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Abstract: After platinum nanoparticles (PtNPs) were in-situ synthesized on silk fabrics through heat
treatment, it was determined that the treatment of the silk fabrics with PtNPs imparted multiple
functions, including coloring, catalysis, and antibacterial activity. The formation of PtNPs on
fabrics was affected by the Pt ion concentration, pH value of solution, and reaction temperature.
Acidic condition and high temperature were found to facilitate the formation of PtNPs on silk.
The color strength of silk fabrics increased with the concentration of Pt ions. The PtNP treated
silk fabrics exhibited reasonably good washing color fastness and excellent rubbing color fastness.
The morphologies and chemical components of the treated silk fabrics were analyzed using scanning
electron microscopy and X-ray photoelectron spectroscopy. The PtNP treated silk fabric exhibited
significant catalytic function and a notable antibacterial effect against Escherichia coli (E. coli).
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1. Introduction

Functional fabrics have attracted considerable research attention because of their broad
applications in both industrial and daily life. Many strategies have been developed to coat fibrous
materials with nanoparticles. For example, titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles
were used to modify the surface of fabrics to realize the UV blocking function of textile products [1–3].
Noble metal nanoparticles have also been used for the coloration and functionalization of fibers [4,5].
For example, gold and silver nanoparticles have strong absorption of photon energy at certain
wavelengths, enabling fabrics coated with these nanoparticles to display bright colors, due to
their localized surface plasmon resonance (LSPR) properties. Cotton fabrics functionalized with
in-situ synthesized gold nanoparticles not only showed vivid color, but also possessed significant
ultraviolet-blocking and antibacterial properties [6]. The ramie fibers modified with silver nanoparticles
exhibited great catalytic activity in addition to bright color [7]. Besides, Wu et al. loaded platinum
nanoparticles (PtNPs) on porous cellulose nanocrystals and studied the catalytic property of cellulose
nano-composites [8]. Yun et al. obtained the textile materials coated with PtNPs after treating knitted

Materials 2018, 11, 1929; doi:10.3390/ma11101929 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7111-8223
http://www.mdpi.com/1996-1944/11/10/1929?type=check_update&version=1
http://dx.doi.org/10.3390/ma11101929
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1929 2 of 13

cotton webs with tannic acid and ferric iron. The cotton webs with PtNPs exhibited strong catalytic
activity and good recyclability [9].

Silk is an excellent natural fibrous material with notable gloss and softness, good moisture
absorption, and breathability. Since silk is a type of protein, it is easy for microorganisms and bacteria
to accumulate and proliferate on silk fibers in a humid environment [10,11], which can cause damage
to fibers in the silk products and even bring about skin diseases. Many antibacterial agents have been
applied to eliminate microbial damage to natural fibers [12,13]. Compared with organic reagents,
inorganic nanomaterials, especially PtNPs, are stable and effective for antimicrobial applications [12].
PtNPs have high activity [14,15] and selectivity for catalytic reaction. They can enhance the cleansing
function of skin surface. Meanwhile, PtNPs can retard the growth of Escherichia coli (E. coli) and
Staphylococcus aureus (S. aureus) to achieve antibacterial effects [16]. However, PtNPs are prone to
aggregation and precipitation, limiting effectiveness in intended applications. Recently, Aladpoosh and
Montazer et al. attached Ag and ZnO to cotton fabric by heating the fabric in a water bath. The treated
fabric showed good antibacterial activity [17]. Yang and co-workers successfully loaded PtNPs onto
cotton, and the obtained cotton fabric showed a cyclic catalytic function [14].

Herein, we developed a convenient and feasible approach to accomplish functional surface
modification of silk fabrics based on in-situ synthesis of PtNPs on silk by heat treatment. The PtNPs
endowed the silk fabrics with colors, antibacterial property, and catalytic activity. The optical
properties of the functionalized fabrics were observed using K/S curves and UV-vis reflectance
spectroscopy. We systematically investigated the influences of Pt ion concentration, reaction
temperature, and pH value on the optical features and catalytic performance of the functionalized
silk fabric. The morphology and chemical components of the obtained silk fabrics were characterized.
The catalytic activity and antibacterial property of the functionalized silk fabrics were evaluated.
Moreover, the color fastness of the treated fabrics to washing and rubbing was assessed.

