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Abstract: In crystalline materials, dislocations are three-dimensional lattice distortions that
systematically distort twin interfaces that they encounter. This results in dislocation dissociation
events and changes in the atomic structure of the interface. The manner in which the interface
distorts drive the product of the dissociation event, and consequently, the incident dislocation core
and the magnitude and relative direction of the Burgers vector govern these slip-twin interaction
phenomena. Recent characterization studies using transmission electron microscopy as well as
advanced molecular dynamic simulations have shown that slip dislocations, whether striking or
struck by a {1 0 1 2} twin boundary, dissociate into a combination of twinning disconnections,
interfacial disclinations (facets), jogs, and other types of dislocations engulfed inside the twin
domains, called transmuted dislocations. While twinning disconnections were found to promote
twin propagation, the dislocations incorporated inside the twin are of considerable importance to
hardening and damage initiation as they more significantly obstruct slip dislocations accommodating
plasticity of the twins. In this work, the dislocation transmutation event and its effect on
hardening is captured using a dislocation density based hardening model contained in a visco-plastic
self-consistent mean-field model. This is done by allowing the twins to increase their dislocation
densities, not only by virtue of slip inside the twin, but also through dislocations that transmute from
the parents as the twin volume fraction increases. A correspondence matrix rule is used to determine
the type of converted dislocations while tracking and parameterizing their evolution. This hypothesis
provides a modeling framework for capturing slip-twin interactions. The model is used to simulate
the mechanical response of pure Mg and provides a more physically based approach for modeling
stress-strain behavior.

Keywords: magnesium; twinning; hardening; dislocations; crystal plasticity; self consistent methods;
modeling; simulation

1. Introduction

The utilization of hexagonal-close-packed (HCP) magnesium (Mg) and magnesium based alloys
is of interest to industry because of their low density and high specific strength. Their low crystal
symmetry leads to mechanically anisotropic behavior, especially in highly textured polycrystals,
in which significant nucleation and growth of {1 0 1 2} tensile twins may occur. {1 0 1 1} compression
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twinning also occurs in Mg when the 〈c〉-axis is compressed or contracted, and has been correlated with
a high propensity of damage when formed inside {1 0 1 2} tensile twins or after significant pyramidal
〈c + a〉 slip has occurred [1,2]. Several design approaches have been developed in an effort to produce
Mg alloys with higher ductility, mainly relying on the idea that twinning should be reduced [3].
Additions of rare earth elements proved to be useful for improving formability at low temperature,
primarily by means of texture weakening. However, energy absorption levels remained shockingly
low under high rate regimes relevant to car crash deformation [4,5]. In order to expand the range of
industrial applications of Mg alloys the way twinning affects hardening must be better understood
and predicted.

Studies of single crystal magnesium revealed that slip along the basal and prismatic planes
are often active during deformation, both possessing a relatively low CRSS when compared
with other deformation modes [6–8]. However, in order to accommodate deformation along the
〈c〉-axis, pyramidal-〈c + a〉 slip and tensile {1 0 1 2} twinning modes are often activated as well,
leading to heavily anisotropic behavior, both observed experimentally and predicted in polycrystal
modeling [9–13]. In some cases, highly profuse twinning in which 80% of the parent grain volume
is overtaken by twin volume fraction can occur. In other cases, scarcely no twinning at all may
take place [6,8]. The reason for this anisotropic behavior is well understood, and is rooted in the
polarity of twinning combined with its marked low CRSS compared to any other deformation mode
able to accommodate 〈c〉-axis strain. As {1 0 1 2} twinning cannot facilitate 〈c〉-axis compression,
the crystal or grain is very strong when compressed along the 〈c〉-axis by virtue of the domination
of pyramidal-〈c + a〉 slip. However, compression perpendicular to 〈c〉 forces 〈c〉-axis extension.
In this case the crystal is initially weak when compared to compression along along the 〈c〉-axis,
but quickly hardens as the reorientation by twinning rotates the parent lattice, forcing it back into
〈c〉-axis compression. Similar anisotropy occurs under tension.

