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Abstract: This paper reports low temperature solution processed ZnO thin film transistors (TFTs),
and the effects of interfacial passivation of a 4-chlorobenzoic acid (PCBA) layer on device performance.
It was found that the ZnO TFTs with PCBA interfacial modification layers exhibited a higher
electron mobility of 4.50 cm2 V−1 s−1 compared to the pristine ZnO TFTs with a charge carrier
mobility of 2.70 cm2 V−1 s−1. Moreover, the ZnO TFTs with interfacial modification layers could
significantly improve device shelf-life stability and bias stress stability compared to the pristine ZnO
TFTs. Most importantly, interfacial modification layers could also decrease the contact potential
barrier between the source/drain electrodes and the ZnO films when using high work-function
metals such as Ag and Au. These results indicate that high performance TFTs can be obtained with a
low temperature solution process with interfacial modification layers, which strongly implies further
potential for their applications.

Keywords: ZnO thin film transistors; solution process; interfacial modification layers; stability;
contact potential barrier

1. Introduction

Over the past few years, metal oxide semiconductors have attracted much attention because of
their high charge carrier mobility, high optical transparency in the visible region, wide band gap,
etc. [1–6]. Therefore, metal oxide thin film transistors (TFT) have wide application prospects in the
next generation displays, such as transparent displays, 3-dimensional (3D) displays, and active-matrix
organic light emitting diode displays (AMOLEDs) [3–8]. Among these metal oxide semiconductors,
ZnO with a wide band gap (3.3–3.4 eV) has been one of the most investigated materials due to its high
optical transparency and good electrical properties [9–11]. Most of these metal oxide semiconductors
with superior performance are usually manufactured using expensive vacuum deposition methods
such as radio frequency (RF) sputtering [12], atomic layer deposition (ALD) [13], chemical vapor
deposition [14] etc. Therefore, the manufacturing cost of these vacuum-based deposited semiconductor
materials is high. Moreover, these deposition techniques cannot be used in large-area-thin-film
fabrication as well as flexible devices [15]. Fortunately, a solution process has been widely used to
form metal oxide thin films due to its simplicity, low fabrication cost, and large-area processability.
At the same time, the solution processed metal oxide film can exhibit amorphous states with high
charge carrier mobility. This is very desirable for flexible devices since amorphous oxide is insensitive
to mechanical stress [3,16]. In recent years, the solution process has been widely used to form ZnO
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thin films at a low temperature [16–21]. Nevertheless, the relatively low intrinsic mobility of the low
temperature solution processed ZnO limits the further improvement of the ZnO based TFT device
performance. Thus, various methods have been used to enhance the ZnO TFT performance and
stability [9,18,20,22,23].

On the other hand, previous studies have shown that adsorbed ambient species such as oxygen
(O2) and water on the back channels of metal oxide TFTs can affect the device stability by providing
acceptor or donor states [9,20,24,25]. For example, oxygen molecules as electron acceptor states can
form a depletion layer and cause a positive threshold voltage (Vth) shift, while water molecules as
electron donor states can form an accumulation layer and cause a negative Vth shift. Hence, several
methods have been employed to passivate the metal oxide back channel to minimize the Vth shifts.
Among them, self-assembled monolayer (SAM) passivation is simple and controllable, and compatible
with flexible electronics. For example, Peng et al. used octadecyltriethoxysilane (OTES) to treat indium
gallium zinc oxide (IGZO) surface to enhance the device performance and electrical stability [26].

In this study, a new SAM 4-chlorobenzoic acid compound, as the surface modification layer, was
employed to passivate the low temperature solution processed ZnO TFTs and improve the device
performance as well as device stability. It was found that the charge carrier mobilities and stability
in the air were improved after effectively passivating the surface traps of the ZnO thin films using
interfacial modification layers. Moreover, the contact potential barrier between the source/drain
electrodes and ZnO could be decreased when using high work-function metals, such as Ag and Au.

2. Materials and Methods

2.1. Materials

Zinc oxide (ZnO, 99.9%) was purchased from Sigma–Aldrich (Saint Louis, MI, USA). Ammonium
solution (≥28%, NH3 in H2O) was obtained from Aladdin (Hamden, CT, USA). 4-chlorobenzoic acid
(PCBA, 98%) and isopropyl alcohol (IPA, 99.5%) were bought from Sigma–Aldrich. All the materials
were used as received without further purification.