2. Materials and Methods

2.1. Materials

Chloroplatinic acid (H2PtCl6·6H2O, ≥37%), NaOH (≥96.0%), acetic acid (≥99.5%), 4-nitrophenol
(4-NP) (≥99%), and sodium borohydride (NaBH4) (98%) were purchased from Aladdin (Shanghai,
China). All chemicals were analytical grade reagents, and used without further purification. Woven silk
fabrics (97 g·m−2) with 285 warps (per 5 cm) and 285 wefts (per 5 cm) were obtained from a local retailer.

2.2. In-Situ Synthesis of PtNPs on Silk Fabrics

Silk fabrics were washed for 3 min using warm water (50 ◦C) and then rinsed with deionized
water at room temperature. The washed fabrics were immersed in different concentrations (0.1, 0.2,
0.3, and 0.4 mM) of H2PtCl6 solutions with a 100:1 of weight ratio (aqueous solution to silk fabrics).
The pH value of solutions was measured at 5. Silk fabrics were incubated in the H2PtCl6 solutions for
10 min. Then the solutions were heated at 90 ◦C for 60 min in a shaking water bath. The fabrics after
treatment were rinsed with running deionized water and dried at room temperature. The samples
corresponding to 0.1, 0.2, 0.3, and 0.4 mM of H2PtCl6 solutions were denoted by PSF1, PSF2, PSF3, and
PSF4, respectively. In order to observe the influence of pH values, NaOH or acetic acid was added to
H2PtCl6 solutions to adjust the pH values of reaction system from 3 to 6. In addition to 90 ◦C, other
temperatures (85 ◦C, 95 ◦C, and 100 ◦C) were tried to investigate the impact of temperature on in-situ
synthesis of PtNPs on silk fabrics.

2.3. Characterization Instrument

Scanning electron microscopy (SEM) measurements were carried out on a Hitachi SU8010 (Tokyo,
Japan). X-ray photoelectron spectroscopy (XPS, Manchester, UK) analysis were implemented on a
Kratos XSAM800 XPS system with Kα source and a charge neutralizer. Platinum content was measured
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by an IRIS Intrepid II XSP inductively coupling plasma atomic emission spectrometer (ICP-AES)
instrument (Manchester, UK). An Ocean Optics USB4000 spectrometer (Dunedin, FL, USA) was used
to record the UV-vis absorption spectra of solutions. UV-vis diffuse reflectance spectra of fabrics were
obtained using BRC642E B&W Tek BRC642E CCD spectrometer (Newark, DE, USA) contented with
an Ocean Optics reflection and backscattering fiber probe (Dunedin, FL, USA). A Bruker D8 Advance
X-ray diffractometer with Cu Kα radiation (Madison, WI, USA) was used to obtain X-ray diffraction
(XRD) patterns. The color strength (K/S) of specimens was calculated using the Kubelka–Munk
equation as follows:

K
S

=
(1 − R)2

2R
where K and S are the absorption and scattering coefficients of fabrics, respectively. R is the reflectance
of the fabric at maximum absorption, measured using an X-rite Color i7 spectrophotometer (Grand
Rapids, MI, USA).

2.4. Color Fastness to Washing and Rubbing

Washing fastness was evaluated in accordance with the Australian Standard (AS 2001.4.15-2006).
The silk fabrics treated with PtNPs were washed for 45 min at 50 ◦C in the presence of ECE reference
detergent (4.0 g L−1) using a lab dyeing machine (Ahiba IR Pro, Datacolor International, Lawrenceville,
NJ, USA). The CIE Lab color coordinate values (L*, a*, and b*) for specimens were measured before
and after washing, using an X-rite Color i7 spectrophotometer (Grand Rapids, Michigan, MI, USA).
L* denotes the lightness/darkness; a* denotes chromaticity coordinates for red/green; and b* denotes
yellow/blue chroma. The color difference (∆E) was assessed using the changes in color coordinates
(∆L*, ∆a*, and ∆b*) with the formula: ∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2.

