
materials

Article

Control of the Nucleation Density of Molybdenum
Disulfide in Large-Scale Synthesis Using Chemical
Vapor Deposition

Haitao Xu 1, Weipeng Zhou 1, Xiaowu Zheng 1, Jiayao Huang 1, Xiliang Feng 1, Li Ye 1,
Guanjin Xu 1 and Fang Lin 1,2,*

1 College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China;
xuhaitao@scau.edu.cn (H.X.); weipengzhou@stu.scau.edu.cn (W.Z.); xiaowuzheng@stu.scau.edu.cn (X.Z.);
huangjiayao@casachina.com.cn (J.H.); fengxiliang@stu.scau.edu.cn (X.F.);
yel17@mails.tsinghua.edu.cn (L.Y.); xuguanjin@stu.scau.edu.cn (G.X.)

2 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University,
Hangzhou 310027, China

* Correspondence: linfang@scau.edu.cn; Tel.: +86-135-6005-5393

Received: 28 April 2018; Accepted: 20 May 2018; Published: 23 May 2018
����������
�������

Abstract: Atmospheric pressure chemical vapor deposition (CVD) is presently a promising approach
for preparing two-dimensional (2D) MoS2 crystals at high temperatures on SiO2/Si substrates. In this
work, we propose an improved CVD method without hydrogen, which can increase formula flexibility
by controlling the heating temperature of MoO3 powder and sulfur powder. The results show that
the size and coverage of MoS2 domains vary largely, from discrete triangles to continuous film,
on substrate. We find that the formation of MoS2 domains is dependent on the nucleation density
of MoS2. Laminar flow theory is employed to elucidate the cause of the different shapes of MoS2

domains. The distribution of carrier gas speeds at the substrate surface leads to a change of nucleation
density and a variation of domain morphology. Thus, nucleation density and domain morphology can
be actively controlled by adjusting the carrier gas flow rate in the experimental system. These results
are of significance for understanding the growth regulation of 2D MoS2 crystals.

Keywords: 2D MoS2 crystal; chemical vapor deposition; nucleation density; carrier gas flow rate

1. Introduction

As one kind of transition metal dichalcogenide (TMD) [1], molybdenum disulfide (MoS2) is the
best known material for two-dimensional (2D) crystal research after graphene [2]. With its reduced
number of layers, MoS2 exhibits many excellent properties [3,4], such as good optical transparency [5],
high electron mobility (up to 200 cm2/V·s), and direct band-gap structure (Eg = 1.8 eV) [6]. It can be
employed to fabricate field effect transistors (FETs) with a high current on/off ratio [5,7], sensitive
photodetectors [8,9], light emitting diodes (LEDs) [10,11], and heterojunction solar cells [12,13]. Thus,
due to its unique semiconductor properties and wide applications, 2D MoS2 attracts great attention.
It is considered a potential candidate in atomic-scale semiconductor science [14,15].

Recently, the main preparation methods of MoS2 have included hydrothermal synthesis [16],
tape auxiliary mechanical exfoliation [17], liquid-phase exfoliation [14], physical vapor deposition
(PVD) [18], and chemical vapor deposition (CVD) [19]. Compared with other methods, CVD is an
efficient method to massively synthesize an MoS2 coating. The CVD method can also alter the shape
of MoS2 domains from triangular nanosheets to continuous films by controlling synthesis parameters,
such as the quantity of the reactants, the temperature of precursors, and the carrier gas flow rate.
Previous studies have proven that the nucleation density of MoS2 played a key role in the deposition
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process, leading to the quality and shape control of MoS2 domains [20–25]. It is reported that, before
the growth of MoS2, adding a “seed layer” on the substrates can adjust the nucleation density of MoS2

and control the shape of MoS2 domains [20–22]. With its hexagonal lattice structure, graphene can
be chosen as a seed layer to form MoS2 nuclei. However, the pre-treatment process of adding a seed
layer requires the addition of steps to the CVD method, and part of the seed material is toxic [21].
The rest of the seed compound will introduce an unfavorable factor in changing the electronic or
optical characteristics of MoS2 samples. Hence, it is necessary to find a simplified process to control
the nucleation density of MoS2.

