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Abstract: This paper is devoted to determination of elastic properties of composite constituents by using
an inverse identification procedure. The aim of the developed identification procedure is to compute the
elastic constants of individual material phases on the basis of known properties of composite materials.
The inverse problem of identification has been solved by combining an evolutionary algorithm with
a micromechanical model. The paper also focuses on selection of a suitable micromechanical model
for optimization which should ensure a compromise between accuracy and complexity. Two different
cases have been studied: composite reinforced with short cylindrical fibers and composite reinforced
with cubic particles. Moreover, Monte Carlo simulations have been carried out to expose a difference in
outcome of identification which may occur when uncertain input data is considered. Obtained results
show that identification is successful only when properties of composite materials with at least two
different volume fractions of the reinforcement are known.

Keywords: Mori–Tanaka model; micromechanics; homogenization; finite element analysis; random
orientation

1. Introduction

A prediction of effective properties of composite materials in terms of their microstructural
features allows to design new materials in an efficient way. Micromechanical models are useful for
investigation of the influence of material properties, morphology and orientation of constituents on
the final, effective composite behavior. On the other hand, the mentioned quantities must be known in
order to use the micromechanical models successfully. This paper focuses on determination of elastic
properties of matrix and reinforcement phases. In some cases, these properties can be determined
in a straightforward way by performing standard experimental tests for matrix and reinforcement
materials separately. However, some composite materials are fabricated using in situ technologies;
thus, quantification of elastic properties of the individual phases may be more difficult. Examples of
such materials are: aluminum–aluminum oxide [1], titanium–titanium boride [2], aluminum–titanium
carbide [3], cooper–titanium carbide [4] and many others. Moreover, the properties of composite
constituents may change during the material processing [5–7]. Extraction of specimens of single phase
from the composite for ex situ mechanical testing is cumbersome; therefore, in order to measure the
local material properties, advanced experimental techniques like for example nanoindentation [8,9]
or micropillar compression [10,11] have been developed. However, this study focuses on a different,
indirect approach which is connected with the solution of an inverse problem of identification.
The inverse problem of identification may be solved by combining an optimization method with
a micromechanical model; in this case, microstructural quantities are variables which are adjusted
in such a way that the effective material behavior predicted by the micromechanical model fits to
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the experimental data obtained after testing the composite. This issue has been raised by several
researchers who studied different composite materials and used different methods of optimization and
micromechanical models. Burczyński and Kuś [12] analyzed composites reinforced with continuous
fibers; they combined finite element based homogenization with an evolutionary algorithm. Kaiser and
Stommel [13] identified amorphous and crystalline constituent properties of thermoplastic material by
using an evolutionary algorithm and Mori–Tanaka micromechanical model. Beluch and Burczyński [14]
studied composite reinforced with continuous fibers; they applied finite element based homogenization
and evolutionary algorithm as well as artificial immune system. Herrera-Solaz et al. [15] identified
properties of a single crystal of AZ31 Mg alloy from polycrystal tests by combining finite element
based homogenization with Levenberg–Marquard optimization method. Comellas et al. [16] studied
composites reinforced with continuous fibers by using an evolutionary algorithm and mixing theory.
The other way of identification of mechanical properties of composite materials presented in the
literature is based on fitting the numerical model parameters to the full-field measured displacement
data [17–19].

This paper is devoted to inverse identification of elastic constants of composite materials with
randomly distributed discontinuous reinforcement. Method developed during this study assumes
that elastic constants of individual material phases can be reconstructed on the basis of Young
modulus and Poisson ratio of composite determined during static tensile tests. For the purpose of
this study, virtual tensile tests of composites have been conducted by using the finite element method.
Furthermore, the article discusses different micromechanical approaches which can be applied for
the solution of the forward problem. The inverse problem has been solved by using an evolutionary
algorithm. Two different cases have been studied: composite reinforced with short cylindrical fibers
and composite reinforced with cubic particles. Moreover, Monte Carlo simulations have been carried
out to expose a difference in outcome of identification which may occur when uncertain input data
is considered.