As highlighted in the work of Oppedal et al. [14], if the anisotropic behavior of Mg is informed
exclusively by the process described above, then the saturation stress should, in principal, be roughly
the same for both compression paths. But this is not the case, and consequently, additional hardening
mechanisms are needed to explain this discrepancy. Previously reported crystal plasticity simulation
work generally introduced Hall–Petch effects in order to obtain acceptable stress-strain simulation
results [15–18]. If the differences in saturation stress associated with the incidence of twinning in
Mg were motivated by Hall–Petch effects, then it is logical to expect the observation of dislocation
pile-up at twin boundaries. However, pre-strained Mg polycrystals at various levels of strain showed
that {1 0 1 2} twins readily pass through any dislocation substructure that they encounter during
their propagation, suggesting that twin boundaries are able to either absorb or incorporate those
dislocations [2].

Oppedal et al. [14] go on to demonstrate that, rather than being caused by Hall–Petch effects, this
anisotropy could be the result of increased dislocation density inside the twin grains. Implementing
a modified version of the dislocation density based hardening model of Beyerlein and Tomé [19] in
the visco-plastic self-consistent (VPSC) code (VPSC-7d from Los Alamos National Laboratory) the
compression of rolled Mg with a highly basal texture along multiple compression loading paths were
simulated. By setting the contributions of Hall–Petch mechanisms to zero, Oppedal et al. [14] showed
that increasing the amount of dislocation density stored inside twin volumes by a Twin Storage Factor
(TSF) recreated the characteristic hardening behavior across multiple load paths. This approach will be
referred to as the TSF method in the following. This demonstrated that the assumptions about how
slip dislocations interact with twin grain boundaries may require additional investigation in order to
be completely understood. More specifically, it was shown that increasing the dislocation density of
twin grains could reproduce hardening reactions previously thought to have been caused solely by
Hall–Petch effects. However, this empirical approach was limited in that the specific physical process
by which dislocation density was increased inside of twin grains was not modeled.
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The findings of Oppedal et al. [14] were bolstered by the more recent studies of slip-twin
interactions in the works of El Kadiri et al. [20], Barrett et al. [21], and Wang et al. [22], in which
the behavior of basal dislocations encountering {1 0 1 2} twin boundaries were investigated by means
of molecular dynamic simulations and transmission electron microscopy. These studies showed
that such dislocations readily disassociate into twinning disconnections bolstering twin propagation,
interfacial disclination dipoles (facets), and other dislocations that transmute into the interior of the
twin volume, called transmuted dislocations. Though the complete dislocation reaction at the twin
interface was only recently identified by means of atomistic simulations and advanced interfacial
defect theory, the part of the dissociation leading to dislocation transmutation has been hypothesized as
early as the nineteen sixties by Bilby and Saxl and was later known as the Basinski mechanism [23–25].
Similar to the Basinski mechanism [25], the capacity of dislocations to transmute from parent grains
across twin boundaries represents a potential vehicle by which the dislocation density of twin grains
might be increased in excess of statistically and geometrically necessary dislocations typically formed
to accommodate slip within the twin. Transmutation could then account for the increased dislocation
density enforced by the twin storage factor of Oppedal et al. [14]. While previous studies have conceded
that a Basinski type transmutation effect may be occuring in twinning Mg, experimental evidence
has been sparse thus far [2,15,16,18]. The work of El Kadiri and Oppedal [26] provides a crystal
plasticity framework by which such transmutation effects might be modeled in VPSC simulations.
They developed a transmutation matrix α where each element αij represents the proportion of
dislocation density that is transmuted to the ith slip mode inside the twin volume from the jth
slip mode in the parent volume.

