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Abstract: In this paper, the impact of La2O3 passivation layers on the interfacial properties of Ge-based
metal-insulator-semiconductor (MIS) structures was investigated. It was proven that the formation
of a thermodynamically stable LaGeOx component by incorporating a La2O3 interlayer could
effectively suppress desorption of the interfacial layer from GeO2 to volatile GeO. The suppression
of GeO desorption contributed to the decrease in oxide trapped charges and interfacial traps in
the bulk of the gate insulator, or the nearby interfacial regions in the Al2O3/La2O3/Ge structure.
Consequently, the hysteretic behavior of the dual-swept capacitance-voltage (C-V) curves and the
frequency dispersion of multi-frequency C-V curves were remarkably weakened. Besides, more than
one order of magnitude decrease in the gate leakage current density, and higher insulator breakdown
electric field were obtained after inserting a La2O3 passivation layer.
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1. Introduction

For a very long time, the excellent properties of a SiO2/Si interface, with high band offsets and
few interfacial defects, have been the key reasons for supporting Si use as the main semiconductor
material in integrated circuits (IC) [1]. However, with the continued scaling of the device’s size
feature on a Si-based complementary metal oxide semiconductor (CMOS) process, high dielectric
constant (high-k) materials have been introduced as alternative gate oxide dielectrics to replace
ultrathin SiO2. The purpose was to reduce gate leakage current and power consumption beyond
45-nm technology nodes [2,3]. The introduction of high-k dielectrics into the Si-based CMOS process
results in poorer insulator/Si interfaces compared to that of SiO2/Si, bringing in some unfavorable
impacts such as instability problems and mobility degradation [4]. Considering this, alternative
technological progress to dimension scaling, such as changing channel material, is also necessary
for achieving high performance devices [5]. Owing to its high intrinsic hole mobility, Ge has drawn
remarkable attention for realizing high performance applications in the past decade [6,7]. Ge-based
metal-insulator-semiconductor (MIS) devices have shown great potential for integration into the
Si CMOS technology, since promising electrical characteristics beyond those of Si devices could be
realized by high-k/Ge structures [8]. However, there are some obstacles to overcome before employing
Ge into a CMOS-compatible processing scheme with high performance. One of the most critical
issues to solve is the Ge surface passivation engineering prior to the deposition of gate oxides [9].
For most high-k dielectric films deposited on Ge substrates without any surface passivation treatments,
the generation of unstable Ge oxides is unavoidable during the thermal annealing process. That is,
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at temperatures higher than 400 ◦C, GeO2 reacts with Ge atoms at high-k dielectrics/Ge interface,
which then form substoichiometric Ge oxides, including volatile GeO [10,11]. The desorption of
GeO brings in a large number of structural defects, which would deteriorate the properties of the
insulator/Ge interface [12].

Recently, it has been reported that rare earth oxides (REOs; i.e., Y2O3, CeO2, Sm2O3, and La2O3)
show high affinity for Ge atoms. That is, the strong reaction between REOs and Ge substrates leads
to the catalytic oxidation of Ge, which results in the spontaneous formation of stable interfacial
layers [13–16]. Amongst the REOs, due to their large dielectric constant and high band offset
relative to Ge, La-based oxides are considered as one kind of promising alternative gate dielectrics
in Ge-based MIS devices, which can achieve more aggressive equivalent oxide thickness (EOT)
scaling [17,18]. Furthermore, as the interface between La-based oxides and Ge substrates shows much
better thermodynamic stability than that of GeO2/Ge, La-based oxides have promising interfacial
passivation effects and could improve the electrical performance of Ge-based MIS devices [19,20].
Considering this, the effects of inserting a La2O3 passivation layer between an Al2O3 dielectric and Ge
substrate, on the interfacial properties of Al/Al2O3/Ge and Al/Al2O3/La2O3/Ge MIS structures was
investigated in this paper.

2. Experimental Section

La2O3 and Al2O3 gate stack films were deposited on n-type Ge (100) substrates, with electrical
resistivity of about 0.1–1 Ω·cm, in an atomic layer deposition (ALD) reactor (R-150, Picosun,
Espoo, Finland). Prior to the deposition, Ge substrates were treated with acetone and hydrous
alcohol, and then cyclically dipped into a diluted HF solution (HF:H2O = 1:50) 5 times to remove
the native GeOx layer. During the deposition process, La(i−PrCp)3 and trimethylaluminum (TMA)
were used as La and Al precursors, respectively, while H2O was used as an oxidant. The precursors
were alternately introduced to the reactor chamber, and were carried by high purity N2 (>99.999%).
A typical ALD growth cycle for La2O3 was 0.3 s La(i−PrCp)3 pulse, followed by 4 s N2 purge and
0.3 s H2O pulse, followed by 9 s N2 purge. The Al2O3 ALD cycle structure was set as 0.1 s TMA
pulse/3 s N2 purge/0.1 s H2O pulse/4 s N2 purge. By varying the number of ALD cycles, a 2 nm
La2O3 oxide layer was deposited on the cleaned Ge substrate at 300 ◦C, followed by deposition of a 4
nm Al2O3 layer. For comparison, a control sample with only 6 nm Al2O3 as gate dielectrics was also
prepared. After the deposition, rapid thermal annealing (RTA) was performed at 600 ◦C for 90 s in N2