2. Identification Procedure

2.1. Optimization Problem

The identification procedure developed during this study is based on the solution of optimization
problem. The objective function is defined as minimization of the relative difference between elastic
constants of the composite predicted by micromechanical model in terms of constituent’s elastic
constants and elastic constants of the composite determined by experimental testing:

min F(x1, x2 . . . xk) =
n

∑
i=1

(
Yi − yi(x1, x2 . . . xk)

Yi

)2

(1)

where: x1, x2 . . . xk are the elastic constants of the material phases (variables), yi are the elastic
constants of the composite predicted by micromechanical model depending on variables, Yi—given
elastic constants of the composite (input data), n denotes the number of known elastic constants of the
composite. The aim of identification is presented graphically in Figure 1.
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traditional methods are: no need of computing the objective function gradient and low impact of 
initial values of the project variables on the optimization results. During this work, the evolutionary 
algorithm implemented in MATLAB software (MathWorks, Natick, MA, USA), whose simplified 
scheme has been presented in Figure 2, has been applied. The first step is generation of initial 
population which has been chosen in random way with respect to the following optimization 
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if the variable is Poisson ratio. The next step is application of the evolutionary operators which are 
mutation and crossover, then the objective function value is computed for each individual from the 
population by incorporating a micromechanical model. Finally, a selection procedure is applied, and 
then computations are continued until the termination condition is fulfilled. In the present paper, 
population consisting of 50 individuals (chromosomes) has been taken into account and termination 
condition is fulfilled after 100 iterations (generations).  

As mentioned above, it should be pointed out that the evolutionary algorithm requires to 
calculate the objective function value multiple times in each iteration; therefore, efficiency of the 
inverse identification procedure strongly depends on efficiency of applied micromechanical model. 
Therefore, special emphasis must be put on the selection of a suitable micromechanical model which 
should ensure a compromise between accuracy and complexity.  
 

Figure 1. Simplified scheme presenting the idea of identification.

The investigation is devoted to composites with randomly distributed reinforcement; thus,
isotropic effective material behavior is expected. Therefore, after the tensile testing of one coupon
two elastic constants (Young modulus and Poisson ratio) can be provided as the input data. However,
the input data can be extended by performing tensile tests for composites with different volume
fractions of the reinforcement. During the solution of optimization problem formulated in such
a way it is important to avoid getting stuck in local optimum. It could be achieved by using global
optimization methods like the evolutionary algorithm [20–22], artificial immune algorithm [23,24] or
particle swarm optimization [25,26]. Other advantages of the global optimization methods over the
traditional methods are: no need of computing the objective function gradient and low impact of initial
values of the project variables on the optimization results. During this work, the evolutionary algorithm
implemented in MATLAB software (MathWorks, Natick, MA, USA), whose simplified scheme has
been presented in Figure 2, has been applied. The first step is generation of initial population which
has been chosen in random way with respect to the following optimization constraints:

xi ∈ 〈100 MPa, 1000000 MPa〉, (2)

if the variable is Young modulus and
xi ∈ 〈0.12, 0.4〉. (3)

if the variable is Poisson ratio. The next step is application of the evolutionary operators which are
mutation and crossover, then the objective function value is computed for each individual from the
population by incorporating a micromechanical model. Finally, a selection procedure is applied,
and then computations are continued until the termination condition is fulfilled. In the present paper,
population consisting of 50 individuals (chromosomes) has been taken into account and termination
condition is fulfilled after 100 iterations (generations).

As mentioned above, it should be pointed out that the evolutionary algorithm requires to calculate
the objective function value multiple times in each iteration; therefore, efficiency of the inverse
identification procedure strongly depends on efficiency of applied micromechanical model. Therefore,
special emphasis must be put on the selection of a suitable micromechanical model which should
ensure a compromise between accuracy and complexity.
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2.2. Micromechanical Modeling

Methods of micromechanics allow to predict an overall effective material properties in terms of
microstructural features like for example: material properties of phases, their orientation, morphology,
etc. One of the most popular methods for solving problems of micromechanics of materials is finite
element analysis (FEA) which is typically connected with analysis of representative volume element
(RVE) [27,28]. The RVE should contain all the necessary information about the statistical description
of the microstructure, the RVE size should be large enough so that the average properties of this
volume element are independent of its size and position within the material [29]. In order to find
the effective material properties, homogenization procedure can be applied by computing average of
field quantities over the RVE’s volume. In general, the six analyses should be performed to obtain an
effective stiffness tensor by applying boundary conditions which enforce the following unit strains [30]
(superscript denotes the number of analysis):