In order to investigate the potential role of dislocation transmutation effects in the hardening of
Mg, the work presented herein presents a modified version of the crystal plasticity based dislocation
transmutation theory of El Kadiri and Oppedal [26], further adapted to capture the system-wise nature
slip dislocation interaction with twin boundaries and allow for the inclusion of both transmutation
and dissociation behavior of these dislocations. In this way, a physically based model for the complex
interactions of slip and twinning in polycrystal Mg is developed. This model is implemented in the
LANL code VPSC-7d, and is calibrated against data from rolled Mg under multiple compression load
paths. Finally, it is used to simulate the anisotropic hardening behavior of the material.

2. Model

The hardening model for this work is based on the approach of Beyerlein and Tomé [19] in which
the hardening behavior of HCP polycrystals is simulated by the evolution of the critical resolved shear
stress (CRSS) used in Hutchinson’s strain rate sensitive constitutive equation for slip. In this approach,
the CRSS for slip for a given slip system s as part of the slip mode, i, is defined as a function of the
dislocation density on that system. The CRSS of each system is given by the additive decomposition
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In Equation (2a), bi and ρi are the Burgers vector and dislocation density on the ith slip mode.
χ and µ are the dislocation interaction coefficient and shear modulus, respectively. Equation (2b) also
contains the debris formation parameter kdeb and debris density ρdeb. The Hall–Petch contributions
in Equation (2c) depend on the presence of twins. In grains where there is no active twinning,
these contributions are the same for all s ∈ i, with a bulk interaction term HPi and grain size dg.
For grains containing twins, the values of τs

HP cannot be assumed to be the same for all s ∈ i. In this
case, the interaction term HPij describes the interaction between twin mode j, which contains the
predominate twin system, and slip mode i. Here, ds,PTS

m f p is the mean free path between twin lamella for
dislocations on slip system s as described in Proust et al. [17].

In the simulations presented in this work, the forest and debris contributions remain unchanged
from the forms presented in Beyerlein and Tomé [19]. However, the constitutive model of Beyerlein and
Tomé [19] is based on the Composite Grain (CG) model of Proust et al. [17] and treats twin boundaries
as full-stop barriers to dislocation glide. As twin boundaries are not considered to act as barriers in this
work by hypothesis, the Hall–Petch contributions to CRSS are treated as being identically zero, hence

τs
HP = 0, ∀s ∈ i. (3)

In the model of Beyerlein and Tomé [19], the change in dislocation density for a given slip mode
α with change in shear on the same system is calculated by a Mecking-Kocks [27] type equation and
adopted in this work to calculate the change in dislocation density with shear as

∂ρi

∂γi = ki
1

√
ρi − ki

2 (ε̇, T) ρi. (4)

Equation (4) introduces the phenomenological generation and rate and temperature dependent
parameters ki

1 and ki
2. In Beyerlein and Tomé [19], this leads to a relationship between these

two parameters,
ki

2 (ε̇, T)
ki

1
=

χbi

gi

(
1− kT

Di(bi)3 log
(

ε̇

ε̇0

))
. (5)

Above, gi, Di are the normalized activation energy and drag stress, respectively, and ε̇ and ε̇0 are
the strain rate and reference strain rate.

In the present model, the dislocation densities were modified based on changes in twin volume
fraction of the composite grain, which were added:

ρiTF =

{
ρi, ∀s ∈ parent volume fraction

ρiTF (V) , ∀s ∈ parent volume fraction.
(6)

In this way, the hardening contributions from dislocation density to the CRSS of slip systems
inside the twin volume fraction of each grain are differentiated from those systems inside the parent
volume fraction.