ambient for both Al2O3/La2O3/Ge and Al2O3/Ge structures.
The surface morphology of the deposited films was monitored using atomic force microscopy

(AFM, Dimension 3100, Veeco Digital Instruments by Bruker, Billerica, MA, USA) in tapping mode.
The physical thickness was optically measured using Woollam M2000D spectroscopic ellipsometry
(SE, Woollam Co. Inc., Lincoln, NE, USA) fitted with a Cauchy model. The chemical bonding state of the
samples related to Ge substrates was examined by X-ray photoelectron spectroscopy (XPS, Axis Ultra
DLD, Kratos Analytical, Manchester, UK) measurements. MIS capacitor structures were used to
evaluate the electrical properties of the deposited films. Al was evaporated using electron-beam
evaporation as a metal gate through a shadow mask with a diameter of 300 µm followed by a post
metallization annealing (PMA) carried out in 97% N2/3% H2 ambient at 400 ◦C for 20 min to form a
good Ohmic contact with gate dielectrics. Then the electrical properties of the fabricated MIS capacitors
were evaluated using an Agilent B1500A parameter analyzer (Santa Clara, CA, USA).

3. Results and Discussion

The Ge 3d spectra of the samples with and without the La2O3 passivation layer are shown in Figure 1.
During the analysis of XPS data, the C 1s peak extracted from adventitious carbon at 284.6 eV was
chosen as a bonding energy calibration reference. Compared with Figure 1a, a noteworthy change in
Figure 1b was the appearance of a LaGeOx peak, indicating that a LaGeOx component was generated
after inserting a thin La2O3 interlayer. Besides, the Ge oxide (GeOx) spectra could be divided into
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four Gaussian–Lorentzian line shape peaks (Ge1+, Ge2+, Ge3+, and Ge4+), which were located at a higher
binding energy with respect to the Ge0 peak, with energy shifts of 0.8, 1.8, 2.6, and 3.4 eV, respectively [21].
The existence of these GeOx species was caused by the formation of an interfacial layer between gate
dielectric films and Ge substrates [22]. Among the Ge sub-oxides, GeO (Ge2+) is known to adversely affect
interfacial properties in contrast to other Ge oxides (Ge1+ and Ge3+), since GeO volatilization would cause
a huge number of structural defects [13]. Compared with the control sample, a visible reduction in the
intensity of the Ge2+ peak was observed in the Al2O3/La2O3/Ge case, indicating that to a certain extent,
the formation of GeO was restrained by inserting a La2O3 passivation layer. Besides, it was observed that
the intensity of the Ge4+ peak increased a bit after inserting a La2O3 passivation layer. Such variations in
Ge2+ and Ge4+ peaks displayed a reasonable self-consistency, which was mainly ascribed to the reduction
of desorption from GeO2 (Ge4+) to GeO, benefiting from the generation of a thermodynamically stable
LaGeOx component near the La2O3/Ge interface [23].
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Figure 1. Shallow core-level spectra of Ge 3d for the (a) 6-nm Al2O3/Ge structure, and (b) 4-nm
Al2O3/2-nm La2O3/Ge structure.

The two- and three-dimensional AFM images of the Al2O3 films deposited on Ge substrates
with and without a La2O3 interlayer are shown in Figure 2. The scan size of each AFM image was
1 × 1 µm2. The root-mean-square (RMS) surface roughness of the films was extracted from the
AFM images. The surface roughness of the sample without a La2O3 interlayer was about 0.62 nm in
RMS, which was relatively a large RMS value for dielectric films deposited by ALD. We ascribed this
large RMS value to the degradation of interfacial smoothness caused by the desorption of volatile
GeO nearby the Al2O3/Ge interface during the high temperature post-deposition annealing (PDA)
process [24]. While for the sample with a La2O3 interfacial passivation layer, an obviously smaller
RMS value of 0.23 nm was observed. Such a reduction in the RMS value suggested that the desorption
of GeO was suppressed since the existence of a thermodynamically stable LaGeOx layer between gate
oxides and Ge substrates restrained the generation of volatile GeO. The decrease in volatile GeO had a
positive impact on the electrical performance in the Al2O3/La2O3/Ge case. This improvement will be
discussed in detail in the following capacitance-voltage (C-V) and gate leakage current density-voltage
(J-V) parts.