The rubbing colorfastness of treated silk fabrics was estimated in accordance with the Australian
Standard AS 2001.4.3-1995. The fabrics colored with PtNPs were rubbed using an undyed cotton cloth.
The staining of the cotton cloths was evaluated based on the standard grayscale for staining. Both dry
and wet rubbing fastness tests were performed.

2.5. Catalytic Activity

To study the catalytic activity of the PtNP functionalized silk fabrics, the catalytic conversion of
4-NP into 4-aminophenol (4-AP) by NaBH4 was conducted with the pristine and treated fabrics. In a
typical procedure, NaBH4 solution (1.0 mL, 3.42 M) was dropped into 4-nitrophenol aqueous solution
(40 mL, 0.02 mM). After that, silk fabrics of 8.5 mg (pristine silk, PSF1, PSF2, PSF3, and PSF4) were
immersed into the mixing solution of 4-NP and NaBH4 under vigorous stirring. UV-vis absorption
spectroscopy (Ocean Optics USB4000 spectrophotometer, Largo, FL, USA) was employed to record the
conversion of 4-NP into 4-AP to compare the catalytic performance of different silk fabrics.

2.6. Antibacterial Test Against Gram-Negative Bacteria

Gram-negative bacteria, E. coli (ATCC 25922), were used as test organisms. Antibacterial tests
were performed on both the pristine and the PtNP treated silk fabrics (PSF3), in accordance with
the AATCC 100-2012 (Clause 10.2) standard with slight modifications. In brief, the bacteria (50 µL)
were added to the samples in flasks, followed by pouring of 50 mL of sterile deionized water under
vigorously shaking. The flasks were incubated for 24 h at 37 ◦C in an incubator shaker (Xiangyi
Instrument Co., Ltd, Xiangtan, China). After that, the fabric specimens were collected and the solution
left in the flask was further diluted to obtain counts of bacterial colonies. 100 µL of the 103 dilution
obtained was placed on the nutrient agar plates. The agar plates were then incubated for 24 h at 37 ◦C
in an oven. The antibacterial activity of the fabric samples were analyzed by the quantitative method
of counting microbial colony forming units (CFU) of E. coli. The percent reduction of the bacteria was
calculated as follows:

Reduction in CFU (%) = (C − A)/A × 100%
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where, C and A are the bacterial colonies for the control and fabric samples, respectively.

3. Results and Discussion

3.1. Preparation and Characterization of the Silk Fabrics with PtNPs

The color of silk fabrics changed from white to yellow after the PtNPs were in-situ synthesized
onto its surface (Figure 1a). The fabrics treated with 0.1 mM of H2PtCl6 showed a slightly yellow color.
The yellow color of silk fabrics deepened as the initial concentration of H2PtCl6 increased. The silk
fabrics with 0.4 mM of H2PtCl6 presented a deeper color in yellow than in other fabrics. The color
change of the treated silk fabrics may be attributed to the variation of morphology and loading
percentage of PtNPs on silk fibers, similar to the case of coloration of cotton by gold nanoparticles
in our previous work [6]. ICP-AES testing confirmed that the platinum contents of the treated silk
fabrics were 3.50, 4.39, 8.58, and 9.37 mg g−1 corresponding to PSF1, PSF2, PSF3, and PSF4, respectively.
The platinum content increased with the increase of the initial concentration of H2PtCl6 (Table 1).

Table 1. Pt content of silk fabrics treated in the presence of different concentrations of H2PtCl6.