The function ρiTF (V) from the work of El Kadiri and Oppedal [26] defining the increase in
dislocation density of the ith slip mode type inside the jth twin volume fraction is expressed as

dρiTF (V) =
VTρiT + dV ∑j αijρ

jP

VT + dV
. (7)

In the present work, the matrix α includes an additional row in order to account for dislocation
transmutation into sessile, higher order dislocations and Equation (7) is modified in order to account for
the dissociation of parent dislocations at twin grain boundaries. A normalized dissociation parameter
η is introduced, representing the proportion of dislocation density that fails to transmute from the jth
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slip system in the parent volume to the twin volume and does not contribute to dislocation density in
the twin. This leads to the final, modified constitutive law

dρiTF (V) =
VTρiT + dV ∑j

(
1− ηj

)
αijρ

jP

VT + dV
. (8)

The model of Beyerlein and Tomé [19] also contains constitutive laws for twin activation,
propagation, and interaction. These remained unchanged in the current work and are summarized in
Appendix A.

3. Implementation and Calibration

The above described changes to the dislocation density model were implemented in the
LANL code VPSC-7b by making changes directly to the subroutines UPDATE_CRSS_CG_disl and
DATA_CRYS and were compiled using the GFortran GNU compiler. The model was calibrated using
a three stage process. First, the values for α were assigned based on the correspondence method
introduced by Bilby and Crocker [23]. After this, values for the elements ηj were assigned, and finally,
the slip and twinning parameters respectively associated with dislocation generation, twin nucleation,
and twin propagation were adopted from Oppedal et al. [14].

3.1. Correspondence Method for Transmutation for the Construction of the α matrix

A generalized correspondence method for mapping a vector on a slip plane in a parent grain
on to a corresponding slip plane inside a twin grain was first presented in the work of Bilby and
Crocker [23]. This method was applied to twin modes in FCC and HCP crystals in the works of
Niewczas [28,29]. Summarized in Appendix B, the precise mathematical expression of the general
theory of the correspondence method shown in Niewczas [29] in the case of Mg was adapted for the
purpose of assigning values to the transmutation matrix α.

The onto mapping of slip systems in the parent volume to corresponding slip systems in the
twin volume implemented by Niewczas [29] provides explicit calculations for transmuting the plane
normal and directional vectors for each slip system in a parent grain to its corresponding slip system
inside a twin. Rather than using the method to calculate values of α at each deformation step,
the transmutation matrix for {1 0 1 2} twins was constructed in pre-processing. {1 0 1 1} twins were
not assumed to contribute to transmutation in this work as the onset of compression twinning in
Mg is taking place at higher strains, and very closely associated with the nucleation of damage in
the material, leading quickly to brittle failure. As such, the contributions of compression twins to
dislocation transmutation were assumed to be negligible. Strictly for the purposes of the element wise
construction of α, the following assumptions were made:

1. The entirety of the dislocation density from a slip system in the volume fraction of the parent
grain overtaken by a twin mode is considered to transmute to its corresponding slip system
inside the twin grain. This pairing of slip systems is defined by the mappings defined by the
correspondence method used by Niewczas [29] for HCP materials.

2. The dislocation density of slip mode in the volume fraction of the parent grain overtaken by a
twin volume is considered to be evenly distributed across the systems of that mode.

3. In this simulation, the dislocation density of any parent slip system corresponding to a slip system
inside the twin grain that was not part of the prismatic, basal, or 2nd order pyramidal < c + a >

slip modes was assumed to contribute to debris formation inside the twin as part of ρdeb.
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Working from these assumptions, the value of each element αij can be calculated as the proportion
of systems from the jth slip mode in the parent volume fraction which contribute to dislocation density
in the ith slip mode in the twinned volume. This can be expressed as

αij =
nC

j

ntot
j

, (9)

where nC
j is the number of slip systems in the jth slip mode of parent volume mapped onto slip systems

in the ith slip mode inside the twin volume and ntot
j is the total number of slip systems in the jth slip

mode of the parent volume. The values of αij for Mg used in this work are summarized in Appendix C.

3.2. Parameters for Dissociation

The molecular dynamics simulations in the work of El Kadiri et al. [20] suggest that the type
of dislocation and its orientation relative to the advancing twin boundary play a significant role in
determining whether a given dislocation will transmute across the boundary or dissociate upon contact.
In the simulations presented in this work, screw type basal dislocations were allowed to transmute
perfectly across tensile twin boundaries. Edge type dislocations would either transmute across these
twin boundaries or dissociate into twinning disconnections according to their orientation relative to the
twin boundary, with positively oriented dislocations transmuting across the boundary and negatively
oriented ones dissociating.