To further investigate the effects of a La2O3 interfacial passivation layer on the interfacial
properties of Ge-based MIS structures, the electrical properties of the fabricated MIS capacitors were
analyzed. Figure 3 shows the C-V and conductance-voltage (G-V) characteristics of the fabricated MIS
capacitors using Al2O3 as an insulator, with and without a La2O3 passivation layer. For simplicity,
the MIS capacitor using only Al2O3 as an insulator was marked as S1, and the MIS capacitor with
La2O3 as an interfacial passivation layer was assigned as S2. The dual-swept C-V curves were obtained
by biasing the gate-applied voltage from accumulation to inversion (backward sweep), and sweeping
back (forward sweep) at 100 kHz. G-V measurements were performed simultaneously with the
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backward swept C-V curves. The capacitance values at the accumulation region of the C-V curves
for capacitor S1 and S2 were 1.06 and 1.41 µF/cm2, respectively. The dielectric constant values of the
samples were estimated using the following equations [25,26]:

Cox = Cac

[
1 +

(
Gac

ωCac

)2
]

(1)

CET =
ε0εSiO2 A

Cox
(2)

k =
εSiO2 tox

CET
(3)

where Cac is the capacitance value at the accumulation region, Gac is the conductance corresponding to
the accumulation region of the C-V curves, ω is the angular frequency, Cox is the oxide capacitance of
dielectric films, A is the electrode area, tox is the measured thickness of gate dielectrics, ε0 and εSiO2 are
the permittivity values of vacuum and SiO2, respectively. The physical thickness of the gate dielectric
films in S1 and S2 was measured to be 6.42 and 6.83 nm, separately. Therefore, the effective dielectric
constant values of S1 and S2 were calculated to be 7.95 and 11.10, respectively. The increment in the
dielectric constant value for the sample with a La2O3 interfacial passivation layer was attributed to the
introduction of La elements into dielectric films, since the k values of La2O3 [27], and LaxAlyO [28]
formed by the interdiffusion of La2O3 and Al2O3 were much higher than that of Al2O3 [29].
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Figure 2. (a) Two- and (b) three-dimensional AFM images of the Al2O3 films on Ge substrates without
La2O3 passivation; and (c) two- and (d) three-dimensional AFM images of the Al2O3 films on Ge
substrates with a La2O3 interfacial passivation layer.

The flat band voltages (VFB) of the C-V curves in Figure 3 were extracted from the Hauser NCSU
CVC simulation software (North Carolina State University, Raleigh, NC, USA), taking quantum
mechanical effects into account [30]. It was observed that the Al/Al2O3/Ge MIS capacitor showed
a much larger flat band voltage hysteresis width (∆VFB), ∼863 mV, than that of S2 (∼174 mV).
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The hysteretic behavior of the dual-swept C-V curves has been proven to be caused by the existence
of oxide trapped charges (Qot) in the bulk of the gate insulator or nearby the interfacial region [31].
Using the midgap charge separation method, the oxide-trapped charge density (Not) for the fabricated
capacitors was calculated using the following equation [32]:

Not =
∆VFBCox

qA
(4)

where ∆VFB is the hysteresis width of VFB, Cox is the oxide capacitance, q is the elementary charge
(1.602 × 10−19 C), and A is the electrode area. The Not values were calculated to be 5.91 × 1012 cm−2

for the Al/Al2O3/Ge MIS capacitor, and 1.56 × 1012 cm−2 for the case with a La2O3 passivation layer.
A visible decrease of Not was observed after inserting a La2O3 passivation layer.
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Figure 3. C-V characteristics for the fabricated MIS capacitors using Al2O3 films as insulators
(a) without and (b) with a La2O3 interfacial passivation layer.

The C-V curves of the MIS capacitors without the La2O3 interlayer showed a significant
anomalous hump phenomena at the weak inversion regions as shown in Figure 3a, which were
reported to be caused by slow interfacial traps existing between the gate insulator and substrate [33].
Besides, as shown in Figure 4, different amounts of interfacial traps caused different degrees of
frequency dispersion phenomena at the weak inversion regions of the C-V curves measured at
multi-frequencies. Considering this, we discussed the interface state density (Dit) values of S1 and
S2, extracted from the combination of the backward swept C-V and G-V characteristics, using the
following relation of single-frequency approximation method [29,34]:

Dit =
2

qA

Gmax
ω[(

Gmax
ωCox

)2
+
(

1− Cmax
Cox

)2
] (5)

where A is the electrode area, Cox is the gate oxide capacitance as defined in Equation (1),
Gmax is the peak value of G-V curve, and Cmax is the capacitance corresponding to Gmax at the
same gate-applied voltage. The various parameter results discussed above are shown in Table 1.
For the fabricated MIS capacitors without a La2O3 passivation layer, the value of Dit was about
1.13 × 1013 eV−1·cm−2. After the Ge surface passivation treatment using a La2O3 interlayer,
the Dit value decreased evidently to ∼4.97 × 1012 eV−1·cm−2, indicating that to some extent,
the insertion of a La2O3 passivation layer inhibited the generation of interface traps, which gave an
explanation to the pronounced weak anomalous hump tendency. It is worth noting that, the frequency
dispersion phenomenon was also observed at the accumulation region of the C-V curves. It has been
reported by Kouda et al. that the frequency-dependent variations in the dielectric constant of the gate
stacks caused by oxygen vacancies should be responsible for the frequency dispersion phenomenon at
the accumulation region [14,35]. As shown in Figure 4, the frequency dispersion phenomenon at the
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accumulation region became weaker after inserting a La2O3 interlayer, indicating that the introduction
of this interlayer suppressed the generation of oxygen vacancies in the stack structures.

Table 1. The electrical parameters extracted from the fabricated MIS capacitors without and with a
La2O3 interfacial passivation layer.

Sample Cox (µF/cm2) k ∆VFB (mV) Not (cm−2) Dit (eV−1·cm−2)

S1 1.096 7.95 863 5.91 × 1012 1.13 × 1013

S2 1.438 11.10 174 1.56 × 1012 4.97 × 1012
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Figure 4. C-V characteristics measured at various frequencies for the fabricated MIS capacitors using
Al2O3 films as insulators (a) without, and (b) with a La2O3 interfacial passivation layer.

The contribution of the La2O3 interfacial passivation layer to the decrease in trapped oxide
charges and interfacial traps could be explained as follows; when Al2O3 dielectrics were deposited
on the Ge substrates without any passivation treatment, the outdiffusion of Ge atoms to the Al2O3

dielectric films generated unstable Ge oxides at the Al2O3/Ge interface. The quality of the interface
between Ge and its oxides tends to deteriorate during the PDA process because the decomposition
or desorption from GeO2 to GeO following the reaction equation of GeO2 + Ge → 2GeO leads to
the formation of structural defects mainly consisting of dangling bonds and oxygen vacancies [36].
While after inserting the La2O3 interfacial passivation layer, La2O3 could react with the outdiffused
Ge atoms to form the stable LaGeOx compound, which would effectively suppress the generation
of volatile GeO, contributing to the decrease of structural defects in the bulk of the insulator and/or
in the interfacial region. As a result, the Not and Dit values were obviously decreased by inserting a
La2O3 passivation layer of insulator/Ge interfaces, contributing to the suppression of hysteresis in
dual-swept C-V curves and frequency dispersion in multi-frequency C-V curves.

Figure 5 shows the gate leakage current density of the fabricated MIS capacitors as a function
of the gate-applied electrical field. The gate leakage current density for capacitors S1 and S2 were
measured to be 1.92 × 10−4 and 1.29 × 10−5 A/cm2 separately, when the gate-applied electrical
field was 3 MV/cm. More than one order of magnitude decrease in the gate leakage current density
was achieved after inserting a La2O3 passivation layer. Furthermore, it is worth noting that the gate
insulator breakdown electric field of capacitor S2 (~ 7.07 MV/cm) was apparently higher than that
of capacitor S1 (~ 5.86 MV/cm), which revealed that the inserted La2O3 passivation layer had a
positive effect on the breakdown characteristics of the gate insulators. The improvements in gate
leakage current density and gate insulator breakdown characteristics were suspected to benefit from
the reduction of structural defects including dangling bonds and oxygen vacancies [37]. For the
sample with a La2O3 passivation layer, less structural defects in the gate insulator meant a smaller
possibility of creating a continuous chain connecting the gate electrode to the substrate semiconductor,
contributing to the realization of lower gate leakage current density and higher insulator breakdown
electric field [38].
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4. Conclusions

The Ge surface engineering using La2O3 as a passivation layer was carried out and investigated
systematically in this paper. The formation of a thermodynamically stable LaGeOx interfacial layer
effectively suppressed the desorption of volatile GeO, resulting in smaller Not and Dit values achieved
after the insertion of a La2O3 passivation layer compared with the control sample. These improvements
on the interfacial properties significantly weakened the hysteresis in dual-swept C-V curves and
frequency dispersion in multi-frequency C-V curves. Besides, the gate leakage current and insulator
breakdown characteristics for the MIS structure with La2O3 passivation were also improved.
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