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Abstract: The decoration of noble metal nanoparticles (NPs) on the surface of metal oxide
semiconductors to enhance material characteristics and gas-sensing performance has recently
attracted increasing attention from researchers worldwide. Here, we have synthesized porous silicon
(PS)/WO3 nanorods (NRs) functionalized with Pd NPs to enhance NO2 gas-sensing performance.
PS was first prepared using electrochemical methods and worked as a substrate. WO3 NRs were
synthesized by thermally oxidizing W film on the PS substrate. Pd NPs were decorated on the
surface of WO3 NRs via in-situ reduction of the Pd complex solution by using Pluronic P123 as
the reducing agent. The gas-sensing characteristics were tested at different gas concentrations and
different temperatures ranging from room temperature to 200 ◦C. Results revealed that, compared
with bare PS/WO3 NRs and Si/WO3 NRs functionalized with Pd NPs, the Pd-decorated PS/WO3

NRs exhibited higher and quicker responses to NO2, with a detection concentration as low as 0.25 ppm
and a maximum response at room temperature. The gas-sensing mechanism was also investigated
and is discussed in detail. The high surface area to volume ratio of PS and the reaction-absorption
mechanism can be explained the enhanced sensing performance.
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1. Introduction

Rapid development of global urbanization and industrialization has caused serious air pollution
and endangered the natural environment and human health, therefore, detection of hazardous and
harmful gases is of great need [1]. Nitrogen dioxide (NO2), as one of the main air pollutants, has caused
the greatest concern, as it leads to smog and acid rain in metropolitan areas, as well as ozone formation
in the lower atmosphere [2]. The safety standard for NO2 in the air is 3 ppm, as suggested by the
American Conference of Governmental Industrial Hygienists [3]. Hence, a low cost, highly sensitive,
selective, and reliable gas sensor is required to monitor NO2 leakage. There is an urgent demand
for developing high-quality gas-sensitive materials accordingly. Among the various gas-sensitive
materials, resistive-type nanostructured metal oxide semiconductors (MOS), such as TiO2, In2O3,
SnO2, ZnO, CuO, and WO3 [4–9] have been most attractive in terms ofNO2 detection because of their
high sensitivity, simplicity, and low cost [10]. WO3, as a typical n-type semiconductor with stable
physicochemical properties, is promising for the detection of NO2 in recent years due to its excellent
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sensitivity and selectivity to NO2 compared with other gases. The first study to use WO3 as a sensing
material revealed that WO3 is highly sensitive to NOX, but relatively insensitive to some reducing
gases, such as CO, H2, and NH3 [11].

However, resistive-type MOS gas sensors are generally poor selectively to many gases because
many gas species may cause simultaneous resistance changes, making it impossible to properly identify
the gas with a single sensor [12]. Several approaches, such as structure manipulation, decoration of
noble metals (including Au, Pt, and Pd [13–15]), and heterostructure formation have been reported by
several researchers to improve the selectivity of MOS gas sensors [16–18]. Among these approaches,
noble metal nanoparticle (NP) decoration is promising in gas-sensing enhancement. For instance,
Vuong et al. [14] decorated Au NPs on the surface of WO3 nanowires for response enhancement to H2S
and CH4 gases. Yasuhiro Shimizu et al. [19] functionalized SnO2 thick film by Pd NPs for enhanced
NOs gas-sensing performance. Phanichphant et al. [20] synthesized Pt-loaded WO3 nanoparticles
to achieve a highly selective H2 gas sensor. The other challenge is that MOS gas sensors generally
lack compatibility with integrated circuit devices, because integrated circuits are essentially built on
silicon. MOS gas sensors have to be worked at different temperature ranges to distinguish between
target gases; their working temperatures are usually above 150 ◦C [21–23], which limits their future
applications due to high energy consumption.