The simulations presented in this work were conducted at relatively low strain regimes,
with ε ≤ 0.25 for all simulations. As such, the following assumptions were made:

1. Dislocations in the prismatic, basal, and 2nd order pyramidal < c + a > modes are assumed to
transmute.

2. The incidence of screw type dislocations at low strain regimes is quite low. As such, for the
purposes of this work, it was assumed that the contributions to dislocation density inside the
twin volume fractions made by these types of dislocations were negligible.

3. Relative to twin boundaries, it was assumed that dislocations with positive and negative Burgers
vector occur in equal measure.

The proportion of dislocation density dissociated at twin boundaries rather than transmuted is
set by the η parameter at

ηprismatic = ηbasal = ηpyramidal = ηhigherorder = 0.5, (10)

and summarized again in Appendix C.

Parameters for Dislocation Generation and Twin Nucleation and Propagation

Simulations from the work of Oppedal et al. [14] were taken as a baseline for the presented work,
and parameters for the constitutive laws governing dislocation generation, drag stress, normalized
activation energy, critical stress values, and deactivated Hall–Petch effects were taken from this work.
Transmutation effects were used in place of twin storage factor, reducing the latter value to zero.
The values of these parameters are summarized in Appendix A.

3.3. Simulation

Experimental data from the work of Oppedal et al. [14] was utilized to establish a control data
set, where possible. In the case where such data were not available, comparisons were made to
simulated results from the same work. In this work, rolled, pure magnesium with a highly basal
texture in the normal direction was subjected to uniaxial compression along the normal and transverse
directions, hereafter referred to as through thickness compression (TTC) and in-plane compression
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(IPC), respectively. This was done in order to capture the anisotropic mechanical behavior of textured
magnesium, and, in particular, to motivate both scant and profuse twin volume growth. The chemical
composition of the pure magnesium used to generate the experimental data in Oppedal et al. [14] is
summarized in Table 1. The initial texture data was obtained via neutron diffraction at LANL and pole
figures generated from this data are shown in Figure 1.

Table 1. Composition of pure magnesium in ppm.

Al Ca Mn Zr Zn Sn Si Pb Mg

30 10 40 10 130 10 40 10 Balance

Shown in Figure 2, the load paths for the simulations presented in this work were performed
along both TTC and IPC directions on polycrystals consisting of 1944 grains with a highly basal
texture in order to recreate the conditions under which the literature data were collected. The loading
was conducted at room temperature conditions, with a strain increment of ∆ε = 0.001, up to a total
compressive true strain of ε = 0.25. The initial texture of the compressed Mg specimen is shown
in Figure 1.
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"
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Min = -0.05

Max = 2.86
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Figure 1. Pole figures showing the initial rolled texture of the Mg specimen.
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Figure 2. Simulated load paths and initial texture for simulations of rolled pure magnesium.
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4. Results

4.1. TTC Load Path

As highlighted in Figure 3, the TTC simulations reproduced both the texture and hardening curves
from the experimental literature data with good accuracy. Although the strain softening observed in
the experimental data at approximately ε = 0.1 was not reproduced in the simulation, capturing such
behavior lies beyond the scope of the current work. The simulated modal activity, being defined as
the proportional contribution to strain from each mode at each deformation increment, and evolution
of twin volume fraction shown in Figure 4, both followed trends seen in simulations utilizing twin
storage factor effects. Good agreement between the two simulation approaches was observed, however,
tension twin volume was somewhat under predicted relative to simulations utilizing the twin storage
factor approach.

From the literature, the texture in TTC simulations was not expected to change much
over the course of loading. This was evident in Figure 5 showing results of the simulations
utilizing the transmutation scheme, with the basal texture remaining consistent throughout the
compression loading.