2.2. Thin Films Preparation

The ZnO precursor solution (8 mg/mL) was prepared by dissolving ZnO powder directly in the
ammonium solution to form a Zn(NH3)4

2+ complex precursor solution. To make sure the ZnO powder
was dissolved completely, the solution was refrigerated for several hours. Then, 4-chlorobenzoic acid
(PCBA) was dissolved in isopropyl alcohol to form a 0.10 M PCBA solution.

2.3. Film Formation and Device Fabrication

A heavily p-doped Si wafer acted as gate electrode and the substrate, and a 200-nm-thick SiO2

layer thermally grown on a Si wafer with a resistivity of 0.01–0.05 Ω·cm acted as the dielectric layer.
First, the Si substrate with SiO2 was cleaned ultrasonically in acetone, absolute ethanol, and de-ionized
water. Then, to remove the surface residues and promote the formation of metal oxide thin film, an O2

plasma treatment (10 min, 20 W) was carried out. After that, the ZnO precursors were spin coated
at 3000 rpm for 30 s to form the ZnO thin film and annealed on a hot plate at 150–300 ◦C for 10 min.
The same spin-coating and annealing procedure was repeated once more to obtain the desired thickness
(~10 nm) for ZnO thin film. Then, the substrates with the ZnO thin films were annealed on the hot plate
at 150–300 ◦C for 40 min in ambient air. After this, for self-assembled monolayer (SAM) interfacial
modification, PCBA solution was spin coated at 3000 rpm for 30 s to form interfacial modification
layers. Finally, the devices were finished by thermally evaporating 100 nm thick Al or Ag source/drain
electrodes on the top of the ZnO thin films with a patterned shadow mask. The channel width (W)
and channel length (L) of TFTs are 1000 µm and 100 µm, respectively. The thin film transistors were
determined with an Agilent 1500 semiconductor parameter analyzer under ambient in the dark on
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a custom probe station at room temperature. The following equation device was used to extract the
field-effect mobility (µsat) from the saturation regime of the transfer curve:

ID = µsatCi
W
2L

(VG −Vth)
2 (1)

where ID accounts for the drain to source current, µsat is the field-effect mobility, Ci is the capacitance
per unit area of the gate dielectric (SiO2 = 200 nm, Ci =17.3 nF·cm−2), VG is gate voltage, Vth is threshold
voltage, and W and L are channel width and length, respectively.

2.4. Device Characterization

A UV-visible spectrophotometer (Perkin-Elmer Lambda 950, Waltham, MA, USA) was employed
to investigate the transmittance of the ZnO film deposited on the sapphire substrate. Atomic force
microscopy (AFM, Bruker Dimension Icon, Bruker, Karlsruhe, Germany) measurement was carried out
to study the ZnO thin film surface morphology and the roughness. X-ray photoelectron spectroscopy
(XPS) experiments were taken at the Escalab 250i using monochromatic Al-Ka (1486.6 eV) as the
radiation source.

3. Results

ZnO thin film preparation was carried out according to a previously reported method [9,22].
Firstly, the ZnO thin film quality was evaluated by various techniques. The optical transmission
spectrum of the ZnO thin film characterized by UV–Vis spectroscopy on the sapphire substrate is
shown in Figure 1a. Figure 1b shows the relationship between the absorption coefficient and photon
energy extracted from the transmittance spectrum. The optical bandgap of ZnO thin film was obtained
by extrapolating the linear part of the plot to the X axis. The equation T = Aexp(−αd) was used to
calculate the absorption coefficient α, where T is the ZnO film transmittance, A is a constant and
approximate unity, and d accounts for the thickness of ZnO film. The ZnO optical bandgap can be
calculated with the Tauc model from the high absorbance region: αhυ = D(hυ − Eg)n, where hυ accounts
for the photon energy, Eg is the optical bandgap, D is a constant, and n is equal to 1/2. By plotting
(αhυ)2 versus hυ, the ZnO optical bandgap can be easily obtained. The ZnO thin film possesses a good
transparency in the visible region and its optical bandgap is 3.35 eV, which is consistent with that of
ZnO reported in the literature [20].

An XPS experiment was undertaken to investigate the chemical and structural information of
the ZnO thin film in this study. Figure 1c,d display the detailed C1s (Figure 1c) and O1s (Figure 1d)
scans. For C1s core levels, the reference peak used was located at 284.6 eV. The higher binding energy
peaks were assigned to carbon oxide groups. The three O1s core level peaks centered at ~529.90 eV,
~531.20 eV. and ~532.10 eV corresponded to oxygen in the metal-oxide lattice (M-O), oxygen vacancies
(Vo). and oxygen in the hydroxide-related species (M-OH), respectively, and the ratios of these three
peaks were 59.2%, 26.6% and 14.2%, respectively. More metal hydroxide and oxygen vacancies in the
ZnO thin film mean more surface traps, which could affect the charge carrier mobility, leading to poor
device performance of the TFT [27–29].

