based composite photocatalysts have been proposed, such as the sol-gel
method [22,94–98], vapor phase method [99,100], chemical vapor deposition method [101–103],
and hydrothermal method [103–106]. Among which, the sol-gel method is a common and easy strategy
and therefore, it is widely used for the fabrication of CNT/semiconductor composites. As a representative
work, Wang et al. [107] fabricated MWCNT/TiO2 composite photocatalysts using the sol-gel method and
the followed heat treatment. In a general approach, before the sol-gel process, the surface of the pristine
MWCNTs should be activated by a surface treatment with concentrated nitric acid, or a mixture of
concentrated nitric acid and sulfuric acid to several functional groups can be grafted on the walls of the
CNTs so that they can act as reaction sites to facilitate the contact between the semiconductors and the
CNTs. By virtue of their good conductivity and large surface area, the introduced MWCNTs played
a critical role in enhancing the charge transport and light adsorption capacity. Therefore, the obtained
MWCNT/TiO2 composite photocatalysts exhibited remarkable enhancement in the visible-light activity
compared with pristine TiO2. Subsequently, Xu et al. [108] reported a wet impregnation method for the
fabrication of MWCNT/TiO2 composite photocatalysts, which was even simpler than the above-mentioned
sol-gel method. In this study, the acid-activated MWCNTs were uniformly mixed with titanium
tetrasiopropoxide in an anhydrous ethanol solution in a certain ratio, and the obtained suspensions
were aged for a specific time with continuous stirring. Then, the suspensions were sufficiently dried
and calcined in air to obtain the MWCNT/TiO2 composite photocatalysts, which was efficient in the
photocatalytic degradation of organic compounds in water. Unlike the traditional sol-gel method,
this method involved a simple hydration/dehydration process and was therefore slightly more efficient.
However, the adapted inorganic precursors may be limited, thus this method may be not suitable for other
semiconductors. Consequently, the synthesis method for the CNT-based composite should be flexible
and combinable so that a variety of novel semiconductors can be loaded with the CNTs. More recently,
Gopannagari et al. [109] successfully synthesized a composite photocatalysts based on platinum (Pt),
CdS, and surface-modified CNTs. Before loading the CdS nanorods, the employed MWCNTs were twice
under surface modifications to produce various functional groups to capture metal particles, therefore the
strength of interfacial interactions could be well ensured. Moreover, the final composite of CdS nanorods
and the surface modified CNTs just rely on a simple sonication and stirring process, which was quite
easy to operate and energy-saving. After comprehensively evaluating the photocatalytic water splitting
performance of corresponding composite photocatalysts, they found that the ternary photocatalysts of Pt,
CdS, and ascorbic acid modified CNTs(Pt–Af–CNT/CdS)exhibited superior photocatalytic activity with
about 48- and 3.5-fold enhancement compared to that of pristine CdS and Pt/CdS (Figure 5a). They claimed
that this significant enhancement was attributed to the improved deposition of Pt nanoparticles on the
surface of modified CNTs and the interaction with CdS nanorods, which enhanced the electron–hole pair
separation and retard recombination process of the composites (Figure 5b).
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CdS. (b) Schematic illustration demonstrating mechanism of H2 production via photocatalytic water
splitting by Pt–Af–CNT/CdS ternary composite. Adapted with permission from Reference [109].
Copyright (2018) Elsevier.