(a) (b)

Figure 3. Simulated and experimental mechanical response under TTC compression. (a) Stress-strain.
(b) Hardening rate vs. strain.
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(a) (b)

Figure 4. Simulated slip and twinning activity under TTC compression compared to simulated results
from Oppedal et al. [14]. (a) Simulated modal contributions vs. strain. (b) Simulated twin volume
growth vs. strain.
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(b)

Figure 5. Comparison of simulated and experimental textures under TTC load conditions at ε = 0.09 .
(a) Simulated {0 0 0 2} and {1 0 1 0} pole figures. (b) Experimental {0 0 0 2} and {1 0 1 0} pole figures.

4.2. IPC Load Path

The sigmoidal stress curve associated with a high incidence of twinning was successfully captured
in the IPC simulations. The associated simulated hardening rate was reasonably similar to experimental
data from the literature. These results are shown in Figure 6. Shown in Figures 7 and 8, modal
contributions to strain were nearly identical to simulation results from previous simulation literature as
well. The growth of secondary compression twin volume fraction did exceed that seen in simulations
utilizing the twin storage factor approach, but it is assumed that this can be neglected as the onset of
compression twinning is, at higher strains, associated with void nucleation along compression twin
grain boundaries leading to brittle failure. This fact was reinforced by the failure of the experimental
control specimen coinciding with the formation of significant (>10%) volume fraction of secondary
compressive twins within the primary twin volume.

In Figure 9, the textural evolution is shown to be consistent with experimental data from the
literature, with high concentrations of orientations in the neighborhood of 90° from the normal
specimen axis. This type of reorientation is consistent with the high degree of tensile twinning.



Materials 2018, 11, 1855 10 of 17

(a) (b)

Figure 6. Simulated and experimental mechanical response under IPC compression. (a) Stress-strain.
(b) Hardening rate vs. strain.
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(a) (b)

Figure 7. Simulated parent slip and primary twinning activity under IPC compression compared to
simulated results from Oppedal et al. [14]. (a) Simulated modal contributions vs. strain. (b) Simulated
twin volume growth vs. strain.
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Figure 8. Simulated twin slip and secondary twinning activity under IPC compression compared
to simulated results from Oppedal et al. [14]. (a) Simulated modal contributions to strain vs. strain.
(b) Simulated twin volume growth vs. strain.
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(b)

Figure 9. Texture comparison of simulated and experimental textures under IPC load conditions at
ε = 0.12. (a) Simulated {0 0 0 2} and {1 0 1 0} pole figures. (b) Experimental {0 0 0 2} and {1 0 1 0}
pole figures.

5. Discussion

As the evolution of yield stress and twin volume with strain of pure magnesium is heavily
anisotropic, it becomes necessary to consider a measure for “goodness of fit” of simulated data along
multiple load paths when evaluating the degree to which the transmutation model and the method for
calibrating its parameters are validated. This measure must also be extended to simulated data obtained
from simulations utilizing the TSF model in order to make truly meaningful conclusions regarding
connections between the mechanical behavior resulting from artificially increased dislocation density
in twin grains and the increased dislocation density resulting from transmutation effects. To this end
the normalized mean squared error (NMSE) was calculated across the simulated strain sub-domains for
which experimental data was available (ε = 0 to 0.2 for TTC and ε = 0 to 0.125 for IPC). Summarized
in Table 2, these values were calculated for both load paths and for both modeling approaches.

Table 2. Normalized mean squared error for transmutation and TSF modeling approach.