Porous silicon (PS) is a nanostructured material prepared by chemical or electrochemical etching
of crystalline silicon. It was accidentally discovered by Uhlir at Bell Laboratories in the mid-1950s [24].
The unique features of the PS—such as its extremely large surface area to volume ratio, its easy
fabrication, its active surface chemistry, and its compatibility with microelectronic and MEMS
(Micro-Electro-Mechanical Systems) inspired research into applications ranging from sensors to
electronics, biomedicine, optics, solar cells, and batteries [25–29]. Barillaro et al. integrated a composite
of PS/gold nanostructures into JFET (Junction Field-effect Transistor) to realize a novel chemitransistor
gas sensor which shows a fast and reliable response to NO2 [30]. Tebizi-Tighilt et al. obtained a gas
sensor based on PS and polypyrrole, which can operate at a low bias voltage. This indicates
that it is advantageous for energy consumption [31]. Ibrahim designed an innovative PS-based
sensor to identify alcohol which had relatively higher repeatability and easier positioning and
flexibility in sensing [32]. It is realized that PS stands out as a preeminent platform for sensing
applications. Composites consisting of PS and MOS have shown improved sensitivity and stability,
even in low working temperatures. Some work about synthesizing MOS on PS substrate has been
done to improve sensitivity and reduce the working temperature through thermal evaporation or
hydrothermal methods. For instance, a tungsten oxide gas sensor based on PS substrate can detect NO2

at room temperature (RT, ~25 ◦C) [33,34] and is compatible with existing microfabrication techniques.
Both noble metal NP decoration on MOS and composites consisting of PS and MOS can improve the
gas-sensing performance (i.e., sensitivity, selectivity, stability, and working temperature) of MOS gas
sensors. However, there are few papers studying MOS gas sensor decorating with noble metal NPs
and combining these with PS substrate simultaneously to improve gas sensing performance.

In this work, we synthesized PS/WO3nanorods (NRs) functionalized with Pd NPs, investigated
its gas-sensing properties at different temperatures (25–200 ◦C) under exposure to different gas
concentrations (ranging from 0.25 to 2 ppm), and also examined the effect of Pd-loading amounts
on response values and the response/recovery time of the PS/WO3 NRs. PS was prepared by
galvanostatic electrochemical etching. PS/WO3 NRs were fabricated by thermal oxidizing W film,
which was magnetron sputtered on the PS substrate. Pd NPs were decorated on the surface of WO3

NRs by in-situ reduction of the Pd complex, using the copolymer Pluronic P123 as a reduction agent
and surfactant. Experimental results revealed that the NO2-sensing properties of the PS/WO3 NRs–Pd
NPs were significantly enhanced by decorating Pd NPs and combining PS with WO3 NRs. The PS
and Pd NPs complemented each other to realize enhanced gas sensitivity, better selectivity, and lower
response temperatures. The maximum response was achieved at RT, which demonstrates that the
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PS/WO3 NRs–Pd NPs is of low power consumption and is promising for an RT resistive-type NO2

gas sensor.

2. Materials and Methods

2.1. Synthesis and Characterization of PS/WO3 NRs–Pd NPs

PS was prepared using galvanostatic electrochemical etching methods in a Teflon double-tank
cell. Figure 1 shows the schematic diagram of the Teflon double-tank cell. Before the electrochemical
etching, p-type silicon wafers (Tianjin Institute of Semiconductor Technology, (100)-oriented, resistivity:
10–15 Ωcm, thickness: 400 ± 10 µm) were cut to a size of 24 × 9 mm, ultrasonically cleaned in acetone
(Tianjin Kemiou Chemical Reagent Co., Ltd.), ethanol (Tianjin Kemiou Chemical Reagent Co., Ltd.,
Tianjin, China), and deionized water (Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin, China)
successively for 15 min each, then immersed in the H2SO4 (AR, Tianjin Jiangtian Chemical Technology
Co., Ltd.)/H2O2 (AR, 30 wt %, Tianjin Jiangtian Chemical Technology Co., Ltd.) (volume ratio 4:1)
solution for 30 min to remove organic contaminants and dilute HF solution (Tianjin Kemiou Chemical
Reagent Co., Ltd.) for 10 min to remove the oxide layer formed on the surface. After cleaning, the Si
wafers were electrochemical etched in the electrolyte, which was comprised of 40 wt % hydrofluoric
acid and 99.5 wt % N,N-dimethylformamide (DMF, Tianjin Jiangtian Chemical Technology Co., Ltd.,
AR, Tianjin, China) (volume ratio 1:3), with a current density of 60 mAcm−2 for 10 min at RT.
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Figure 1. Schematic diagram of the Teflon double-tank cell.