Apart from CNTs, CNFs are also attractive for the development of next-generation photocatalysts.
Similar to CNTs, CNFs also possess the appreciable properties of conductivity, large surface area,
and good physicochemical stability. However, the aspect ratio of CNFs could be much larger than that of
CNTs, thus endowing CNFs with much better assemblability [110]. In addition, the porous structure and
composition of CNFs can be facilely regulated by employing the appropriate synthesis techniques [111].
The most commonly reported fabrication methods for CNFs are the chemical vapor deposition
method [112–114], the floating catalyst method [114–117], and the electrospinning method [118–120].
Among which, the electrospinning method has become a powerful and highly versatile technique for
the fabrication of CNFs because of its easy operation, low cost, and good feasibility for a wide range of
carbon precursors [27,30,111,121,122]. Consequently, electrospun CNFs have attracted considerable
research attention in the photocatalysis field, and many outstanding studies have been reported.
For example, Mu et al. [123] fabricated an In2O3 nanocube/CNF composite photocatalyst by combining
electrospinning with the solvothermal method. In that study, polyacrylonitrile (PAN) was used as the
carbon precursor to prepare PAN nanofibers via electrospinning the solutions, and after subsequent
carbonization, CNFs with good fibrous structures were obtained. The as-prepared CNFs were used
as substrates for the growth of In2O3 nanocubes on their surface by the solvothermal treatment
method. The obtained In2O3/CNF composite exhibited remarkable improvement in the visible-light
photocatalytic degradation performance due to the enhanced charge separation efficiency resulting
from the synergistic effect between In2O3 and the CNFs. Moreover, with a good combination of
electrospun CNFs, a variety of novel CNFs supported composite photocatalysts derived from different
semiconductors could also be facilely synthesized. Our group fabricated Ag–ZnO-decorated CNFs
by combining electrospinning with hydrothermal treatment. Similarly, carbonized PAN electrospun
nanofibers were fabricated as the substrate and subsequently, an aqueous suspension containing Ag
and ZnO precursors and the CNFs were subjected to hydrothermal treatment [111]. The photocatalytic
performance of the obtained Ag–ZnO NPs/CNF composite was considerably improved due to the
decreased recombination rate of the photogenerated electrons and holes as well as the increased
rate of electron transport, high mobility of the charge carriers, and excellent adsorption capacity of
the CNFs [111]. More recently, Yang et al. [124] fabricated nitrogen-doped CNFs with hierarchical
structures, namely H–N–CNFs, by combining electrospinning and an in situ polymerization method.
Subsequently, a hydrothermal method was employed to construct molybdenum diselenide (MoSe2)
nanosheets on the surface of the obtained H–N–CNFs to form H–N–CNF/MoSe2 heterojunctions
(Figure 6a–c). Although several manufacturing processes were involved in this approach, the fibrous
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structure of the CNFs was well preserved. The H–N–CNF/MoSe2 composite exhibited an obvious
improvement in the photocatalytic performance upon full-spectrum irradiation. This phenomenon
occurred because the hierarchical nanostructures of the H−N−CNF supports allow for more efficient
interfacial contact between MoSe2 and the CNFs so that fast interfacial charge transfer could be
achieved. Consequently, the CNF-based composite photocatalyst showed good recyclability owing to
the excellent mechanical properties of the CNFs and the higher aspect ratio compared with that of the
CNTs (Figure 6d).
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Figure 6. (a) SEM images, (b,c) Transmission electron microscopy (TEM) images of H–N–CNF/MoSe2

heterojunctions. (d) Digital photographs demonstrating the self-supporting photocatalysis application
of H–N–CNF/MoSe2 and CNFs/MoSe2. Adapted with permission from Reference [124]. Copyright
(2018) American Chemical Society.

3.4. Graphene

Graphene is a widely concerned two-dimensional (2D) carbon nanomaterial with great potential
for numerous applications. In general, graphene has a unique layered structure comprising sp2-
bonded carbon atoms in a hexagonal lattice, and the one-atom-thick carbon layers endow it with
desirable features such as excellent mechanical properties, intriguing heat and electron conductivity,
large surface area, and robust physicochemical stability [125,126]. Moreover, graphene is a semimetal
with a small degree of overlap between the VB and CB [127], making it a promising candidate for
application in photocatalysis.

Combining graphene with certain semiconductors to form a graphene/semiconductor composite
photocatalyst system is a facile and commonly used strategy to produce a high-performance
photocatalyst [128–133]. For example, Zhang et al. [134] once reported a facile approach for the
fabrication of a graphene/TiO2 composite. Accordingly, graphene oxide (GO) and commercial TiO2

powders (P25) were well dispersed in a mixed solution of water and ethanol to prepare a homogeneous
suspension, which was hydrothermally treated and dried to obtain the graphene/TiO2 composite.
As demonstrated in this work, the TiO2 nanoparticles were well anchored on the surface of the
graphene, and the composite photocatalyst exhibited superior photocatalytic performance when
compared with the pure P25 and the CNT/P25 composites, owing to the 2D planar structures
of graphene which enhanced the adsorption capacity of the organic compounds and facilitated
charge transport [133]. Because that study confirmed the significant contribution of graphene
in enhancing the photocatalytic activity of TiO2, many graphene-based composite photocatalysts
with other semiconductors have been developed. Herein, we discuss some representative studies of
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newly developed semiconductors. For example, Meng et al. [135] recently reported the fabrication of
a novel three-component composite photocatalyst with a designed Z-scheme heterojunction for CO2