The surface morphologies of pristine ZnO and ZnO with PCBA interfacial modification layer thin
films were studied by AFM, as shown in Figure 2a,b. The root mean square (RMS) surface roughnesses
of the pristine ZnO and ZnO with PCBA interfacial modification layers are 0.63 nm, and 0.76 nm,
respectively. The RMS values are very low and beneficial for achieving high device performance.
To gain further insights into the microstructural properties of the ZnO thin film, High-resolution
transmission electron microscopy (HR-TEM) was tested. Figure 2c showed the HR-TEM images from
the lower to higher magnification of the ZnO cross section. The polycrystalline domains with clear
lattice fringes could be observed and a lattice spacing of around 0.275 nm could be deduced from
these images.
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Figure 1. (a) Optical transmission spectrum of the ZnO thin film on the sapphire substrate. (b) The 
absorption coefficient as a function of photon energy of ZnO thin film annealed at 300 °C. X-ray 
photoelectron spectroscopy (XPS) spectra of the C1s (c) and O1s (d) core level lines for the solution 
processed ZnO thin film annealed at 300 °C. 
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thin films were studied by AFM, as shown in Figure 2a,b. The root mean square (RMS) surface 
roughnesses of the pristine ZnO and ZnO with PCBA interfacial modification layers are 0.63 nm, and 
0.76 nm, respectively. The RMS values are very low and beneficial for achieving high device 
performance. To gain further insights into the microstructural properties of the ZnO thin film, High-
resolution transmission electron microscopy (HR-TEM) was tested. Figure 2c showed the HR-TEM 
images from the lower to higher magnification of the ZnO cross section. The polycrystalline domains 
with clear lattice fringes could be observed and a lattice spacing of around 0.275 nm could be deduced 
from these images. 
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Figure 1. (a) Optical transmission spectrum of the ZnO thin film on the sapphire substrate. (b) The
absorption coefficient as a function of photon energy of ZnO thin film annealed at 300 ◦C. X-ray
photoelectron spectroscopy (XPS) spectra of the C1s (c) and O1s (d) core level lines for the solution
processed ZnO thin film annealed at 300 ◦C.
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Figure 2. Atomic force microscopy (AFM) images of the pristine ZnO (a) and the ZnO with 4-
chlorobenzoic acid (PCBA) interfacial modification layers (b). Cross-sectional high-resolution 
transmission electron microscopy (HR-TEM) images of the solution-processed ZnO films on the SiO2 
substrates (c). 
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geometry of the transistors and the occurring fringing current caused by the unpatterned gate 
electrode. From Figure 3b,c, less hysteresis of the transfer curves was observed due to fewer surface 
traps existing in the ZnO thin films. The trap concentration can be estimated by the displacement of 
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modification layers were calculated to be 3.50 × 105 Ω and 1.34 × 105 Ω, respectively. Through the 
interfacial modification, the contact resistance of the TFTs could be reduced effectively. Thus, we 
arrived at the conclusion that through interfacial modification, the device performance was improved 
with reduced surface traps and contact resistance. Meanwhile, Vth was also reduced, indicating that 
the surface traps were effectively passivated and the contact resistance decreased. 

Figure 2. Atomic force microscopy (AFM) images of the pristine ZnO (a) and the ZnO with
4-chlorobenzoic acid (PCBA) interfacial modification layers (b). Cross-sectional high-resolution
transmission electron microscopy (HR-TEM) images of the solution-processed ZnO films on the
SiO2 substrates (c).