Sample ID PSF1 PSF2 PSF3 PSF4

Pt Content (mg g−1) 3.50 4.39 8.58 9.37

The color strength (K/S) was further measured to gain insights into the color changes of silk
fabrics (Figure 1b). The peaks of K/S curves of the treated silk fabrics were located at around 360 nm.
The maximum K/S value increased as the platinum content increased on silk fabrics, which was
consistent with the deepening trend of fabric color. To further observe the optical properties of the
fabric specimens, UV-vis diffuse reflectance absorption spectra of PtNP treated silk fabrics were
recorded. A single absorption band located at around 335 nm appeared in the UV-vis absorption
spectrum of PSF1 (Figure 1c), which is ascribed to the characteristic LSPR mode of PtNPs [18–20].
The LSPR bands of the PtNP treated silk fabrics red-shifted from 335 nm to 339 nm when the initial
concentration of H2PtCl6 increased from 0.1 mM to 0.3 mM, along with an increase in absorption
intensity. When the H2PtCl6 concentration increased from 0.3 mM to 0.4 mM, the UV-vis absorption
peak blue-shifted and the absorption intensity continued to increase. Combining the results of ICP-AES
and UV-vis absorption spectroscopy, we can see that the intensity of UV-vis absorption bands increased
with the content of PtNPs on silk. The changes of optical properties of the treated silk fabrics may be
associated with the morphologies and coating density of PtNPs on the silk fabrics.
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Figure 1. (a) Photograph, (b) K/S curves and (c) UV-vis diffuse reflective absorption spectra of the
PtNP treated silk fabrics.
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The surface morphologies of the fabric samples were observed using SEM, as shown in Figure 2.
A large number of nanoparticles were evenly coated on the fiber surface, indicating that PtNPs were
in-situ synthesized onto silk fabrics. For PSF2, both the large particles with sizes of 81.4 ± 31.9 nm
and the small nanoparticles with size of 20.6 ± 8.0 nm (Figure 2a,b) were found on the fiber surface.
The coating density of nanoparticle on the silk fiber surface increased as the concentration of H2PtCl6
increased from 0.2 to 0.3 mM (Figure 2c,d). Meanwhile, there was an obvious size increase for the small
particles, which increased from a size of 20.6 ± 8.0 nm for PSF2 to 23.2 ± 8.9 nm for PSF3. The size of
the small nanoparticles remained unchanged nearly as the H2PtCl6 concentration further increased to
0.4 mM (22.6 ± 7.5 nm). Changes in nanoparticle size resulted in different UV-vis absorption results of
PtNP treated silk fabrics.
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Figure 2. Scanning electron microscopy (SEM) images of the silk fabrics treated with different
concentrations of Pt ions: (a,b) 0.2 mM (PSF2); (c,d) 0.3 mM (PSF3); (e,f) 0.4 mM (PSF4).

XPS was employed to analyze the fabric surface (Figure 3). The characteristic peaks which were
assigned to (O 1s), (C 1s), (N 1s), and (S 2p) as the normal components of the silk were observed in the
XPS spectra of the pristine silk (Figure 3a) and the treated silk fabrics (PSF2 and PSF4) (Figure 3b,c). For
the S 2p spectrum of the pristine silk, a 164.2 eV has been seen (Figure 3c), which may be ascribed to the
signal of sulfur of the disulfide bonds in silk cystine residues [21–24]. Other peaks at 168.4 eV assigned
to the oxidized species of S from the cysteic acid was also found (Figure 3c). Whereas, the XPS peaks
at 164.2 eV corresponding to disulfide bonds nearly disappeared after the silk fabrics were treated
(Figure 3e,f), implying that the disulfide bonds were broken, which may result from the heat treatment
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at high temperature. The remained XPS peak at 168.4 eV indicated that oxidized species of S were
present on the surface of the treated silk. The peaks at 78.2 eV and 75.1 eV which were assigned to the
oxidized species of Pt (Pt (IV)) were observed in the XPS spectrum of PSF2 and PSF4 (Figure 3g,h) [25],
revealing that Pt (IV) existed on the surface of the silk fabrics. Another peak at 72.7 eV also arose
in the XPS spectra of the treated silk. The XPS peak could be assigned to the Pt (II) species [26–28].
The binding energy of metallic platinum is located around 71.0 eV [11,27,29]. The interaction between
surface platinum atoms and sulfur atom in cysteine on silk led to higher energy in comparison with
pure metallic platinum [11,30]. XPS data suggests that the charge transfer between platinum and sulfur
could occur. The linking of Pt-S could improve the durability of Pt NPs on silk fabrics. Moreover, no
notable new XRD peaks appeared after the fabrics were treated with PtNPs (Figure 4). This may be
due to the limited amount and low crystallization ratio of PtNPs formed on the silk fabrics.
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Figure 3. X-ray photoelectron spectroscopy (XPS) spectra of (a) the pristine silk fabric; (b) PSF2 and
(c) PSF4. S 2p XPS spectra of (d) the pristine silk fabric; (e) PSF2 and (f) PSF4. Pt 4f XPS spectra of
(g) PSF2 and (h) PSF4.
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Figure 4. X-ray diffraction (XRD) patterns of different fabric samples.
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3.2. Influence of pH Value and Temperature