reduction. In this composite system, a metal−organic framework, UiO–66–NH2, and oxygen-defective
ZnO (O–ZnO) were used as the photocatalysts, while reduced graphene oxide (rGO) acted as the
substrate and electron mediator. A facile solvothermal method was employed to synthesize a composite
system of these three components. As expected, the obtained composite photocatalysts exhibited
excellent photocatalytic activity because the photogenerated electrons in the CB of O–ZnO could
be effectively transferred to rGO before recombination with the holes from the VB of UiO–66–NH2,
therefore, the charge separation efficiency of the composite system was remarkably enhanced. Recently,
the graphene quantum dots (GQDs), which are nanoscale fragments of graphene, have also been widely
used to composite with semiconductors to improve the photocatalytic performance of semiconductors
with several unique properties of size-dependent luminescence, extended π-electron system, discrete
electronic levels, and relative low cost for synthesis. For example, Regulska et al. [136] once prepared
a novel NiAl2O4/GQDs composite via a facile co-precipitation method. As shown in Figure 7, they found
that the introduced GQDs could effectively prolong the recombination of electron–hole pairs, enhance
the harvest of sunlight, and improve the adsorption of pollutants. Consequently, the photocatalytic
activity of the obtained composite under the irradiation of solar light toward various organic pollutants
was superior to that of pristine NiAl2O4.
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Figure 7. (a,b) SEM, (a’,b’) TEM of pristine GQDs and NiAl2O4/GQDs composite, respectively.
(c) Photodegradation performances of NiAl2O4 (line a) and NiAl2O4/GQDs composite (line b) over the
Rhodamine B (RhB). Adapted with permission from Reference [136]. Copyright (2019) MDPI AG.

Besides, GO could also be utilized for the synthesis of photocatalysts. Our group recently reported
the fabrication of a GO/BiOCl/PAN composite by a combination of the solvothermal and electrospinning
methods. The composite photocatalyst had a fibrous structure and the presence of GO led to a nearly
three-fold enhancement of the photocatalytic degradation activity of the organic pollutants in water,
as compared with that of the pristine BiOCl/PAN fibers [137]. Moreover, graphene can be directly
used as a photocatalyst. For example, Yeh et al. [138] reported the synthesis of nitrogen-doped
graphene oxide quantum dots (NGO–QDs). In their study, GO was pretreated with NH3 to incorporate
nitrogen elements into the structure of graphene to obtain nitrogen-doped graphene oxide (NGO).
Subsequently, NGO was used as a precursor to prepare NGO–QDs via a modified Hummer’s method.
Then, the photocatalytic performance of the obtained NGO–QDs under irradiation with visible light
was investigated. As shown in Figure 8a, the nitrogen atoms introduced into the graphene frame
led to the formation of p–n type photochemical diodes in the NGO–QDs, resulting in n-conductivity.
Meanwhile, the presence of oxygen on the graphene surface resulted in p-conductivity. As a result,
the NGO–QDs exhibited intriguing visible-light photocatalytic water splitting performance compared
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with the other photocatalysts (Figure 8b–e). Moreover, the meta-free characteristics of the NGO–QD
catalyst make it more sustainable from environmental and economic viewpoints. To summarize,
the presence of graphene favored the design and synthesis of novel photocatalysts, which is one of the
most promising developmental directions for photocatalysts.Materials 2019, 12, x FOR PEER REVIEW 12 of 26 
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3.5. Fullerene

Considering that there are many types of C allotropes, some other carbon nanomaterials, such as
fullerene (C60), could also be utilized as an effective component for the synthesis of novel photocatalysts
because of its unique electronic properties [22]. C60 is an excellent electron acceptor that can accept six
electrons owing to its relatively low-energy LUMO (lowest unoccupied molecular orbital) and high state
degeneracy [139]. Therefore, coupling C60 with various semiconductors to form C60/semiconductor
composite photocatalysts has been well studied. For example, Li et al. [39] synthesized a C60/Bi2TiO4F2