NMSE

Transmutation (TTC) 5.7613%
TSF (TTC) 16.0268%

Transmutation (IPC) 21.0105%
TSF (IPC) 16.7439%

For simulations of the TTC load path, the normalized mean squared error of the transmutation
model is approximately 10% lower than that of the TSF model. In the IPC load path simulations,
the normalized mean squared error is roughly 5% higher. Taking both of these comparisons into
consideration, it can be concluded that while the transmutation model does suffer from some loss
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of accuracy in IPC simulations compared to the TSF approach, this loss is marginal at worst and
more than offset by gains in accuracy in TTC simulations. This conclusion is further reinforced when
one considers that the TSF model is a more empirical approach and, therefore, more limited than
transmutation model by the availability of sound experimental data to insure its predictive capabilities.

η Sensitivity

Although stress-strain curves, texture evolution, and modal activities were consistent both with
previous experimental and simulation work, further validation of the modeling approach is necessary
to conclude that predicted results are indeed the product of increased dislocation density inside the
twinned volume fraction of the simulated polycrystal.

In experiments and in simulations using both the TSF method and the method from the
current work, the saturation stress observed in the TTC and IPC load paths differs significantly
by approximately 60 MPa. In order to confirm that the “gulf” observed between the saturation stress
levels of TTC and IPC simulations was the result of increased hardness due to higher dislocation
density brought on by dislocation transmutation, additional simulations in which transmutation effects
were deactivated were performed for both load paths. This corresponds to simulations in which all
of the dislocations dissociate upon reaching the twin boundaries, leading to dissociation parameter
values of η = 1.0. In these cases, the saturation stress levels for both TTC and IPC simulations were
shown to be nearly equal, at roughly σsaturation = 180 MPa. These results are summarized in Figure 10.

Figure 10. Simulated stress-strain curves with a dissociation parameter of η = 0.5 and dissociation
parameter η = 1.0. These values correspond to a state of active dislocation transmutation and a state of
no transmutation, respectively.

Figure 11a shows the evolution of the dislocation density of each slip as a function of IPC
compression. Dislocation activity correlates well with the modal activity trends shown in Figure 7a,
showing increasing dislocation density across strain sub-domains in modes with more modal activity.
As shown in Figure 11b, the dislocation density evolution in IPC simulations is consistent with the
TSF parameters of Oppedal et al. [14]. At the point in which twin volume fraction was fully realized
(roughly 80% total volume fraction) the dislocation density of the twin volume fraction lies in the
range of twice that of the the dislocation density of the parent volume fraction.
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(a) (b)

Figure 11. Simulated dislocation density evolution. (a) Modal dislocation density vs. strain.
(b) Dislocation density for parent and primary twin volume fractions vs. primary twin volume fraction.

The assumption that dislocations exist on the prismatic 〈a〉 and 2nd order pyramidal 〈c + a〉 was
also put to the test. IPC compression was simulated under the assumption that only basal dislocations
would be allowed to transmute across twin grain boundaries. This corresponds to dissociation input
parameters of ηbasal = 0.5 and ηprismatic = η2nd order pyramidal = 1.0. Shown in Figure 12, the stress levels
after the onset of twinning were noticeably under predicted. While stress levels for simulations with
only basal dislocations actively transmuting were closer to approximating experimental stress levels
than simulations in which no transmutation was activated, the relative similarities can be accounted
for by acknowledging that deformation by basal slip, and therefore basal type dislocation density,
is significantly higher than both prismatic 〈a〉 and 2nd order pyramidal 〈c + a〉 in general. This is
supported by observations of simulated dislocation density by mode, summarized in Figure 11a.

Figure 12. Simulated IPC stress curve with transmutation active in the basal mode only.

6. Conclusions

In summary, methods for simulating the effects of twin transmutation and dissociation at twin
grain boundaries were implemented in a visco-plastic self-consistent framework in place of more
conventional approaches that utilize Hall–Petch effects, and used to simulate uniaxial compression
along multiple load paths in order to capture the behavior of magnesium under conditions which twin
volume growth was both profuse and sparse. The results of these simulations were compared to both
experimental data and simulated data from previous approaches. The results permit highlighting the
following points:
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1. In place of Twin Storage Factor and Hall–Petch effects, a model for dislocation and twin boundary
interactions was implemented. These methods and parameter selections were used to simulate
the behavior of pure, basal textured, rolled magnesium subjected to uniaxial compression along
(TTC) and perpendicular to (IPC) the dominant 〈c〉-axis of the texture. The simulation results for
stress, hardening, and texture development were consistent with observed experimental results.
Modal activity and twin volume growth were largely similar to simulation work performed
using the TSF approach.