PS/W film was formed by DC magnetron sputtering (High Vacuum Multifunctional Magnetron
Sputtering Coating Equipment SKY Technology Development Co., Ltd., Shenyang, China) a W
target (Shanghai Qingyu Material Technology Co., Ltd., Shanghai, China, purity 99.999%) on the
PS substrate. Before sputtering, the cavity pressure was pumped to 9 × 10−5 Pa, then 120 nm W
film was deposited on the PS substrate directly after sputtering for 15 min with sputtering power of
110 W and cavity pressure of 2 Pa in a pure Ar (HexiDistirct, Tianjin six high-tech gas supply station,
Tianjin, China, purity 99.999%) atmosphere. The PS/W film sample was thermally oxidized in a tube
furnace (Hefei Kejing Materials Technology Co., Ltd., Hefei, China, GSL-1400X) for 1 h at 700 ◦C in
an atmosphere of Ar and O2 (HexiDistirct, Tianjin six high-tech gas supply station, Tianjin, China)
(volume ratio 30:0.5) to create PS/WO3 NRs. During the thermal oxidizingprocess, the vacuum of the
tube furnace was kept at 1.5 torr. After cooling the PS/WO3 NRs samples to RT, Pd NPs were decorated
on the surface of WO3 NRs via the in-situ reduction of a Pd complex at RT. During the reduction
process, copolymer Pluronic P123 (Energy Chemical) was used as reduction agent and surfactant,
without any other linker [35], and with the assistance of photochemical reduction [36]. The Pd complex
was prepared by dissolving PdCl2 (Tianjin Guangfu Fine Chemical Research Insitute) in an aqueous
NaCl (Tianjin Guangfu Fine Chemical Research Insitute, Tianjin, China) solution to obtain a Na2(PdCl4)
solution. To investigate the influence of the amount of Pd decoration onNO2-sensing performance,
three different quantities of PdCl2 (20, 40, and 60mg) were dissolved to form the Na2(PdCl4) solution.
The final as-fabricated PS/WO3 NRs–Pd NPs samples are noted as PS/WO3–Pd20, PS/WO3–Pd40
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and PS/WO3–Pd60, respectively. PS/WO3 NRs samples were immersed in the Na2(PdCl4) solution
and magnetically stirred for 5 min. Then, a solution of 1.5 g Pluronic P123 dissolved in 40 mL
H2O was added to the Na2(PdCl4) solution to reduce Pd2+ to Pd NPs. The reduction process was
performed at RT for 7 h in atmospheric gas. After being collected and washed with deionized water
and ethanol, the as-fabricated PS/WO3 NRs–Pd NPs samples were dried at 75 ◦C for 1 h in an oven to
vaporize the surplus Na2(PdCl4) solution. Figure 2a shows the schematic illustration of the fabrication
process of PS/WO3 NRs–Pd NPs. To explore the role of the PS substrate in gas-sensing performance,
WO3 NRs decorated with Pd NPs and grown on a Si substrate were also prepared. These were
named Si/WO3–Pd20. The whole fabrication process of Si/WO3 NRs–Pd NPs was similar to that of
PS/WO3–Pd20, except using a Si substrate instead of a PS substrate.
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Figure 2. (a) Schematic illustration of the fabrication process of porous silicon(PS)/WO3 nanorods
(NRs)–Pd nanoparticles (NPs); SEM images: top view of (b) PS (inset: cross-section view); (c) PS/W
film; (d) PS/WO3 NRs; and (e) PS/WO3 NRs–Pd NPs (inset: magnification).

Characterization of the obtained samples were performed using several techniques, such as field
emission scanning electron microscopy (FESEM, ZEISS MERLIN compact, ZEISS, Jena, Germany),
field emission transmission electron microscopy (FETEM, Tecnai G2 F20, Ames Laboratory Sensitive
Instrument Facility, Washington DC, USA), and X-ray diffraction (XRD, RIGAKU D/MAX-2500 V/PC,
RIGAKU, Tokyo, Japan, Cu Ka radiation).