The fabric samples were treated with 0.3 mM of H2PtCl6 solution at different pH values (3~6) to
study the pH effect on in-situ synthesis of PtNPs on silk fabrics. The K/S curves and UV-vis diffuse
reflectance absorption spectra are shown in Figure 5. The largest K/S value of 1.04 was obtained when
the fabric was treated at pH = 3 (Figure 5a). The maximum K/S value of the silk fabrics decreased with
increasing pH values of the reaction solution and it decreased to 0.27 when the pH value increased to
6. Bright colors of silk fabrics were achieved when the pH was less than 5. The color of the silk fabrics
showed negligible change when the pH value was above 7, revealing that almost no PtNPs formed
on the silk fabrics under this condition. Figure 5b displays the UV-vis reflectance absorption bands
of the silk fabrics treated with PtNPs at different pH values. The fabric samples prepared at pH = 3
and 4 exhibited pronounced UV-vis absorption peaks with intensities higher than those prepared at
pH = 5. The intensity increase of the UV-vis absorption bands at low pH conditions was consistent
with that of the K/S values. In addition, the platinum content of the fabrics enhanced as the pH
value reduced from 6 to 3 (Table 2). The results demonstrated that the acidic condition facilitates
the in-situ synthesis of PtNPs on silk fabrics. Moreover, K/S values of silk fabrics were measured at
different treatment temperatures to investigate the effect of temperature on the in-situ synthesis of
PtNPs (Figure 6). The maximum K/S values of the treated silk fabrics increased when the reaction
temperature changed from 85 to 100 ◦C, which reveals that higher temperature assists with fabrication
of more PtNPs on silk fabrics.
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Figure 5. (a) K/S curves and (b) UV-vis diffuse reflectance absorption spectra of silk fabrics treated in
the presence of 0.3 mM of H2PtCl6 at different pH values.

Table 2. Pt content of silk fabrics treated at different pH values with 0.3 mM of H2PtCl6 at 90 ◦C.

pH 3 4 5 6

Pt Content (mg g−1) 8.60 8.58 1.81 0.68
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Figure 6. K/S curves of the silk fabric treated at different temperatures with 0.3 mM of H2PtCl6.
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3.3. Assessment of Color Fastness

The durability of PtNPs on silk fabrics can be evaluated by measuring the color fastness of
silk fabrics. Color fastness is an important parameter that affects the practical performance and
usage of textile products. The color fastness to washing cycles of the PtNP coated silk fabrics was
tested by washing the fabric samples with the ECE reference detergent for 45 min at 50 ◦C, for each
washing cycle. The color difference (∆E) values of the fabrics before and after washing are shown in
Figure 7a. After the first washing cycle, the ∆E values were 1.9 and 2.7 corresponding to PSF2 and
PSF3, respectively, which reveals that colors of the fabrics faded during washing. The ∆E of PSF2
maintained to be around 2.3 with the washing cycles, which demonstrates its good colorfastness to
washing for PSF2. The ∆E values of PSF3 changed slightly after five washing cycles. The PtNP coated
silk fabrics exhibited reasonably good color fastness to washing. We additionally tested the color
fastness of the treated silk fabrics to rubbing. The grayscale rating for color differences of PSF2 and
PSF3 under dry and wet rubbing conditions was evaluated. The color fastness was rated as 5 for both
PSF2 and PSF3, after 20 dry rubbing cycles. Moreover, the grayscale was rated as 5 and 4–5 for PSF2
and PSF3, respectively, even after 20 wet rubbing cycles. Figure 7b,c display the ∆E values of PSF2
and PSF3, during dry and wet rubbing. It can be seen that the ∆E values of PtNP treated silk fabrics
changed slightly after 20 cycles of dry or wet rubbing. These results indicate that the PtNP treated silk
fabrics have very good color fastness to rubbing.
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Figure 7. Evolution of color difference (∆E) of the treated silk with PtNPs (PSF2 and PSF3) with (a)
washing cycles, (b) dry rubbing cycles and (c) wet rubbing cycles.