εI =



1
0
0
0
0
0


, εI I =



0
1
0
0
0
0


, εI I I =



0
0
1
0
0
0


, εIV =



0
0
0
1
0
0


, εV =



0
0
0
0
1
0


, εVI =



0
0
0
0
0
1


. (4)

After FE solution of the six boundary value problems stresses are averaged in the following way:

〈σ〉 = 1
VRVE

∫
VRVE

σdVRVE, (5)

and afterwards the effective stiffness tensor can be expressed as follows:

C =



〈σ11〉I 〈σ11〉I I 〈σ11〉I I I 〈σ11〉IV 〈σ11〉V 〈σ11〉VI

〈σ22〉I 〈σ22〉I I 〈σ22〉I I I 〈σ22〉IV 〈σ22〉V 〈σ22〉VI

〈σ33〉I 〈σ33〉I I 〈σ33〉I I I 〈σ33〉IV 〈σ33〉V 〈σ33〉VI

〈σ23〉I 〈σ23〉I I 〈σ23〉I I I 〈σ23〉IV 〈σ23〉V 〈σ23〉VI

〈σ13〉I 〈σ13〉I I 〈σ13〉I I I 〈σ13〉IV 〈σ13〉V 〈σ13〉VI

〈σ12〉I 〈σ12〉I I 〈σ12〉I I I 〈σ12〉IV 〈σ12〉V 〈σ12〉VI


(6)



Materials 2018, 11, 2332 5 of 15

The FE-based homogenization can be applied in modelling microstructures of complex geometry
involving arbitrary shapes and orientation distributions of constituents; however, in such cases,
it typically requires time-consuming computations [31]. Another group of micromechanical models
is based on the Eshelby’s fundamental solution [32], here several approaches can be distinguished
like for example self-consistent schemes [33], Mori–Tanaka method [34], double inclusion method [35].
These methods provide very efficient solution in comparison with the FE based homogenization.
Particularly, the Mori–Tanaka (M-T) method found wide popularity in analysis of composite materials
due to good predictive capabilities [36–38]. The basic formulation of M-T method provides the solution
for two-phase, unidirectionally reinforced materials. In this case, the effective stiffness tensor can be
determined in the following way:

C = Cm + fi(Ci − Cm)A[(1− fi)I + fi A]−1, (7)

where Cm and Ci are isotropic stiffness tensors of matrix and inclusion respectively, I is an identity
tensor, fi is volume fraction of the inclusion and I is strain concentration tensor that depends on the
Eshelby’s tensor S in the following way [34]:

A =
[
S(Cm

−1Ci − I) + I
]−1

. (8)

The M-T method may be extended for composites with misaligned reinforcement by using
the orientation averaging procedure where effective stiffness tensor that describes the behavior
of composite with misaligned inclusions Cijkl can be determined in terms of stiffness tensor of
unidirectional composite Cpqrs as follows:

Cijkl =

2π∫
0

2π∫
0

π∫
0

aipajqakralsCpqrsψ(θ, ϕ, β) sin(θ)dθdϕdβ, (9)

where ψ(θ,ϕ,β) is the orientation distribution function defined in the Euler coordinates (θ,ϕ,β), aij is
coordinate system transformation matrix [39]. An effectiveness of the orientation-averaging procedure
has been presented in numerous works [39–41]. The drawback of the M-T method is that it is limited
to analysis of spheroidal shape of inclusions only; moreover, error of homogenization increases with
increasing volume fraction of reinforcement; thus, only composites with low volume fractions of
the reinforcement (approximately up to 0.25) can be successfully analyzed. However, the numerical
solution of the equivalent inclusion problem, instead of using the Eshelby’s tensor, allowing the M-T
method to be extended so as to involve the arbitrary shapes of the inclusions. The equivalent inclusion
problem relates to analysis of single inclusion embedded in a large matrix [42]. The medium is typically
approximated by a rectangular prism whose finite dimensions are large enough in comparison with the
size of the inclusion [42,43]. The strain concentration tensor A defines the relation between the average
strain in the single inclusion embedded in infinite matrix εi and the far field strain (macro strain) ε:

ε11
(i)

ε22
(i)

ε33
(i)

ε23
(i)

ε13
(i)

ε12
(i)


=



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66





ε11

ε22

ε33

ε23

ε13

ε12


. (10)

Numerical determination of components of A tensor is similar to the direct FE homogenization,
the same boundary conditions have to be enforced (Equation (4)) although integration is performed
only over the volume of the single inclusion Vi as follows:
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〈ε〉(i) = 1
Vi

∫
Vi

εidVi. (11)

Finally, the strain concentration tensor determined numerically has the following form:

ANUM =



〈ε11〉(i)I 〈ε11〉(i)I I 〈ε11〉(i)I I I 〈ε11〉(i)IV 〈ε11〉(i)V 〈ε11〉(i)VI

〈ε22〉(i)I 〈ε22〉(i)I I 〈ε22〉(i)I I I 〈ε22〉(i)IV 〈ε22〉(i)V 〈ε22〉(i)VI

〈ε33〉(i)I 〈ε33〉(i)I I 〈ε33〉(i)I I I 〈ε33〉(i)IV 〈ε33〉(i)V 〈ε33〉(i)VI

〈ε23〉(i)I 〈ε23〉(i)I I 〈ε23〉(i)I I I 〈ε23〉(i)IV 〈ε23〉(i)V 〈ε23〉(i)VI

〈ε13〉(i)I 〈ε13〉(i)I I 〈ε13〉(i)I I I 〈ε13〉(i)IV 〈ε13〉(i)V 〈ε13〉(i)VI

〈ε12〉(i)I 〈ε12〉(i)I I 〈ε12〉(i)I I I 〈ε12〉(i)IV 〈ε12〉(i)V 〈ε12〉(i)VI


, (12)

and it could be substituted to the Equation (7) in order to find the effective stiffness tensor [44].

3. Results and Discussion

3.1. Composite Reinforced with Short Fibers

Feasibility and effectiveness of the proposed inverse identification procedure has been tested by
investigation of elastic constants of matrix and fiber which are part of composite material reinforced
with randomly oriented short fibers. The aim of an inverse identification procedure is to reconstruct
the elastic properties of matrix and fiber based on known properties of composite. Virtual tensile tests
based on the FE analysis of the RVEs have been conducted for determination of composite elastic
constants in terms of known elastic properties of the phases. The RVEs containing three different
fiber contents, whose geometrical models are presented in Figure 3 have been considered. Each RVE
contains approximately 200 fibers whose orientations are defined randomly, and periodic boundary
conditions [27] have been applied. Elastic properties of matrix and fiber, which have been applied for
the virtual tensile tests, are shown in Table 1. The effective elastic constants corresponding to composite
properties, obtained after direct FE homogenization, are presented in Table 2.Materials 2018, 11, x FOR PEER REVIEW  7 of 16 
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Table 1. Elastic properties of matrix and fiber.

Phase Young Modulus (MPa) Poisson Ratio

Matrix 70,000 0.33
Fiber 300,000 0.20
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Table 2. Elastic properties of composites with three different volume fractions of fibers.

Volume Fraction of Fibers Young Modulus (MPa) Poisson Ratio

0.05 Ec
5% = 74,955.83 νc

5% = 0.32446
0.10 Ec

10% = 80,486.48 νc
10% = 0.31897

0.15 Ec
15% = 85,820.04 νc

15% = 0.31383

Selection of a suitable micromechanical model for the evolutionary optimization is very important
issue as pointed out in Section 2.1. The best accuracy of identification should be provided by direct
FE homogenization based on the RVE containing large number of fibers (like presented in Figure 3),
although it could lead to prohibitive time of computation. On the other hand, Mori–Tanaka method
coupled with orientation averaging should provide relatively short time of computations, but it is
not able to consider cylindrical shape of fiber and thus it must be approximated by ellipsoidal shape.
Therefore, an influence of fiber shape on effective Young modulus has been tested by computing
strain concentration tensor for cylindrical fiber by using FEM and comparing the result with a pure
analytical solution. The geometrical model and corresponding finite element mesh of equivalent
inclusion problem for cylindrical fiber have been presented in Figure 4. Single inclusion has a volume
fraction 0.001 (an influence of the volume fraction on homogenization accuracy is discussed in work [45]).
The following elastic constants of the composite constituents have been taken into account: Em = 104 MPa,
νm = 0.3, Ei = 105 MPa, νi = 0.2.
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Strain concentration tensor computed for cylindrical fiber has the following form:

ANUM_CYLINDER =



0.6541 0.0086 0.0086 0.0000 0.0000 0.0000
−0.0792 0.1644 0.0210 0.0000 0.0000 0.0000
−0.0792 0.0210 0.1644 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.1756 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.1756 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.1430


, (13)

and it is in close agreement with the strain concentration tensor for ellipsoidal inclusion determined
analytically in terms of Eshelby’s tensor:

AELLIPSOID =



0.6546 0.0122 0.0122 0.0000 0.0000 0.0000
−0.0773 0.1593 0.0207 0.0000 0.0000 0.0000
−0.0773 0.0207 0.1593 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.1736 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.1736 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.1386


. (14)



Materials 2018, 11, 2332 8 of 15

Finally, after the orientation averaging, normalized Young moduli obtained by basing on
ANUM_CYLINDER (hybrid solution) and AELLIPSOID (analytical solution) have been compared (Figure 5).
A minor difference between the results can be noticed and, therefore, usage of the pure analytical
Mori–Tanaka method (accounting for ellipsoidal shape of fiber) should provide reasonable accuracy of
identification in this case.
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As an input data to the identification procedure, different combinations of known composite properties
presented in Table 2 have been applied. Due to nondeterministic nature of evolutionary algorithms,
three independent simulations for each case have been conducted. Results of the carried out computations
and relative errors corresponding to the known data (Table 1) have been collected in Table 3.

Table 3. Elastic constants of composite constituents identified by using different input data and
corresponding errors.

Input Data
Analysis
Number

Identified Elastic Constants

Em Er vm vr

Ec
5%, νc

5%
1 68,383.3, 2.3% 512,943.6, 71.0% 0.33013, 0.0% 0.16642, 16.8%
2 69,287.1, 1.0% 393,597.7, 31.2% 0.32500, 1.5% 0.38210, 91.1%
3 72,330.0, 3.3% 152,002.5, 49.3% 0.32536, 1.4% 0.31336, 56.7%

Ec
10%, νc

10%
1 65,642.5, 6.2% 663,675.3,121.2% 0.32863, 0.4% 0.21423, 7.1%
2 79,190.7, 13.1% 92,946.0, 69.0% 0.32298, 2.1% 0.27911, 39.6%
3 71,523.3, 2.2% 250,707.2, 16.4% 0.32895, 0.3% 0.19039, 4.8%

Ec
15%, νc

15%
1 77,654.0, 10.9% 155,795.0, 48.1% 0.31281, 5.2% 0.32879, 64.4%
2 62,787.5, 10.3% 709,421.2, 136.5% 0.32567, 1.3% 0.25722, 28.6%
3 60,758.4, 13.2% 929,659.3, 209.9% 0.32381, 1.9% 0.32073, 60.4%

Ec
5%, νc

5%,
Ec

10%, νc
10%

1 69,708.4, 0.4% 331,100.2, 10.4% 0.33001, 0.0% 0.16767, 16.2%
2 69,708.4, 0.4% 331,097.8, 10.4% 0.33001, 0.0% 0.16766, 16.2%
3 69,708.4, 0.4% 331,098.0, 10.4% 0.33001, 0.0% 0.16766, 16.2%

Ec
10%, νc

10%,
Ec

15%, νc
15%

1 70,608.3, 0.9% 288,238.8, 3.9% 0.32927, 0.2% 0.18351, 8.2%
2 70,608.3, 0.9% 288,237.8, 3.9% 0.32927, 0.2% 0.18351, 8.2%
3 70,608.4, 0.9% 288,237.4, 3.9% 0.32927, 0.2% 0.18353, 8.2%