In this study, the bottom-gate top-contact TFT structure was used to evaluate the electrical
properties of the ZnO thin films with and without the interfacial modification layers, as shown in
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Figure 3. The channel width (W) and channel length (L) of the TFT were 1000 µm and 100 µm,
respectively. The transfer and output characteristics of the pristine ZnO TFTs and the ZnO TFTs
with PCBA interfacial modification layers are shown in Figure 3, and the electrical characteristic
parameters are summarized in Table 1. N-type response could be observed from typical output and
transfer characteristics of the corresponding devices. From Figure 3 and Table 1, it was found that the
device performance was improved through interfacial modification, and the ZnO TFTs with PCBA
interfacial modification exhibited higher field effect mobility (4.50 cm2 V−1 s−1) compared to the
pristine ZnO TFTs (2.70 cm2 V−1 s−1). At lower annealing temperature (150 ◦C), the devices showed
a similar trend (Figures S1 and S2). The extracted field-effect mobility could be overestimated due
to the geometry of the transistors and the occurring fringing current caused by the unpatterned gate
electrode. From Figure 3b,c, less hysteresis of the transfer curves was observed due to fewer surface
traps existing in the ZnO thin films. The trap concentration can be estimated by the displacement of
Vth (Ntr = Ci4Vth/e, where Ntr is the trap concentration, Ci is the gate capacitance per unit area, and e
is the elementary charge). The surface trap concentrations of the ZnO thin film and the ZnO thin film
with PCBA interfacial modification layers were calculated to be 3.7 × 1011 cm−2 and 5.5 × 1010 cm−2,
respectively. It was found that through interfacial modification, the surface traps could be reduced
effectively. The contact resistance (RC, between the source/drain electrodes and the semiconductor)
of TFTs can be estimated using the ideal formula in the linear region of the TFT characteristics: RC
= VDS/ID. The contact resistances of the pristine ZnO TFTs and the ZnO TFTs with PCBA interfacial
modification layers were calculated to be 3.50 × 105 Ω and 1.34 × 105 Ω, respectively. Through the
interfacial modification, the contact resistance of the TFTs could be reduced effectively. Thus, we
arrived at the conclusion that through interfacial modification, the device performance was improved
with reduced surface traps and contact resistance. Meanwhile, Vth was also reduced, indicating that
the surface traps were effectively passivated and the contact resistance decreased.
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Figure 3. (a) Schematic of the thin film transistors (TFTs) structure. (b–f) Typical average transfer and
output characteristics of the pristine ZnO TFTs (b,e), the ZnO TFTs with PCBA interfacial modification
layers (c,f), and the transfer characteristics of the pristine ZnO TFTs and the ZnO TFTs with PCBA
interfacial modification layers (d).
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Table 1. The electrical characteristics of the pristine ZnO thin film transistors (TFTs) and the ZnO
TFTs with 4-chlorobenzoic acid (PCBA) interfacial modification layers with Al electrodes. The average
results are calculated based on 12 devices.

Condition Aging time µave (cm2 V−1 s−1) Vth (V) Ion/off Water Contact Angle

Pristine ZnO
initial 2.70 ± 0.21 20–25 106–107

32◦after 7 days 2.80 ± 0.10 23–25 104–105

after 15 days 1.60 ± 0.30 10–14 103–104

ZnO with
PCBA layers

initial 4.50 ± 0.10 18–22 106–107

76◦after 7 days 3.40 ± 0.10 17–20 105–106

after 15 days 2.20 ± 0.15 14–18 104–105

The stability performance of the metal oxide TFTs could be evaluated by measurements of device
shelf-life stability and bias stress stability. For the metal oxide TFTs, because pristine ZnO thin film
can be easily aged/doped in ambient air by water molecules and oxygen, which is harmful for the
device on/off ratio, the device shelf-life stability under air ambient condition plays an important role.
We exposed the TFTs to ambient air with 40% relative humidity (RH) to test the device shelf-life stability,
and the results are shown in Figure 4. It was found that the ZnO TFTs were unstable after 15 days
because the off current increased from 10−10 A to 10−7 A and Vth shift was obvious. The off current of
the ZnO TFTs with PCBA interfacial modification layers also slightly increased with less Vth shift after
15 days. Hence, the device shelf-life stability was improved with interfacial modification layers.
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In order to obtain information for the enhanced air stability, water contact angle measurements
were performed to afford the surface energy information for pristine ZnO and PCBA treated ZnO.
As shown in Table 1 and Figure 4c,d, the pristine ZnO film exhibited a water contact angle of 32◦,
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and after PCBA treatment, the contact angle increased to 76◦. This indicates that the surface energy
of ZnO is lowered by PCBA treatment according to Young’s equation [30]. Generally speaking,
some molecules are easily absorbed onto the ZnO surface, and affect the device stability due to the
absorption–desorption effect. After surface treatment, the surface becomes hydrophobic and reduces
the absorption–desorption effect on the ZnO surface, which is beneficial for good air stability. This can
be easily understood as PCBA has a carboxyl group in the chemical structure, and can react with the
hydroxyl group at the ZnO surface to form a chemical bond, and hence the treatment reduced the
hydroxyl group and surface absorbed species.