composite photocatalyst via a facile solvothermal method for the visible light photocatalytic degrading
of organic pollutants in water. They demonstrated that C60 clusters were well dispersed on the surface
of Bi2TiO4F2 to form strong heterojunctions. Therefore, the electron transfer rate and the charge
carrier separation efficiency of the photocatalyst were significantly enhanced and C60 could further
improve the light adsorption capability of the C60/Bi2TiO4F2 composite. As a result, the obtained
composite photocatalyst exhibited remarkably enhanced activity under visible-light irradiation.
On the other hand, the fullerene derivatives could also be utilized to improve the photocatalytic
performance of semiconductors. For example, Echegoyen et al. [140] recently explored the application
of porphyrin/phthalocyanine fullerene complexes in a photocatalytic system with TiO2. In their study,
the bis(4-pyridyl)pyrrolidinofullerene was used as a dual ligand for a supramolecular approach to
attach porphyrins and phthalocyanines on the surface of TiO2 to make it sensitized. The synthesis of
the composite was based on a simple sol-gel method. As expected, the obtained composite exhibited
intriguing photocatalytic activity under the irradiation of solar light, which was attributed to the
enhancement of electron transfer to the CB of the corresponding semiconductor. More recently,
Liu et al. [141] demonstrated a facile strategy to fabricate a novel 2D carbon material that combined
the structures of fullerene and graphene by embedding bubble carbon structures in the graphene lattice
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(Figure 9). They claimed that by regulating the percentage of sp3 carbon and the strains caused by the
curvatures of the bubbles, a tunable electronic structure ranging from metallic to semiconducting with
sizable gaps can be created in the material. Therefore, this method is a promising tool to create novel
carbon-based photocatalysts.Materials 2019, 12, x FOR PEER REVIEW 13 of 26 
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3.6. g-C3N4

Recently, the development of metal-free photocatalysts has become a very hot research topic.
Unlike traditional metal semiconductors, g-C3N4 is a polymeric semiconductor that only consists of
carbon and nitrogen elements and has a graphite-like layered structure [32]. This unique structure
endows g-C3N4 with intriguing properties such as a small bandgap, good thermal stability, and easy
fabrication, all of which make it a promising candidate for the design and fabrication of highly
efficient photocatalysts [20,142,143]. Since Wang et al. [144] first employed g-C3N4 for the visible-light
photocatalytic production of H2, many g-C3N4-based photocatalysts have been developed. Additionally,
several materials engineering strategies have been invented to further enhance the photocatalytic
activity of g-C3N4. Zhang et al. [145] reported a simple and low-cost method to improve the
photocatalytic performance of g-C3N4. They used sacrificial templates to create pores inside the
g-C3N4 bulk to increase its surface area and porosity so that the mass transfer ability and photocatalytic
activity of the tailored g-C3N4 could be further enhanced. However, this method only focuses on the
morphological regulation of pristine g-C3N4, and the critical problem of fast recombination of charge
carriers in g-C3N4 has not been solved. Therefore, some other approaches focusing on optimization of
the bandgap or the charge carrier separation efficiency of g-C3N4 were proposed, such as heteroatom
doping [146–148], dye sensitization [149–151], and coupling with other semiconductors [152–154].
In this review, we will briefly discuss the fabrication and tailoring of the photocatalytic activity of
g-C3N4 based on carbon materials, as carbon is one of the most abundant elements on the earth and is
environment-friendly. Recently, Liu et al. [155] reported the fabrication of a new kind of carbon quantum
dots (CQD) modified porous g-C3N4 composite (CNC) photocatalyst via a simple polymerization
method. In this method, the as-prepared CQDs were mixed with urea in a designed ratio, followed
by polymerization and calcination processes to obtain CNCs. Subsequently, they investigated the
photocatalytic activity of the CNCs, and the results showed that the CNCs exhibited almost 15 times
higher degradation kinetics toward the diclofenac than that of pure g-C3N4. This trend was attributed
to the improved separation of charge carriers and the tuned band structure, with the CQDs attached
on the surface of g-C3N4 (Figure 10). Moreover, other carbon nanomaterials, such as CNTs [156–159],
CNFs [160–162], and graphene [163–165], could also be coupled with g-C3N4 to further improve its
photocatalytic activity.
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3.7. Carbon Sponge/Aerogel