3.4. Investigation of Catalytic Activity

PtNPs as common catalysts have been extensively used to accelerate reactions. In this study,
PtNPs were attached to silk fibers by the in-situ synthesis process. Silk fabrics can act as a supporting
substrate for the nanomaterials, which facilitates with the separation of PtNPs from the reaction system
for reuse in the next reaction cycle. The reduction of 4-NP by NaBH4 is widely used as a catalytic model
reaction to analyze the catalytic activity of metal nanoparticle catalysts [31]. The UV-vis absorption
spectra of aqueous solution during the reduction of 4-NP were recorded to assess the catalytic ability
of the PtNP treated silk fabrics. The 4-NP solution changed from light-yellow to green-yellow when
NaBH4 was added into the reaction system. The reduction of nitro compounds by NaBH4 is very
slow without any catalyst in the solution, whereas metal nanoparticles can accelerate the reduction
reaction through transferring electron from NaBH4 to the nitro compounds [32]. The formation
of 4-nitrophenolate ions resulted in a new UV-vis absorption peak at 400 nm after the addition of
NaBH4 [31]. The UV-vis absorption spectra of the solution mixture of 4-NP and NaBH4 changed
slightly in the presence of pristine silk fabrics (Figure 8a). No visible decrease of the 4-NP absorption
peak at 400 nm was observed within 60 min, which reveals that the pristine silk fabric has no catalytic
activity. Figure 8b–e shows the evolution of the UV-vis absorption spectra of the 4-NP solution in the
presence of PtNP treated cotton fabrics (PSF1–PSF4) after the addition of NaBH4. The intensity of
absorption band at 400 nm dropped remarkably for all the PtNP treated silk fabrics. Meanwhile, a new
absorption peak at 300 nm appeared during the reduction process of 4-NP, which is attributed to the
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generation of 4-AP [33,34]. The reduction rate of 4-NP can be indicated by the plots of the intensity of
the 400 nm band versus time (Figure 8f). The peak intensity at 400 nm of the 4-NP solution with the
PtNP treated silk fabrics immensely reduced, implying that the PtNP treated silk fabrics possess great
catalytic activity. The PtNP loading imparted catalytic feature to silk fabrics, which may facilitate the
degradation of organic contaminants on the silk clothes in real life.
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Figure 8. Evolution of UV-vis absorption spectra of 4-nitrophenol solution after NaBH4 solution in the
presence of the different fabrics: (a) pristine fabric; (b) PSF1; (c) PSF2; (d) PSF3; and (e) PSF4. (f) Plots
of the peak intensity as a function of reaction time in the presence of different silk fabrics.

Generally, the reduction of 4-NP into 4-AP is considered as a pseudo-first-order kinetic reaction
in the presence of adequate NaBH4 [35,36]. This pseudo-first-order hypothesis for reduction of 4-NP
was demonstrated by the linear correlation between ln(At/A0) and time (Figure 9a). The apparent
rate constant (Kapp) of the catalytic reaction can be calculated based on the linear slope of ln(At/A0)
versus time. The Kapp value of the reduction reaction was estimated to be 3.22 × 10−2, 3.70 × 10−2,
4.49 × 10−2 and 5.67 × 10−2 min−1 for PSF1, PSF2, PSF3, and PSF4, respectively. The Kapp values
obtained in this work are comparable to Islam et al.’s work reported for the PtNPs [37]. The Kapp
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for the treated silk fabric enhanced with the increase of the amount of PtNPs on the surface of silk
fabrics, indicating that the catalytic activity is determined by the content of platinum on the silk fabrics.
In order to evaluate the durability of the catalyst, the treated fabric (PSF3) was separated from the
reaction solution and reused in the repeated reduction system of 4-NP. The peak intensity at 400 nm
for each conversion cycle was plotted as a function of time as shown in Figure 9b. The treated fabric
maintained great catalytic activity even after five cycles, revealing that the PtNP treated silk fabrics
presented durable catalytic feature.
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Figure 9. (a) Plots of n(At/A0) at 400 nm as a function of reaction time in the presence of different silk
fabrics. (b) Recycling and reuse of the PtNP treated silk fabric (PSF3) for the reduction of 4-NP to 4-AP.