2.2. Gas-Sensing Characterizations

The restive-type MOS gas sensors were fabricated via RF (Radio Frequency) magnetron sputtering
two Pt electrodes (3 × 3 mm) on the top surface of the PS/WO3 NRs–Pd NPs samples, with the help of
a shadow mask. The gas-sensing properties were assessed by measuring the resistance change of the
gas sensors under exposure to the tested gases in a homemade static gas-sensing testing system [37].
During the testing process, NO2 in dried air was injected directly into the testing chamber with
the desired concentration. The resistance of the PS/WO3 NRs–Pd NPs gas sensor was recorded
successively. A calibrated heater was mounted on the backside of the sensor to adjust the working
temperature. The ambient relative humidity was constant and kept at 40%.

The gas response is defined to be Ra/Rg for NO2 gas and Rg/Ra for the reducing gas,
where Ra and Rg are the resistances of the gas sensor in the gas atmosphere and in the tested gas,
respectively. The response time is defined as the time taken for 90% of the total resistance change
to occur. Conversely, the recovery time is the time taken for 90% recovery of the resistance change.
In order to ensure the reliability of the results, the gas-sensing performance of every gas sensor was
tested repeatedly.
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3. Results and Discussion

3.1. Materials Characterization

Figure 2b–e show the low-magnification SEM images of PS, PS/W film, PS/WO3 NRs,
and PS/WO3 NRs–Pd NPs corresponding to the illustrated diagram (Figure 2a). As shown in Figure 2b,
uniformly distributed pores with an average diameter of 0.93 µm and depth of 6.5 µm can be observed
from the plane view and the cross-section view. Such pore sizes are beneficial to the growth of WO3

NRs inside the PS hole and the easy absorption–desorption of the tested gas. The porosity of the PS is
about 40%. The determination of porosity is normally defined by gravimetric methods according to
the following equation [38]:

p (%) =
m1 −m2

m1 −m3
(1)

where m1 is the weight of the Si wafer before electrochemical etching, m2 is the weight after
electrochemical etching, and m3 is the weight after removal of the porous layer in a 1 wt %
KOH solution.

Figure 2c shows the morphology of the PS/W film. Nearly 120 nm W film was successfully
deposited on the surface and hole wall of PS. The morphology of the PS/WO3 NRs is shown in
Figures 2d and 3a. The top view (Figure 2d) and cross-section view (inset of Figure 3a) images show
that uniform and dense WO3 NRs were distributed layer-by-layer on the inside and outside of the
PS holes. It also shows arodlike nanostructure with a diameter of 30–60 nm and length of 1–4 µm
and shows that the surfaces of WO3 NRs were clean (Figure 3a). Figures 2e and 3b–d show the
morphologies of PS/WO3 NRs–Pd NPs, nanoscale Pd NPs were homogenously distributed and
strongly decorated the surface of the WO3 NRs. WO3 NRs kept their rodlike shape after the decoration
of Pd NPs, which means that the decoration process of Pd NPs did not hurt the physical structure of
WO3 NRs. Strong binding between the surface of WO3 NRs and the Pd NPs generated the potential
barrier at the WO3 contact points, thereby forming the depletion region that contributed to the response
of the materials [39]. In the decorating process of Pd NPs, controlling the decorating time and rate
by adjusting the Pd complex concentration and the reduction time is important to preventing the
agglomeration of Pd NPs, which lowers the sensing performance of the gas sensor. In this work,
we varied the Pd NPs decorating amount by adjusting the concentration of the Pd complex solution.
Figure 3b–d reveal that Pd NPs were decorated successively on the surface of WO3 NRs in all three
samples, but the decorating amounts of Pd NPs increased obviously with the increase of the PdCl2
solution concentration. When adjusting the quantity of PdCl2 to 20 mg, Pd NPs distributed evenly
on the surface of WO3 NRs and there was no Pd NPs agglomeration (Figure 3b). When the quantity
of PdCl2 increased to 40 mg, there was much more Pd decoration on the WO3 NRs; the distribution
density of Pd NPs increased and distribution spacing of Pd NPs decreased (Figure 3c). After the
quantity of PdCl2was further increased to 60 mg, very few Pd NPs agglomerated and formed a bigger
Pd NP agglomeration (Figure 3d). Figure 3e shows the morphology of Si/WO3 NRs–Pd20. It also
shows that oblique WO3 NRs are distributed in a disorderly manner on the surface of the Si substrate.
The diameters of the WO3 NRs ranged from 30 to 60 nm. Pd NPs successfully decorated the surface of
WO3 NRs. Compared with PS/WO3 NRs–Pd20, the WO3 NRs that grew on a Si substrate showed
higher density and cluster growth phenomenon. Figure 3f,g show the EDS spectra of PS/WO3 NRs
and PS/WO3–Pd20. The O and W elements were from WO3 NRs, and the Pd element was from Pd
NPs. The Cu and C elements can be attributed to the grids during the TEM testing process.
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Figure 3. High-magnification SEM images of (a) PS/WO3 NRs: top view (inset: cross-section
view); (b) PS/WO3–Pd20 (inset: single PS/WO3 NR–Pd20); (c) PS/WO3–Pd40 (inset: single PS/WO3