With the rapid development of photocatalysts based on various nanomaterials, some critical
issues for practical applications have emerged, including the strong coacervation of nanoscale materials
that increases the complexity and cost of the separation of photocatalysts from the reaction system
while decreasing the service durability [166]. Recently, the fast development of 3D open-cell materials
(e.g., aerogels and nanosponges) provided a new idea for constructing photocatalytic reactors to improve
the recyclability and service ability of photocatalysts by anchoring them on the surface of carbonaceous
substrates with 3D open-cell structures. The benefits of 3D open-cell substrates for photocatalysis
are as follows: (1) open-cell 3D frameworks can provide a more valid surface for the loading of
photocatalysts; (2) the good connectivity of pores and the high porosity can ensure the fast transport of
reactants; (3) 3D monolithic photocatalysts can be well collected and separated from the reaction system.
For example, Su et al. [167] employed a commercial melamine foam (MF) as the support and coated
GO on its surface to provide a larger number of binding sites for the functional materials. One kind
of metal organic frameworks (MOFs), namely ZIF-8 was chosen as the template for the synthesis of
a ZnO nanocage. Then, by using a simple dipping-pyrolysis method, a 3D photocatalytic micro-reactor
based on the ZnO nanocages/rGO/carbon sponge (ZRCs) was fabricated (Figure 11a). The obtained 3D
photocatalytic micro-reactor exhibited excellent adsorption and intriguing photocatalytic degradation
and H2 production performance as well as a facile recyclability (Figure 11b–f). The rGO and carbonized
MF frameworks not only acted as a conducting medium to facilitate the separation of photogenerated
electron−hole pairs but also effectively improved the solar-light absorption capacity of the composite,
resulting in a promising enhancement in the photocatalytic activity (Figure 11g). Besides sponges,
aerogels based on graphene are also considered highly promising candidates for the synthesis of 3D
monolithic photocatalysts. Recently, Hu et al. [168] reported a facile method for the fabrication of
a functional aerogel based on perylene imide (PI)-modified g-C3N4 and GO. Accordingly, PI-modified
g-C3N4 and GO were sufficiently mixed and subjected to hydrothermal treatment, followed by
freeze-drying to obtain the composite aerogel. The aerogel showed excellent photocatalytic activity
for the decomposition of NO gas under visible-light irradiation, which was attributed to the strong
visible-light absorption capacity, good charge transport properties, and large specific surface area of
the as-synthesized aerogel.
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Figure 11. (a,b) Schematic illustration of the fabrication process and photocatalytic reaction in ZnO
nanocages/rGO/carbon sponge (ZRCs)-based microreactor. (c–f) ZRCs absorption and in-situ
photocatalytic degradation of RhB/methanol aqueous solution. (g) Schematic illustration demonstrating
the mechanism of simultaneous sunlight-driven photocatalytic degradation of RhB and H2 production.
Adapted with permission from Reference [167]. Copyright (2018) American Chemical Society.

Table 1. Summary of representative carbonaceous photocatalysts synthesis approaches, and their applications.

Photocatalyst Synthesis
Method

Main
Precursor Morphology Applications Irradiation

Light Ref.

TiO2/AC Ultrasonic-assisted
sol-gel

Titanium(IV) n-butoxide,
commercial AC Powder Reduction of Cr(VI)

PLS-SXE 300 Xe
lamp

(UV, λ > 400,
λ > 420 nm)

[63]

BiOI/AC Hydrothermal Bismuth nitrate, potassium
iodide, commercial AC Powder Degradation of RhB

aqueous solution 500 W Xe lamp [67]

ACF/Bismuth oxyhalides
(BiOX, X = Cl, Br) Solvothermal

Bi(NO3)3·5H2O,
1-hexadecyl-3-

methylimidazoli-um
bromide,

1-hexadecyl-3-
methylimidazoli-um

chloride

Fiber

Degradation of RhB
and

2,4-Dichlorophenol
aqueous solution

300 W Xe lamp [58]

TiO2–MnTiO3/HACF Biotemplated
method

Kapok,
bis (ammonium-lactato)
titanium-dihydroxide,

Mn(NO3)2

Fiber

Degradation of
methylene blue
(MB) aqueous

solution

500 W Xe lamp [35]

BiVO4/ACF Hydrothermal
immobilization Bi(NO3)3·5H2O, NH4VO3 Fiber

Degradation of
reactive Black KN–B

aqueous solution
1000 W Xe lamp [79]

CdS/CDs Solvothermal,
hydrothermal

Sulfur powder,
CdCl2·2.5H2O Powder Water splitting 300 W Xe lamp [85]

Carboxyl-functionalized CDs Microwave
irradiation

Dextrose,
urea Powder Oxidation of

alkyl benzenes
60 W white
LED lamp [86]

MWCNT/TiO2 Impregnation Titanium tetrasiopropoxide,
MWCNTs Powder

Degradation of
benzene in the

gas phase

Four 4 W
UV lamps [108]

Pt-ascorbic acid modified
CNT/CdS

Acid refluxing,
adsorption,

chemical
reduction

L-ascorbic acid,
Chloroplatinic acid

solution,
cadmium acetate,

MWCNTs

Powder Water splitting 150 W Xe lamp [109]
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Table 1. Cont.