3.5. Antibacterial Properties

The antibacterial activity of PtNPs or Pt(IV) ion has been investigated in the previous
reports [18,38,39]. In this study, we evaluated the antibacterial property of the PtNP treated silk
fabrics against E. coli. Figure 10 shows the bacteria colonies on the agar plats for the pristine and
treated fabrics. The plates for the pristine fabric had bacteria fully covered (Figure 10a), whereas few
bacteria colonies were seen on the agar medium of the PSF3. Antibacterial properties of fabric samples
were further evaluated by reduction of CFU. The reduction of CFU corresponding to pristine and
treated fabrics was 0% and 91%, respectively. These results suggest that the PtNPs or Pt(IV) ions on
the silk fabrics distinctively hindered the growth of bacteria (Figure 10b). The phenomena proved that
the PtNP-treated silk fabrics possessed remarkable antibacterial activity.

Materials 2018, 11, x FOR PEER REVIEW  10 of 13 

 

solution and reused in the repeated reduction system of 4-NP. The peak intensity at 400 nm for each 

conversion cycle was plotted as a function of time as shown in Figure 9b. The treated fabric 

maintained great catalytic activity even after five cycles, revealing that the PtNP treated silk fabrics 

presented durable catalytic feature. 

 

Figure 9. (a) Plots of n(At/A0) at 400 nm as a function of reaction time in the presence of different silk 

fabrics. (b) Recycling and reuse of the PtNP treated silk fabric (PSF3) for the reduction of 4-NP to 4-

AP. 

3.5. Antibacterial Properties 

The antibacterial activity of PtNPs or Pt(IV) ion has been investigated in the previous reports 

[18,38,39]. In this study, we evaluated the antibacterial property of the PtNP treated silk fabrics 

against E. coli. Figure 10 shows the bacteria colonies on the agar plats for the pristine and treated 

fabrics. The plates for the pristine fabric had bacteria fully covered (Figure 10a), whereas few bacteria 

colonies were seen on the agar medium of the PSF3. Antibacterial properties of fabric samples were 

further evaluated by reduction of CFU. The reduction of CFU corresponding to pristine and treated 

fabrics was 0% and 91%, respectively. These results suggest that the PtNPs or Pt(IV) ions on the silk 

fabrics distinctively hindered the growth of bacteria (Figure 10b). The phenomena proved that the 

PtNP-treated silk fabrics possessed remarkable antibacterial activity. 

 

Figure 10. Evaluation of the antibacterial activity of (a) the pristine silk fabric and (b) the PtNP treated 

silk fabric (PSF3). 

4. Conclusions 

A facile method has been developed to in-situ PtNPs on silk fabric by the reduction of Pt ions 

using a heat treatment. The surface modification with PtNPs endowed silk fabric with colors, 

catalysis, and antibacterial characteristics. The color strength increased with the Pt ion concentration. 

Low pH value and high temperature were conducive to the in-situ formation of PtNPs on silk fabrics. 

The PtNP-treated silk fabrics exhibited reasonably good color fastness to washing and excellent color 

0 10 20 30 40 50 60

-3

-2

-1

0

 SPF1

 SPF2

 SPF3

 SPF4

ln
(A

t/A
0
)

Time (min)

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

In
te

n
s

it
y

 (
a

.u
.)

Time (min)

 1-cycle

 2-cycle

 3-cycle

 4-cycle

 5-cycle

(a) (b)

(a) (b)

Figure 10. Evaluation of the antibacterial activity of (a) the pristine silk fabric and (b) the PtNP treated
silk fabric (PSF3).
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4. Conclusions

A facile method has been developed to in-situ PtNPs on silk fabric by the reduction of Pt
ions using a heat treatment. The surface modification with PtNPs endowed silk fabric with colors,
catalysis, and antibacterial characteristics. The color strength increased with the Pt ion concentration.
Low pH value and high temperature were conducive to the in-situ formation of PtNPs on silk fabrics.
The PtNP-treated silk fabrics exhibited reasonably good color fastness to washing and excellent
color fastness to rubbing. More importantly, the PtNP modified fabrics showed great catalytic and
antibacterial activities. The as-prepared PtNP-treated silk fabrics have potential applications in
functional textile products and ornaments.
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