In this paper, we propose a simple CVD method at atmospheric pressure without hydrogen
which can increase formula flexibility by controlling the heating temperature of MoO3 powder and
sulfur powder. The results show that the size of MoS2 grown domains is 10 µm with fast growth.
The shape of MoS2 domains vary widely, from discrete darts and triangles to continuous film, on
substrate. We deduce that the carrier flow rate distribution in the quartz tube leads to a variation in the
nucleation density of MoS2, resulting in the eventual shape distribution of MoS2 domains. Therefore,
controlling the carrier gas flow rate can be an effective approach to controlling the shape and coverage
of MoS2 domains in the CVD method. These results are of significance for understanding the growth
regulation of 2D MoS2.

2. Materials and Methods

2.1. Synthesis Precursor

As shown in Figure 1, high-purity sulfur (S) and molybdenum trioxide (MoO3) powder
(Alfa Aesar, >99.9%) were used as raw materials for the synthesis of MoS2. SiO2/Si substrates
were ultra-sonically cleaned with alcohol and deionized water. MoO3 powder (0.1 mg) was grounded
into four average parts by SiO2/Si substrates and placed in a double-open quartz boat a small distance
apart from another. Another four pieces of clean SiO2/Si substrates were placed on the top of quartz
boat, which were seated face-down to the MoO3 powder. All of them were situated in the center
position of furnace 2. Then, S powder (10 mg) was placed in another double-open quartz boat.
They were also transferred into the center of furnace 1. To ensure the vapor concentration of S can
be distributed equally on each slice of SiO2/Si substrate, we set the distance between the two quartz
boats at 24 cm. We employed high-purity (99.999%) argon (Ar) as a carrier gas to avoid the oxidation
of MoS2 products and control the reaction rates during synthesis. The gas flow rate was precisely
controlled by a commercial gas flow controller.
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Figure 1. (a) Schematic of the CVD (chemical vapor deposition) experimental device. (b)Temperature
control process of MoO3 and S in the CVD system.
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2.2. Synthesis Procedure

Atmospheric pressure CVD method is used to prepare MoS2 samples. The schematic of the CVD
system configuration was shown in Figure 1a. The programming of the temperature control process of
furnace was shown in Figure 1b.

The synthesis procedure included two steps. In step 1, while keeping a flow rate of 100 sccm,
MoO3 was heated to 550 ◦C at a constant rate of temperature (29 ◦C/min) in an Ar atmosphere.
In step 2, to carefully control evaporation, MoO3 was slowly heated to 700 ◦C (6.8 ◦C/min) and the
temperature kept at 700 ◦C for 1 min. After step 1, S power was heated rapidly to 180 ◦C in furnace
1. After 23 min of sulfurization, the furnaces were shut down and the samples were cooled down to
room temperature.

2.3. Characterizations

Optical microscope (OM) images of MoS2 domains were observed using the Nikon Eclipse Ti-U
(Nikon, Tokyo, Japan) and Mshot MJ30 (Mshot, Guangzhou, China). Scanning electron microscopy
(SEM) images were acquired using a FEI Quanta 450. Raman (FEI Quanta, Hillsboro, OR, USA)
and photoluminescence (PL) spectroscopy were performed using a Renishaw inVia Reflex system
(Renishaw, Wharton Andech, UK) with a Leica dark-field microscope. The wavelength of the excitation
laser was 532 nm, and the focus diameter was approximately 1 µm. The surface feature and film
thickness of MoS2 domains were measured by an atomic force microscope (AFM, NTEGRA Spectra,
NT-MDT, Moscow, Russia).

3. Results and Discussion

The crystal features of MoS2 grown on the SiO2/Si substrates were analyzed. As shown in
Figure 2a, MoS2 nanosheets are successfully deposited on the SiO2/Si substrate. According to the
optical contrast of MoS2 nanosheets [23], the film thickness in the inner position of the sample is
relatively thinner than that in the edge position. In order to further investigate the surface morphology
of the sample, we used SEM to examine the MoS2 nanosheets. In Figure 2b, we can find a distinct
layered effect where the color depth in the edge position of the sample is deeper than that in the
internal position. This is similar to the thickness distribution of MoS2 nanosheets observed using OM.