Photocatalyst Synthesis
Method

Main
Precursor Morphology Applications Irradiation

Light Ref.

In2O3/CNFs Electrospinning,
solvothermal

PAN,
In(NO3)3·5H2O, CO(NH2)2

Fiber
Degradation of RB,

methyl orange (MO)
aqueous solution

150 W Xe lamp
with a UV cut-off
filter (λ > 420 nm)

[123]

MoSe2/HN–CNFs

Electropsinning,
in situ

polymerization,
hydrothermal

PAN, Na2MoO4·2H2O, Se Fiber

Degradation of RhB,
MO,

and tetracycline
hydrochloride

300 W Xe lamp [124]

O–ZnO/UiO–66–NH2/rGO
Modified

Hummers’,
solvothermal

Natural graphite powder,
Zn(CH3COO)2·2H2O Powder Reduction of CO2

300 W Xe lamp
with a UV cut-off
filter (λ > 420 nm)

[135]

NiAl2O4/GQDs Pyrolyzing,
coprecipitation

Citric acid,
ammonium oxalate,

Al(NO3)3·9H2O,
Ni(NO3)3·6H2O

Powder

Degradation of RhB,
MB, quinoline

yellow, eriochrome
black, phenol,

thiram
aqueous solution

SUNTEST CPS+
solar simulator [136]

BiOCl/GO Solvothermal,
electrospinning

PAN,
Bi(NO3)3·5H2O,

GO
Fiber Degradation of RhB

Solar simulator
(Sun 2000, ABET)
with a UV cut-off

filter
(λ > 440 nm)

[137]

NGO–QDs

Heat treatment
in NH3, modified

Hummers’
method

NH3,
GO Powder Water splitting

300 W Xenon
lamp with a UV

cut-off filter
(420 < λ < 800 nm)

[138]

Bi2TiO4F2/C60 Solvothermal
Bi(NO3)3·5H2O,

TiF4,
C60

Powder Degradation of RhB
300 W Xe lamp

with a cutoff filter
(λ > 420 nm)

[39]

Bis(4-pyridyl)
pyrrolidinofullerene/TiO2

Sol-gel

4-(aminomethyl)pyridine,
4-piridinecarboxaldehyde,

buckminsterfullerene,
Titanium isopropoxide,

porphyrin/phthalocyanine

Powder Degradation of MB
and phenol

A SUNTEST CPS+
solar simulator [140]

g-C3N4 Direct pyrolysis Dicyandiamide,
urea Powder Degradation of MB

500 W Xe with
a cutoff filter
(λ > 420 nm)

[145]

g-C3N4/CQDs Hydrothermal Citric acid,
urea Powder Degradation of

diclofenac

300 W Xe lamp
with a cutoff filter

(λ > 400 nm)
[155]

ZnO/ZIF–8/rGO/
Carbon-sponge Dipping-pyrolysis

Melamine foam,
Zn(NO3)2,

dimethylimidazole 3D monolithic Degradation of RhB
aqueous solution 300 W Xe lamp [167]

g-C3N4/GO aerogels

Modified
hummer’s

method,
hydrothermal,
freeze drying

Dicyandiamide,
graphite powder 3D monolithic Decomposition of

NO gas 300 W Xe lamp [168]