Ec
5%, νc

5%,
Ec

15%, νc
15%

1 69,934.1, 0.1% 308,332.5, 2.8% 0.32982, 0.1% 0.17573, 12.1%
2 69,934.1, 0.1% 308,332.6, 2.8% 0.32982, 0.1% 0.17573, 12.1%
3 69,934.04, 0.1% 308,333.81, 2.8% 0.32982, 0.1% 0.17573, 12.1%

Ec
5%, νc

5%,
Ec

15%, νc
15%,

Ec
15%, νc

15%

1 70,001.2, 0.0% 308,842.0, 2.9% 0.32976, 0.1% 0.17571, 12.1%
2 70,001.2, 0.0% 308,841.9, 2.9% 0.32976, 0.1% 0.17571, 12.1%
3 70,001.2, 0.0% 308,841.8, 2.9% 0.32976, 0.1% 0.17571, 12.1%
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Obtained results show that taking as input data properties of one composite material leads to
inaccurate identification results, moreover each of three independent simulations gives completely
different results. Taking as input data properties of two composite materials (with two different volume
fractions of the reinforcement) lead to obtaining results in good agreement with prescribed, known
values. In this case independent simulations give similar results. This same trend was noticed when
properties of three composite materials (with three different volume fraction of the reinforcement)
have been taken as an input data.

Afterwards, an influence of the input data uncertainty on identification accuracy has been
investigated by performing Monte Carlo simulations [46,47]. Gaussian distribution of the input
data has been taken into account by considering mean value µ, and two different cases of standard
deviation s1 and s2 as indicated in Table 4. For each simulation, the input data was selected randomly
with probability given by the gaussian distribution (1500 simulations for each standard deviation have
been carried out). Monte Carlo simulations exposed a difference in outcome of identification which
may occur when uncertain input data is applied. Figures 6 and 7 present the results obtained for the
standard deviation s1 and Figures 8 and 9 present the results obtained for the standard deviation s2.
Histograms that represents a distribution of identified quantities have been determined on the basis of
Monte Carlo simulations (Figure 10).

Table 4. Statistical properties of composites reinforced with three different volume fractions of
reinforcement which serves as an input data to Monte Carlo simulations.

Volume Fraction of Fibers Young Modulus (Mpa) Poisson Ratio

0.05
M = 74,955.83 µ = 0.32446

s1 = 500.00 s1 = 0.0015
s2 = 1000.00 s2 = 0.0030

0.10
µ = 80,486.48 µ = 0.31897
s1 = 500.00 s1 = 0.0015
s2 = 1000.00 s2 = 0.0030

0.15
µ = 85,820.04 µ = 0.31383
s1 = 500.00 s1 = 0.0015
s2 = 1000.00 s2 = 0.0030
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The distributions of identified elastic constants of matrix have much smaller widths than the
distributions of identified elastic constants of fibers. An irregular shape of the distribution of the
Poisson ratio of fibers is caused by reaching the lower optimization constraint during simulations.
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3.2. Composite Reinforced with Cubic Particles

Afterwards, a composite reinforced with cubic particles has been analyzed. Is this case, usage of
the analytical Mori–Tanaka method may lead to inaccurate results of identification since substantial
difference between Young modulus estimated by using pure analytical method (accounting for the
Eshelby’s tensor for spherical inclusion) and hybrid method (involving cubic shape of inclusion) has
been noticed (Figure 11). A geometrical model of equivalent inclusion problem for cubic particle
is presented in Figure 12a, the following elastic constants of the composite constituents have been
assumed: Em = 104 MPa, νm = 0.3, Ei = 105 MPa, νi = 0.2.
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Virtual tensile tests based on the FE analysis of the RVEs have been conducted in the same way
as previously (Section 3.1). The geometrical model of the RVE representing composite containing
15% of fibers is presented in Figure 12b. Elastic properties for matrix and particle are collected in
Table 5. The effective elastic constants corresponding to composite material, obtained after direct FE
homogenization, have been presented in Table 6.Materials 2018, 11, x FOR PEER REVIEW  13 of 16 
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Table 5. Elastic properties of matrix and particle.

Phase Young Modulus (MPa) Poisson Ratio

Matrix 70,000 0.30
Particle 415,000 0.16

Table 6. Elastic properties of composites with two different volume fractions of fibers.