The device bias stress stability which is commonly measured by the Vth shift is also significant for
metal oxide TFTs. Figure 5 shows the bias stress test of the pristine ZnO TFTs and the ZnO TFTs with
PCBA interfacial modification layers with a +20 V gate bias. It was found that the Vth shift increased
with the increase of stress time. It was simply shifted along the VG axis without the transfer curve itself
changing. From Figure 5, it can be seen that under constant stress condition of a gate bias of +20 V for
1000 s, the pristine ZnO TFTs and the ZnO TFTs with PCBA interfacial modification layers exhibited a
Vth shift of 5.50 V, and 4.25 V, respectively. Since the interfacial modification layers could passivate
the ZnO surface traps, the absorbed water and oxygen induced stress instabilities could be relieved.
Hence, interfacial modification layers could enhance the bias stress stability of devices.Materials 2018, 11, x FOR PEER REVIEW  8 of 12 
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Figure 5. The bias stress stability of the pristine ZnO TFTs (a) and the ZnO TFTs with PCBA interfacial
modification layers (b) with a gate bias of +20 V. (Black: initial; Red: stress10 s; Blue: stress100 s;
Magenta: stress1000 s). The bias stress stability of the pristine ZnO TFTs (c) and the ZnO TFTs with
PCBA interfacial modification layers (d) with a gate bias of +20 V for 1000 s.

In order to further investigate whether interfacial modification layers can optimize the interface
contact between the source/drain electrodes and ZnO, we fabricated ZnO TFTs using high
work-function Ag electrodes which were deposited on top of the ZnO thin film and interfacial
modification layer with a shadow mask. As reported previously, Ag is a promising candidate for
solution processed S/D contacts since Ag is resistant to oxidation, highly electrically conductive, and
commercially available as an ink for different printing methods like inkjet printing [31–34]. Moreover,
nanoparticle Ag inks could enable low temperature production of conductive films [31]. However,
high contact resistance exists at the Ag electrode/semiconductor interface due to the spatial potential
barrier existing at the Ag/metal oxide interface, which limits charge carrier mobilities and reduces the
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device performance [35]. Hence, proper interface modification could solve this problem. The average
transfer and output characteristics of the pristine ZnO TFTs and the ZnO TFTs with PCBA interfacial
modification layers are shown in Figure 6. The pristine ZnO TFTs exhibited a poor electron injection
behavior with a low current of 10−6 A and large on voltage of near 30 V. The poor electrical behavior of
the Ag based device is probably caused by the AgOx formed at the Ag/ZnO interface, and the induced
large potential barrier for electron injection [35]. However, the ZnO TFTs with PCBA interfacial
modification layers exhibited an improved charge carrier mobility of 0.65 cm2 V−1 s−1 compared to
pristine ZnO TFTs (0.025 cm2 V−1 s−1). Meanwhile, the drain current was significantly enhanced, and
the on voltage decreased to around 0 V. The electrical characteristic parameters of pristine ZnO TFTs
and ZnO TFTs with PCBA modification are summarized in Table 2. From Figure 6 and Table 2, we can
also obtain the fact that through interfacial modification, the device performance was improved with
reduced contact resistance and enhanced electron injection from Ag electrodes to ZnO films.Materials 2018, 11, x FOR PEER REVIEW  9 of 12 
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Figure 6. Transfer and output characteristics of the pristine ZnO TFTs (a,c) and the ZnO TFTs with
PCBA interfacial modification layers (b,d) with Ag electrode.
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Table 2. The electrical characteristics of the pristine ZnO TFTs and the ZnO TFTs with PCBA interfacial
modification layers with Ag electrode.

Condition Aging Time µave (cm2 V−1 s−1) Vth (V) Ion/off

Pristine ZnO
initial 0.025 ± 0.03 45–60 105–106

after 7 days 0.010 ± 0.04 38–45 103–104

ZnO with PCBA layers initial 0.60 ± 0.05 40–48 105–106

after 7 days 0.20 ± 0.02 36–42 104–105

4. Conclusions

To summarize, we successfully fabricated solution processed ZnO thin film transistors and
improved the device performance with interfacial modification layers. It was found that the ZnO
TFTs with PCBA interfacial modification layers could improve the device electron mobility compared
to the pristine ZnO TFTs. Furthermore, compared to the pristine ZnO TFTs, the ZnO TFTs with
interfacial modification layers could improve both device bias stress stability, and shelf-life stability.
Most importantly, interfacial modification layers could decrease the contact potential barrier between
the source/drain electrodes and ZnO when using high work-function metals. Our results suggest
that high performance TFTs can be obtained with a low temperature solution process with interfacial
modification layers.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/9/1761/
s1. Figure S1: Average transfer characteristics of pristine ZnO TFTs with different annealing temperatures.
The average charge carrier mobility is calculated to be around 0.65 cm2 V−1 s−1, Figure S2: Average transfer
characteristics of ZnO TFTs without and with PCBA treatment.
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