4. Summary and Perspectives

To fulfill the requirements of various photocatalytic processes, several novel and highly efficient
photocatalysts have been invented with the development of synthesis technologies. This review provided
a summary on the design and synthesis of carbonaceous photocatalysts for various applications of
environmental remediation and energy conversion. The highlighted carbonaceous photocatalysts in this
review mainly derive from activated carbon, carbon dots, carbon nanotubes/nanofibers, graphene, fullerene,
g-C3N4, and carbon sponges/aerogels. After a comprehensive evaluation of the corresponding synthesis
methods and the photocatalytic performances of the above-mentioned carbonaceous photocatalysts,
it could be concluded that carbonaceous materials, especially the nanocarbon materials, exhibit intriguing
ability in enhancing the photocatalytic performance of various photocatalysts. Although there are some
differences in the morphologies and instincts of the employed carbonaceous materials, the mechanism
for the enhancement of photocatalytic activity could be proposed as the following aspects: 1) with the
introduction of a carbon component, a great number of heterojunctions can be generated in the composite
of carbon/semiconductors, which effectively trap the generated electrons to suppress the recombination of
electron–hole pairs [29,48,169,170]. 2) Carbonaceous materials are capable of enhancing the visible light
absorption capacity and the electron transportation and separation efficiency of the composite could be
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significantly improved due to the good conductivity of carbon [171–174]. 3) Owing to the high surface
area of carbon phase, many more reaction sites are presented and the adsorption capacity of reactants are
significantly enhanced, therefore the availability of the photocatalysts could be improved. 4) The excellent
chemical/physical properties of carbon could ensure a good utilization stability of the carbonaceous
photocatalysts. Consequently, the carbonaceous photocatalysts have become a promising candidate for
the practical photocatalytic applications and even more new carbonaceous photocatalysts will be invented
in the near future.

Although several great advancements have been made in the development of carbonaceous
photocatalysts, there are still many critical limitations which need to be overcome to promote
their practical applications. Herein, we provide a brief summary of the existing challenges of
various carbonaceous materials and some plausible perspectives on the development of carbonaceous
photocatalysts, which can be summarized by the following points: 1) in most case, semiconductors are
loaded on the surface of a carbon matrix, the interface contact of carbon phase and semiconductors
are not so intimate, resulting in a limited bonding strength and electron transport ability. Therefore,
the basic properties of the carbonaceous photocatalysts, including the bandgap energy, charge
separation efficiency, and light absorption capacity of the photocatalysts, could be further improved
by optimizing the compatibility of carbon phase and the semiconductors. More attention could
be paid to the modification of carbon matrix via heteroatom doping (e.g., O, N, P) to improve the
surface activity of carbon and providing more active sites for the chemical anchor of semiconductors.
2) The nanostructured carbons, such as the carbon dots, CNT, and graphene, are efficient in enhancing
the photocatalytic activity of the composite photocatalysts, however the powdered morphology in the
macroscale make them quite difficult to recycle after the reaction, and a secondary pollution may
be generated if the powdered photocatalysts are leaked by accident. Therefore, the 3D monolithic
photocatalysts are preferred and a few 3D carbonaceous photocatalysts have been developed. However,
the mechanical strength of 3D monolithic substrates and the bonding strength of the semiconductors
with those carbonaceous substrates need to be further enhanced to ensure good stability and more
attention could be paid to the direct assembly of the carbon/semiconductor composite via the 3D casting
techniques. 3) Carbon is an earth-abundant element, however, the carbonaceous materials just act as
substrates and co-catalysts in the composite system due to their poor photocatalytic activity, while most
of the “leading role” semiconductors are limited. Therefore, it is very important to reveal the mechanism
of carbon for enhancing the photocatalytic performance, which is not so clear now. By understanding
the enhancing mechanism, the utilization of the semiconductors could be more efficient, thus the cost
of composite photocatalysts could be reduced, which is crucial for the practical applications. For the
study of photocatalytic mechanisms of various carbonaceous photocatalysts, more attention could
be paid to establishing a comparable testing standard at first, and the existing fundamentals, such as
p–n junctions, heterojunctions, Z-scheme systems, Schottky junctions, and phase and facet junctions,
should be comprehensively considered. 4) The design of carbonaceous photocatalytic materials should
sufficiently consider their applications and commercial benefits, and explore environmentally friendly
and energy-saving synthesis strategies.

In summary, carbonaceous materials have been proven to be of significant importance for the
design and synthesis of advanced photocatalysts and a great deal of carbonaceous photocatalysts have
been developed. The impressive advancements of the carbonaceous photocatalysts open an avenue
for exploring the application of carbon in the area of photocatalysis. Although there are still several
challenges, the great merits of various carbon materials and their tunable properties offer numerous
opportunities for the development of novel carbonaceous photocatalysts with intriguing specific
functions, and good practical performance both in scientific and industrial communities. Finally,
we anticipate this review could provide some guidance for the design and synthesis of the next
generation of carbonaceous photocatalysts for different applications.
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