2. The large difference between the saturation stress of the simulated IPC and TTC load paths
was confirmed to be the result of transmutation effects included in the model by disabling the
contributions of transmuted dislocations to the dislocation density of twin volume fractions.

3. It can be stated that Hall–Petch effects cannot be assumed to be the sole or even primary source
of twinning induced anisotropy in the mechanical behavior of pure magnesium.
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The following abbreviations are used in this manuscript:

VPSC Visco-Plastic Self-Consistent
HCP Hexagonal Close Packed
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CRSS Critical Resolved Shear Stress
HP Hall–Petch
LANL Los Alamos National Laboratory
TSF Twin Storage Factor
MD Molecular Dynamics
CG Composite Grain
TTC Through Thickness Compression
IPC In-Plane Compression

Appendix A. Parameters for Dislocation Density Based Hardening

Constitutive equations for twin hardening evolution in Beyerlein and Tomé [19]:

τt
c = τk

0 + τt
HP + τk

slip (A1)

τt
HP =


HPk√

dg
no twinning or when t = predominate twin system,

HPkk′√
ds

m f p

, when t 6= predominate twin system.
(A2)

τk
slip = µ ∑

i
Cikbkbiρi (A3)
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Hardening and dislocation generation parameters adopted from Oppedal et al. [14]:

Table A1. Parameters for hardening evolution of slip.

Prismatic Basal Pyramidal〈c + a〉

k1
1/m 2.0 × 109 0.25 × 109 2.0 × 109

ε̇ s−1 1.0 × 107 1.0 × 107 1.0 × 107

gα 0.0035 0.0035 0.003
Dα

0 MPa 3.4 × 103 10.0 × 103 0.08 × 103

τα
0 MPa 30 11 50

χ 0.9 0.9 0.9
HPα 0 0 0
HPαβ 0 0 0

Table A2. Parameters for hardening evolution of twinning.

Tensile Twin Compression Twin

τ
β
0 MPa τcrit = 15, τprop = 10 τcrit = 185, τprop = 185
HPβ 0 0

HPββ
TW 0 0

Cβ1 0 0
Cβ2 0 0
Cβ3 0 0

Appendix B. Correspondence Method; Summary of Equations

Presented here is a summary of the general Correspondence Method equations
from Niewczas [28], Niewczas [29] and Bilby and Crocker [23]. In this, a vector uM on in the
parent lattice is mapped onto the vector vT in the twin vector using the matrices S, X, and U. These
matrices are constructed from elements of m and n describing the twinning direction and normal to
the twin plane.

S =

1 + sm1n1 sm1n2 sm1n3

sm2n1 1 + sm2n2 sm2n3

sm3n1 sm3n2 1 + sm3n3

 (A4)

R =

−1 0 0
0 −1 0
0 0 1

 (A5)

X =

 m1 m2 m3

m3n2 −m2n3 m1n3 −m3n1 m2n1 −m1n2

n1 n2 n3

 (A6)

vM = SuM (A7)

U = X−1RX (A8)

vT = USuM. (A9)
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Appendix C. Parameters for Transmutation and Dissociation: Alpha Matrix Composition

Final values of transmutation matrix α used in simulations of Mg, with prismatic, basal, 2nd order
pyramidal < c + a > modes and debris corresponding to indices 1, 2, 3, and 4, respectively:

α =


0.0 0.3333̄ 0.3333̄

0.3333̄ 0.0 0.0
0.6666̄ 0.0 0.0

0.0 0.6666̄ 0.6666̄

 (A10)
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