NR–Pd40); (d) PS/WO3–Pd60 (inset: single PS/WO3 NR–Pd60); and (e) Si/WO3–Pd20; EDS analyses
of (f) PS/WO3 NRs; and (g) PS/WO3–Pd20; (h) XRD patterns of PS/WO3 NRs; PS/WO3–Pd20,
PS/WO3–Pd40, and PS/WO3–Pd60.

To investigate the crystal structure, typical XRD patterns of PS/WO3 NRs and PS/WO3 NRs–Pd
NPs were carried out (Figure 3h). The main diffraction peaks of WO3 NRs are well indexed to
the orthorhombic WO3 (JCPDS Card No. 71-0131).The (0 2 0) diffraction peak is the major peak,
which indicates that the [0 2 0] direction was the preferential growth direction. The XRD patterns of
PS/WO3–Pd40 and PS/WO3–Pd40 indicate the face-centered cubic crystal structure of Pd (JCPDS Card
No. 46-1043). Reflection of Pd elements did not exist in the PS/WO3–Pd20 sample. This phenomenon
may be attributed to the slight amount of Pd NPs decoration. It also can be observed that the intensity
of the [1 1 1] diffraction peak of Pd is higher than that of the (2 0 0) diffraction peak in the Pd XRD
patterns of PS/WO3–Pd40 and PS/WO3–Pd40, suggesting that the Pd NPs were highly crystalline and
mainly bound by {1 1 1} facets [40].

Figure 4a,b show the TEM images of PS/WO3 NRs and PS/WO3–Pd60. As can be seen,
the average diameter of WO3 NRs was about 40 nm (Figure 4a). After Pd decorating, WO3 NRs
kept their rodlike structure and some Pd NPs agglomerated (Figure 4b), which is consistent with the
SEM result in Figure 3d. Figure 4c shows the HRTEM image of PS/WO3–Pd60; the results reveal that
spherical Pd NPs had an average diameter of 7.5 nm. The gaps between the lattice fringes of the Pd NPs
and WO3 NRs were measured to be 0.24 and 0.377 nm, corresponding to the XRD results in Figure 3h.
Some stacking faults were also observed in the WO3 NRs; these may be a number of defects, such as
oxygen vacancies, which were induced in the crystal lattice during the growth process. The SAED
(Selected Area Electron Diffraction) result further validates that the WO3 NR is a single crystalline.
Few diffraction pots were not periodically distributed, indicating that there were two phases: WO3

and Pd. To further characterize the element distribution and decoration of Pd NPs, STEM imaging
and EDS mapping of PS/WO3–Pd60 were performed, as shown in Figure 4d. The STEM image also
demonstrates that Pd NPs were nearly uniformly decorated on the surface of WO3 NRs. Element
analysis by EDS mapping reveals the existence of O, W, and Pd; O and W were originally from the
WO3 NRs, whereas Pd was originally from the Pd NPs. The intensity of the O and W elements were
obviously higher than that of the Pd element.
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3.2. NO2-Sensing Performance

