Supporting information

Expanding the applicability of poly(ionic liquids) in solid phase microextraction: pyrrolidinium coatings

David J. S. Patinha,^{1,2} Liliana C. Tomé,¹ Mehmet Isik,³ David Mecerreyes,^{3,4} Armando J. D. Silvestre,^{2*} and Isabel M. Marrucho,^{1,2*}

- ¹ Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157, Oeiras, Portugal; <u>davidpatinha@itqb.unl.pt</u> (DJSP), <u>liliana.tome@itqb.unl.pt</u> (LCT)
- ² CICECO Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; <u>armsil@ua.pt</u> (AJDS)
- ³ POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; <u>isik.mehmet@ehu.eus</u> (MI), <u>david.mecerreyes@ehu.es</u> (DM)
- ⁴ IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
- ⁵ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; <u>isabel.marrucho@tecnico.ulisboa.pt</u> (IMM)
- * Correspondence: <u>armsil@ua.pt</u>, Tel: +351 234 370711; <u>isabel.marrucho@tecnico.ulisboa.pt</u>; Tel: +351-21-4469724; fax: +351-21-4411277

Figure S1 –¹H NMR data example of the synthesized diallylmethyloctyl bromide ([DAMC₈] Br) ionic liquid monomer. H¹ NMR assignments data for the three monomers: **[DAMC**₁₄]**[Br]** - ¹H NMR (400 MHz, deuterated dimethyl sulfoxide (*d*₆-DMSO)): δ 0.67-0.89 (t, 3H), δ 1.01-1.37 (m, 22H), δ 1.56-1.81 (q, 2H), δ 3.06-3.22 (s, 3H), δ 3.22-3.37 (t, 2H), δ 4.05-4.29 (d, 4H), δ 5.56-5.70 (dd, 4H) and δ 5.84-6.05 (m, 2H). **[DAMC**₈]**[Br]** - ¹H NMR (400 MHz, Deuterium oxide (*D*₂O)): δ 0.80-0.95 (t, 3H), δ 1.20-1.40 (m, 10H), δ 1.70-1.91 (q, 2H), δ 2.90-3.10 (s, 3H), δ 3.15-3.25 (t, 2H), δ 3.90-4.10 (d, 4H), δ 5.70-5.85 (d, 4H) and δ 5.90-6.20 (m, 2H). **[DAMC**₂]**[Br]** - ¹H NMR (400 MHz, *D*₂O): δ 1.25-1.35 (t, 3H), δ 2.85-2.95 (s, 3H), δ 3.25-3.35 (q, 3H), δ 3.75-3.90 (d, 4H), δ 5.56-5.70 (d, 4H) and δ 5.84-6.05 (m, 2H).

Figure S2 – Thermo gravimetric analysis data of the crosslinked poly(methyloctyl pyrrolidinium) TFSI (pD8) under N₂ atmosphere.

Figure S3 – Thermo gravimetric analysis data of the crosslinked poly(methylethyl pyrrolidinium) TFSI (pD2) under N_2 atmosphere.

Figure S4 – Differential Scanning Calorimetry data of the crosslinked poly(methyltetradecyl pyrrolidinium) TFSI (pD14).

Figure S5 – Differential Scanning Calorimetry data of the crosslinked polymers. From top to bottom: pD14, pD8 and pD2.

Table S1 – Glass transition temperatures and decomposition temperatures obtained for the three crosslinked polymers.

Polymers	$T_g/ {}^oC$	$T_d / {}^oC$
pD14	-21.47	368
pD8	-16.42	361
pD2	-23.00	355

Table S2 – Representation of the linear range and limits of detection for the analytes under study for the pD14 fiber. (*T* = 45 °C, *t* = 15 min, 2.5 wt. % of NaCl, 200 rpm).

Sample name	Linear range	r	slope	LOD	
			µg·L ⁻¹		
	(×10³)			pD14	PDMS
1-butanol	5-100	0.999	55±0.7	200	200
3-pentanone	2.5-100	0.989	281±11	200	200

2-hexanone	0.02-100	0.993	595±15	2	2
cyclopentanone	2.5-100	0.991	72±2.4	200	200
2-heptanol	0.25-100	0.996	387±7.9	5	20
2-heptanone	0.02-100	0.994	1332±29	1	2
1-octanol	0.02-100	0.993	1866±44	1	2
benzyl alcohol	0.5-100	0.999	134±1.2	20	50
DL-menthol	0.25-100	0.987	1044±32	0.2	2
(1R)-(+)-camphor	0.02-100	0.998	441±5.8	0.5	2
(S)-(-)-β-citronellol	0.02-100	0.999	1322±12	0.2	2