To further confirm the number of layers, we chose two spots in the sample to be characterized
by Raman and PL spectroscopy. One spot (blue spot) is in the internal position (region 1) and the
other spot (red point) is in the edge position (region 2). It was found that there were two obvious
Raman peaks in Figure 2c. E1

2g represents the in-plane vibrational mode between the molybdenum
atom and the sulfur atom. A1

g stands for the out-of-plane vibrational mode between sulfur atoms [24].
∆k, the Raman frequency difference between E1

2g and A1
g, can determine the number of layers [25].

The two Raman peaks of the blue spot are located at 384.14 and 404.96 cm−1, so the ∆k is 20.82 cm−1.
This ∆k corresponds to monolayer MoS2 [26]. Similarly, in the red spot, the two Raman peaks
are located at 384.30 and 409.01 cm−1, and the ∆k is 24.71 cm−1, which corresponds to few-layer
MoS2 [15,26]. With the decreased number of layers, the band-gap of MoS2 gradually shifts from
the indirect band-gap to the direct band-gap. In terms of Figure 2d, the PL spectra of monolayer
MoS2 in the blue spot, we can see two resonant points at 678.5 nm (1.82 eV) and 622 nm (1.99 eV).
The two resonant points correspond to A1 (the maximal splitting valence band) and B1 (the minimum
conduction band), the direct exciton transition of monolayer MoS2. The PL spectra was fitted with
Gaussian curves. The full width at half maximum (FWHM) of peak at 678.5 nm is 30.2 nm and that of
622 nm is 23.8 nm. On the other hand, the PL spectra of few-layer MoS2 in the red spot show weak PL
intensity. The A1 peak is at 672 nm (1.84 eV), and the B1 peak is at 622 nm (1.99 eV). Furthermore, we
used AFM to measure the thickness of the sample. According to the measurement results shown in
Figure 2e, the height (marked with a white line) between the internal position and the edge position of
the sample is h = 2.4 nm. The height (labeled with a white line) between the edge position and the
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substrate is H = 3.3 nm. Thus, the height between the internal position and the substrate is about 0.9
nm, which is consistent with the thickness of monolayer MoS2 [27].
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Figure 2. (a) Optical images for the MoS2 sample. (b) SEM (Scanning electron microscopy) images of
the MoS2 sample. (c) The Raman spectroscopy images of the colored circular points corresponding
to the areas marked 1 and 2 in (a). The laser wavelength was 532 nm. (d) The photoluminescence
spectroscopy image of the colored circular points corresponding to the two areas marked 1 and 2 in
(a). The laser wavelength was 532 nm. (e) An AFM (atomic force microscope) image of the triangle
MoS2 sample. The height between the internal position and the edge position of the product (white
measurement line, marked h) is 2.4 nm, and the height between the edge position and the SiO2/Si
substrate (black measuring line, marked H) is 3.3 nm.

The size and coverage of the MoS2 domains are highly dependent on the distribution of the
samples in the spatial location of the substrate [27]. To better observe this phenomenon, we created
an XY-coordinate system where the bottom left corner of a substrate (Figure 3a) is taken as the origin
O. As shown in Figure 3b, the y-axis is along the airflow and the x-axis is vertical the airflow. In the
rectangular coordinate system, at y = 1.0 mm, 10 points were selected on the x-axis (in the direction of
vertical airflow) for observation. According to the distribution characteristics of MoS2 domains, nine
representative images were selected for display, as shown in Figure 3c–k. At x = 0.1 mm (Figure 3c),
owing to the low evaporation concentration of MoO3, only small black nuclei appeared on the SiO2/Si
substrate. At x = 1 mm (Figure 3d), the generated MoS2 domain appeared as small triangles and darts
discretely. The triangular side of the largest domain reached up to 7 µm. At x = 1.5 mm (Figure 3e),
with a larger domain size, regular triangles were formed. The side length of the largest triangular
domain is about 15 µm. At x = 2.5 mm (Figure 3f), it is observed that part of MoS2 triangles are
connected together to form some irregular film. The largest side of the triangular domain in this area
is above 20 µm. Furthermore, large-scale MoS2 film has continuous coverage in the range of x = 3.5 to
13.5 mm (Figure 3g). As depicted in Figure 3h–k, contrary to the distribution in Figure 3c–f, the size of
MoS2 samples decreases with the further increase of x. From y = 0 to 6.2 mm, a similar distribution of
the MoS2 samples can be found along the x direction.
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The differences of MoS2 domains in the direction vertical to the airflow (x-axis) are shown
distinctly in the above OM images. Along the x-axis, the shapes of MoS2 were changed in the following
order: small nucleated particles, small triangles, larger triangles, then large-sized film. Then, the film
size gradually shrunk and became sparser. From Figure 3c–f, it can be inferred that that the vapor
concentration of MoS2 increased continuously along the positive direction of the x-axis before MoS2