The gas-sensing properties of the PS/WO3 NRs gas sensor and the PS/WO3 NRs–Pd NPs gas
sensors were tested under exposure to various concentrations of tested gas at different temperatures.
Figure 5a–d show the dynamic gas response curves of the PS/WO3 NRs sensor, PS/WO3–Pd20 sensor,
PS/WO3–Pd40 sensor, and PS/WO3–Pd60 sensor under exposure to varying NO2 concentrations
at RT. The response of the PS/WO3 NRs sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor,
and PS/WO3–Pd60 sensor increased rapidly when exposed to NO2. They then recovered their initial
value after being exposed to atmospheric gas, which means that the resistance of the four sensors
decreased when in NO2 atmosphere, indicating p-type semiconductor characteristics. All four sensors
exhibited a good response–recovery quality, which confirms stability and reversibility in practical
applications. Compared with the PS/WO3 NRs sensor, the PS/WO3–Pd20 sensor, PS/WO3–Pd40
sensor, and PS/WO3–Pd60 sensor presented larger responses, validating that PS/WO3 NRs–Pd NPs
sensors were more sensitive to NO2 than the PS/WO3 NRs sensor after decoration with Pd NPs.
In Figure 5b–d, the responses of the PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor, and PS/WO3–Pd60
sensor to 0.25 ppm NO2 were around 2, indicating that PS/WO3 NRs–Pd NPs sensors are capable
of NO2 detection down to a ppb level at RT, which has been a challenge in current environmental
gas-sensing materials.

Figure 6a shows the relationship between the sensor response, with concentrations of NO2 varying
from 0.25 to 2 ppm at RT. The response of the Pd/WO3 sensor, PS/WO3–Pd20sensor, PS/WO3–Pd40
sensor, and PS/WO3–Pd60sensor increased obviously with the increase of the NO2 concentration.
However, the response of the Si/WO3–Pd20 sensor had a small response and no change with increasing
NO2, which indicates that, without the PS substrate, WO3–Pd20 can not detect such a low concentration
of NO2 at RT. The decoration of Pd NPs dramatically enhanced the sensing performance of the PS/WO3

sensor. The response of the PS/WO3 sensor to 2 ppm NO2 was 3. The response of PS/WO3–Pd NPs
sensors varied at 4.4, 5.1, and 5.2 when adjusting the quantity of PdCl2 from 20 mg to 40 mg, and then
to 60 mg. The highest response was achieved by the PS/WO3–Pd60sensor to 2 ppm NO2, followed by
the PS/WO3–Pd40 sensor, then the PS/WO3–Pd20 sensor. This result shows that a higher amount of
Pd NPs decoration can result in a higher response. However, the sensor response increased only 2%,
from 5 to 5.1, when the quantity of PdCl2 increased 50%, from 40 to 60 mg, whereas the sensor response
increased 16% when the quantity of PdCl2 increased from 20 to 40 mg. This outcome is consistent
with the observed SEM images in Figure 3b–d, where with the increase of PdCl2 quantity, Pd NPs
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tend to overlap or agglomerate, resulting in lowering the catalytic efficiency [41]. Overlapping or
agglomerating of Pd NPs reduces the surface contact of WO3 NRs with oxygen molecules, leading to
decreased capture of electrons from the conduction band of WO3 NRs. This thereby lowers the sensing
performance [42]. Table 1 shows the comparisons of NO2 concentration, response, and working
temperature of the PS/WO3–Pd60 sensor with those of other nanomaterial sensors. PS/WO3–Pd60
sensor achieved a higher response to a relatively low concentration of NO2 at RT compared with other
nanomaterial sensors.
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Figure 6. (a) Gas response of the Si/WO3–Pd20 sensor, PS/WO3 sensor, PS/WO3–Pd20 sensor,
PS/WO3–Pd40 sensor, and PS/WO3–Pd60 sensor to 0.25, 0.5, 0.75, 1, 1.5, and 2 ppm NO2 at RT;
(b) response–recovery time of the PS/WO3 sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor,
and PS/WO3–Pd60 sensor to 0.25, 0.5, 0.75, 1, 1.5, and 2 ppm NO2 at RT; (c) the relationship between
the response to 2 ppmNO2 and the operating temperature for the Si/WO3–Pd20 sensor, PS/WO3

sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor, and PS/WO3–Pd60 sensor.
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Table 1. Comparisons of NO2 concentration, response, and working temperature of the PS/WO3–Pd60
sensor with those of other nanomaterial sensors.