Volume Fraction of Fibers Young Modulus(MPa) Poisson Ratio

0.10 82,012.65 0.28828
0.15 88,707.98 0.28269

Table 7 presents results of identification obtained by using different micromechanical models
and errors corresponding to the known data. As was supposed, application of the pure analytical
Mori–Tanaka method leads to substantial errors, hybrid M-F/FE approach lead to much better
identification accuracy in this case.

Table 7. Identified elastic constants of particle reinforced composite constituents.

Micromechanical Model
Identified Elastic Constants

Em Ei vm vi

Mori–Tanaka (M-T) 70,180.5, 0.3% 518,546.8, 22.2% 0.29849, 0.5% 0.12000, 18.2%

Hybrid M-T/FE 70,042.9, 0.1% 432,482.4, 4.1% 0.29924, 0.3% 0.15423, 3.7%

4. Concluding Remarks

This paper focused on determination of elastic properties of composite constituents by using
an inverse identification procedure. The aim of the developed identification procedure is to compute
the elastic constants of individual material phases on the basis of properties of composite material that
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may be measured experimentally. The inverse problem of identification has been solved by combining
an evolutionary algorithm with a micromechanical model. Obtained results show that identification is
successful only when properties of composite materials with at least two different volume fractions
of the reinforcement are known, otherwise identification is ambiguous. The paper also focuses on
selection of a suitable micromechanical model for optimization which should ensure a compromise
between accuracy and complexity. Here, two different materials have been analyzed: in the case of
composites reinforced with cylindrical fiber usage of pure analytical Mori–Tanaka method provided
reasonable accuracy of identification, in the case of composite reinforced with cubic particle pure
analytical method lead to substantial errors and, therefore, a hybrid homogenization method which
accounts for actual reinforcement shape has to be applied. An influence of the input data uncertainty
on identification accuracy has been investigated by performing Monte Carlo simulations. The Monte
Carlo simulations exposed a difference in outcome of identification which may occur when input
data is distributed normally. The performed numerical simulations presented the feasibility and
effectiveness of proposed inverse identification procedure. On the other hand, investigation exposed
identification errors that may occur, especially in the case when input data is uncertain. This study is
the basis for further research connected with experimental tests.

Nonetheless, there is still a lot of work to be done to extend the identification procedure for general
applications. There are several common features in engineering materials that may cause additional
issues connected with the inverse identification procedure: (a) reinforcing fibers may have anisotropic
properties; (b) porosity present in the material is not constant and increases with increasing volume
fraction of the reinforcement; (c) orientation distribution of the reinforcement is not strictly random but
depends on manufacturing process and may vary from unidirectional to random; and (d) the interface
between the matrix and the reinforcement is imperfect. Moreover, the directions for future research are
connected with improving the efficiency of micromechanical models for non-spheroidal inclusions,
for example, by applying boundary element methods [48,49], instead of FEM, during the numerical
solution of equivalent inclusion problem or developing metamodels instead of using time-consuming
micromechanical models.
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20. Mrozek, A.; Kuś, W.; Burczyński, T. Nano level optimization of graphene allotropes by means of a hybrid
parallel evolutionary algorithm. Comput. Mater. Sci. 2015, 106, 161–169. [CrossRef]

21. Han, Y.; Lu, W. Evolutionary design of nonuniform cellular structures with optimized Poisson’s ratio
distribution. Mater. Des. 2018, 141, 384–394. [CrossRef]

22. Ogierman, W.; Kokot, G. Homogenization of inelastic composites with misaligned inclusions by using the
optimal pseudo-grain discretization. Int. J. Solids Struct. 2017, 113, 230–240. [CrossRef]

23. Poteralski, A. Hybrid artificial immune strategy in identification and optimization of mechanical systems.
J. Comput. Sci. 2017, 23, 216–225. [CrossRef]

24. Silva-Santos, C.H.; Goulart, P.R.; Bertelli, F.; Garcia, A.; Cheung, N. An artificial immune system algorithm
applied to the solution of an inverse problem in unsteady inward solidification. Adv. Eng. Softw. 2018, 121,
178–187. [CrossRef]
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47. Kamiński, M.; Lauke, B. Uncertainty in effective elastic properties of particle filled polymers by the Monte
Carlo simulation. Compos. Struct. 2015, 123, 374–382. [CrossRef]
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