film formation. In Figure 3d, MoS2 domains would start growing from hexagonal nuclei with three
Mo-zz and three S-zz sides. In this area, the Mo:S ratio condition was <1:2 so that small triangles and
darts formed. From Figure 3f–h, it can be seen that a sufficient supply of MoS2 vapor results in large
triangles and continuous film. In this area, the Mo:S ratio condition was ≥1:2 [27]. After the vapor
concentration of MoS2 reached the maximum (i.e., filming phenomenon occurring), the MoS2 layer
began to become discontinuous with the growth of the x-axis (Figure 3h–k), presenting a relatively
sparse, discrete distribution of triangular MoS2 films. Meanwhile, there was a shrinkage in size and
quantity with respect to these triangles. Based on the above analysis, we can deduce that there was an
obviously a gradient distribution of MoS2 domain size in a cross-section vertical to the direction of
airflow due to the difference of MoS2 vapor concentration.

To explore the size distribution rule of the MoS2 domain on the substrate, we chose five sections,
as shown in Figure 3e–i. Each section had the same area (20,164 µm2) and labeled as Sections 1–5.
The number of effective nucleation points (i.e., the nucleation points with MoS2 geometric area greater
or equal to 0.5 µm2) and the nucleation density (i.e., the number of effective nucleation points per unit
area) within the chosen section were statistically measured. According to statistical numbers in Table 1,
the highest nucleation density is in Section 3, similar to the optical micrograph in Figure 3g. This area
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has the largest size of MoS2 film. Thus, the distribution rule of MoS2 domains on the substrate can
be summarized as follows. For the same substrate along the direction vertical to the airflow, the
nucleation density is related to the distance of the midcourt-line position of the substrate. The size of
MoS2 thin film is larger as the distance is closer. Inversely, the larger the distance is, the smaller the
size of the MoS2 thin film is and the fewer nucleation density of MoS2 is.

Table 1. A comparison of the number of effective nucleation points and the effective nucleation density
of MoS2 in the same area of different regions.

Section The Number of Effective
Nucleation Points of MoS2 (N)

The Effective Nucleation
Density of MoS2 (N/µm2)

Section 1 (Figure 3e) 207 0.0103
Section 2 (Figure 3f) 336 0.0167
Section 3 (Figure 3g) 784 0.0389
Section 4 (Figure 3h) 608 0.0302
Section 5 (Figure 3i) 72 0.0036

To explain the relationship between the nucleation density of MoS2 and the size distribution of
MoS2 domains, we employed the laminar flow theory to analyze the airflow distribution. The largest
speed of carrier airflow occurred in the center of the quartz tube, and the speed near the inwall of the
quartz tube is close to zero [28,29]. Thus, along the direction vertical to the airflow, the speed of the
carrier gas (Ar) is larger at the center surface of substrates than that their side. Since faster carrier gasses
can transport more reactants in the same time, the area with a faster carrier gas can form more effective
nucleation points, resulting in an increase of the crystal growth size [30]. As depicted in Figure 3g,
the nucleation density also increased in the center region of substrates and MoS2 film formed. On the
contrary, the area with a slower carrier gas can form less effective nucleation points, resulting in a
decrease of nucleation density. As shown in Figure 3g, it is noted that a high nucleation density will
increase growth points in the center area. An abundant supply of MoS2 vapor will make isolated MoS2