Nanomaterials NO2 Concentration
(ppm) Response Working Temperature

(◦C) References

PS/WO3–Pd60 2 5.2 RT present work
WO3 film–Pd 10 0.42 200 [3]

Rosemine–SiO2/TiO2 composite 50 84% RT [4]
TiO2 NPs attached CuO NWs 10 5 300 [8]
Pd-loaded In2O3 nanowires 5 4.05 110 [15]

WO3 encapsulated with ZnO 5 2.8 300 [16]

The response–recovery time is an important issue for a gas sensor in actual applications. Figure 6b
shows the response–recovery time of the Pd/WO3 sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40
sensor, and PS/WO3–Pd60 sensor when increasing NO2 concentration from 0.25 to 2 ppm at RT.
The response time of the PS/WO3 sensor was about 24 s and the recovery time was about 568 s under
exposure to 2 ppm NO2, whereas the response time of PS/WO3–Pd20 sensor was about 10 s and the
recovery time was about 339 s. The PS/WO3–Pd40 sensor and PS/WO3–Pd60 sensor nearly had the
same response–recovery time as the PS/WO3–Pd20 sensor. All three PS/WO3 NRs–Pd NPs sensors
had faster response–recovery times compared with the PS/WO3 sensor under exposure to the same
NO2concentration, demonstrating that the decoration of Pd can reduce the response–recovery time.

Figure 6c shows the relationship between the response and operating temperature
for the Si/WO3–Pd20 sensor, PS/WO3 sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor,
and PS/WO3–Pd60 sensor. For the Si/WO3–Pd20 sensor, when the temperature was lower than 100 ◦C,
there was almost no response. When the temperature was increased to 150 ◦C, the response was 1.89.
When the temperature was further increased, the response increased accordingly. On the contrary,
for the PS/WO3 sensor, PS/WO3–Pd20 sensor, PS/WO3–Pd40 sensor, and PS/WO3–Pd60 sensor,
the response decreased with increasing operating temperatures, from RT to 200 ◦C. This phenomenon
shows that PS plays a major role in lowering the working temperature due to its extremely large surface
area to volume ratio and active surface chemistry. The optimum working temperature of a gas sensor
is defined as the temperature in which the maximum response was achieved. Hence, the optimum
working temperature of the PS/WO3 sensor, the PS/WO3–Pd20 sensor, the PS/WO3–Pd40 sensor,
and the PS/WO3–Pd60 sensor was RT, which makes them promising low-consumption sensors.

For practical applications, a gas sensor should have good stability and selectivity. Figure 7a shows
the cyclic response curve of the PS/WO3–Pd20 sensor to 2 ppm NO2 at RT. The PS/WO3–Pd20 sensor
exhibited nearly identical responses over 8 days of cyclic testing. Its good stability is thought to be
highly related to the strong binding between WO3 NRs and Pd NPs. In order to study selectivity of
the PS/WO3 sensor and PS/WO3 NRs–Pd NPs sensors, the gas responses to 100 ppm NH3, 100 ppm
C2H5OH, 100 ppm H2, 100 ppm CH3COCH3, and 100 ppm SO2 were measured at RT (Figure 7b).
The decoration of Pd NPs not only enhanced the gas response to NO2 but also enhanced the response
to NH3, ethanol (C2H5OH), H2, acetone (CH3COCH3), and SO2. However, the response to NO2 can be
detected in lower concentrations (0.25–2 ppm), but the response to NH3, C2H5OH, H2, CH3COCH3,
and SO2 can only be detected when the concentration is increased to 100 ppm. Thus, we believe
that the PS/WO3 NRs–Pd NPs sensor is highly selective for detecting low concentrations of NO2.
The reason for the highest response enhancement to NO2 is not clear yet, but this outcome is very
interesting with regards to fabricating a highly selective NO2 sensor. When a sensor is applied to an
actual environment and exposed to a wide range of pollutants and VOCs, the PS/WO3 NRs–Pd NPs
sensor can discriminate NO2 in a few seconds among several analytes in a mixed gas.
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sensor to different gases at RT.