domains connect together. As shown in Figure 3e,i, when close to the side of the substrates, there
is lower nucleation density, and enough MoS2 vapor enables the growth of larger sized triangles in
this area. Furthermore, when at the side of the substrates, the lack of nuclei and vapor of MoS2 led
to small triangles and discrete darts. Thus, domain morphology is highly dependent on nucleation
density [31]. Thus, controlling the speed of carrier gas will be an effective approach for regulating
nucleation density. Using this approach can also adjust the formation of MoS2 domains [19,22].

To further explore the influence of carrier gas flow rates on the nucleation density, we prepared
MoS2 samples under the same conditions with different carrier gas flow rates, from 10, 40, 80, 120, 160,
200, to 240 sccm. Optical micrographs of MoS2 samples in the center point (x = 7.5 mm, y = 7.0 mm) of
substrates with different carrier gas flow rates are shown in Figure 4a–h. The relationship between
different carrier gas flow rates and their corresponding nucleation density is shown in Figure 4i.
While the gas flow rate was 10 sccm, the nucleation density of MoS2 was 0.0061 N/µm2. Only MoS2

nuclei were found on substrates (Figure 4a). Although low gas flow rates lead to high concentrations
of S vapor to fully sulfurize MoO3, it suffers from low transfer efficiency of the MoS2 vapor. As a
result, few MoS2 nuclei can be deposited on substrates. By increasing gas flow rates in the range of
0–160 sccm, the concentration of S vapor decreased, but the concentration of MoS2 vapor was still
enough. Therefore, the nucleation density of MoS2 increased. Thus, the growth of MoS2 was promoted
in low flow rates. While the gas flow rate was 160 sccm, nucleation density reached the top value of
0.2912 N/µm2 and large-scale films of MoS2 were formed (Figure 4e). Even gas flow rates further
increased from 160 to 280 sccm. The concentration of S vapor was not enough to maintain reactions of
MoS2 synthesizing [32]. Therefore, the nucleation density of MoS2 decreased and the shape of MoS2

domains changed from disconnected film, to large triangles, then to small triangles (Figure 4f–h). Thus,
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the growth of MoS2 was suppressed in high flow rates. Finally, according to these experiment results,
controlling the carrier gas flow rate can also control the shape and coverage of MoS2 domains.Materials 2018, 11, x FOR PEER REVIEW  7 of 9 
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Figure 4. Effects of different carry gas flow rate on the effective nucleation density of MoS2. (a–h) MoS2

optical microscopy images of samples grown on the SiO2/Si substrates with different gas flow rates:
10, 40, 80, 120, 160, 200, 240, and 280 sccm. Scale bar: 20 µm. (i) The relationship diagram between the
different carry gas flow rates (a–h) and the corresponding nucleation density of MoS2.

4. Conclusions

In summary, we have shown a simple CVD method to synthesize 2D MoS2 crystals at atmospheric
pressure. The results show that the size of MoS2 domains is 10 µm with fast growth. Raman, PL, and
AFM measurements demonstrate that the inner region of triangular MoS2 domains were monolayer
and the edge region were few-layer. It is observed that the shape of MoS2 domains vary from discrete
darts, to triangles, to continuous film on the substrate. We also explore the distribution rule of
synthesized MoS2 on SiO2/Si substrate. The nucleation density and the size and shape of MoS2

domains are related to the distance to the midcourt-line position of the substrate along the direction of
the airflow. We employed the laminar flow theory to comprehend this distribution rule. It is noted that
the changing the speed of the carrier gas at the substrate surface will control the nucleation density
and adjust the formation of MoS2 domains. Furthermore, we explore the relationship between the
carrier gas flow rate and the nucleation density. The results demonstrate that controlling the carrier gas
flow rate will be an effective approach to control the size and coverage of MoS2 domains. It provides a
valuable reference to understand the growth regulation of 2D MoS2.
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