3.3. NO2-Sensing Mechanism

The gas-sensing mechanism can be explained by the absorption-reaction mechanism.
Figure 8a shows the energy-level diagram of the PS/WO3 NRs sensor, starting from n-type
semiconductor with flat band structure to n-type semiconductor with depletion layer, p-type
semiconductor with inversion layer, and p-type semiconductor with increased inversion layer.
When the PS/WO3 NRs sensor is exposed to the air atmosphere, the oxygen molecules adsorb on the
surface of WO3 NRs, which capture the free electrons from conduction band of WO3 NRs and form
chemisorbed ion oxygen species (O2

−, O−, and O2−). Both PS and WO3 NRs can absorb a large number
of surface oxygen molecules due to their specific nanostructure, resulting in a narrower width of the
conduction band due to capturing more free electrons, thereby increasing the width of the depletion
region. As the free electrons are further captured, the depletion region increases and an inversion
layer (the intrinsic Fermi level Ei lies above the Fermi level EF) appears and replaces the depletion
layer, which means that holes become main charge carriers in the inversion layer and indicates that
the conduction type of WO3 NRS transforms from n-type to p-type. When the PS/WO3 NRs sensor is
exposed to NO2, the NO2 molecules trap more free electrons, resulting in increasing the concentration
of the holes in the inversion layer. The reaction kinematics are shown in Equations (2)–(6) [43]:

O2(gas) → O2(ads) (2)

O2(ads) + e− → O2(ads)
− (3)

O2(ads)
− + e− → 2O(ads)

− (4)

NO2(gas) + e− → NO2(ads)
− (5)

NO2(gas) + O2(ads)
− + 2e− → NO2(ads)

− + 2O(ads)
− (6)

For enhanced NO2-sensing performance with decoration of Pd NPs, the following mechanism can
be proposed. Figure 8b illustrates the adsorption-reaction gas-sensing mechanism of PS/WO3–Pd NPs
in the air atmosphere and in an NO2 atmosphere. The decoration of Pd NPs decreases the width of the
conduction band of WO3 NRs via depletion layer modulation at the WO3–Pd contact interfaces [44].
Because the work function of Pd (5.5 eV) is bigger than that of WO3 (4.8 eV), when Pd NPs have
contact with WO3 NRs, electrons flow from the WO3 NRs to the Pd NPs and a potential barrier forms
between WO3 NRs and Pd NPs. Upon exposure to NO2, many more free electrons are captured from
WO3 NRs because of the contact between WO3 NRs and Pd NPs, resulting in a higher concentration
of holes in the depletion layer. This leads to a further reduction of resistance and an increase in the
sensor response. In addition, according to the spillover effect [19,20,44], the catalytic activity of Pd NPs
accelerates the dissociation of oxygen molecules on the surface of WO3 NRs and causes a spillover of
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the chemisorbed ion oxygen species. More chemisorbed ion oxygen species on the surface of WO3

NRs provides more sensing sites, hence an enhanced gas sensor response. However, because too many
Pd NPs cover the surface of WO3 NRs with increased Pd decoration, the contact area between WO3

NRs and oxygen molecules decreases, leading to less adsorption of oxygen species on the surface of
WO3 NRs and less response enhancement, despite of the spillover effect of Pd NPs.
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Figure 8. (a) Schematic energy-level diagram of the PS/WO3 NRs sensor: from n-type semiconductor
with flat band structure to n-type semiconductor with depletion layer, p-type semiconductor
with inversion layer, and p-type semiconductor with increased inversion layer; (b) schematic
adsorption-reaction gas-sensing mechanism of PS/WO3 NRs–Pd NPs sensor: in air and in NO2.

4. Conclusions

PS/WO3 NRs–Pd NPs were successfully synthesized by thermal oxidizing W film on the PS
substrate and decorating Pd NPs on the surface of WO3 NRs by in-situ reduction of the Pd complex
solution. Results demonstrated that decorating with Pd NPs and combining with PS substrate
have a great influence on enhancing the gas-sensing performance of the WO3 NRs gas sensor.
Compared with the PS/WO3 NRs gas sensor and the Si/WO3 NRs–Pd NPs gas sensor, the PS/WO3

NRs–Pd NPs gas sensor exhibited a higher and quicker response and better selectivity to NO2 due
to its extremely high surface area to volume ratio and spillover effect. Moreover, the PS/WO3

NRs–Pd NPs gas sensor can detect NO2 as low as 0.25 ppm at RT, which makes it compatible with
conventional silicon microfabrication technologies. Thus, it is promising as a NO2 sensor with low
power consumption and excellent selectivity.
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