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Abstract: Guided wave technique could be a possible method for monitoring components working in
high temperature above 350 ◦C. However, this would require the design of an appropriate waveguide
bar to transmit the wave, so that its sensing part is not influenced by the high temperature. In the
present study, the shape of waveguide bars is designed based on the analysis of wave source
characteristics. The critical frequency-width and frequency-thickness products of waveguide bars
are analyzed theoretically and numerically to transmit the zeroth shear horizontal wave SH0* in
bars. The results show that waveguide bars can cut off all the other wave modes when their
frequency-thickness products are smaller than the critical value fd*, and frequency-width products
are not smaller than the critical value fw*. Six waveguide bars are designed and fabricated based on
the design criteria, and an experiment system is set up to check their work performance. The testing
results indicate that the wave signals of the SH0* mode propagate clearly in waveguide bars, and
cut off all the other modes when the frequency-thickness products and frequency-width products of
the bars meet the design criteria. It is also demonstrated that the dependency of the experimental
group velocity of each waveguide bar on frequency is in good agreement with the numerical result.
High-temperature experiments also validate the reliability of the designed waveguide bars. Therefore,
the critical frequency-thickness product and frequency-width product can be the basis for the design
of the waveguide bars.

Keywords: high temperature; waveguide bar; design; non-dispersion; structural health monitoring;
ultrasonic guided waves; piezoelectric transducers

1. Introduction

High temperature components are applied comprehensively in aerospace and process industries.
Many researchers have suggested that monitoring the structural health of components with
permanently installed transducers is a useful way to maintain their safety [1–9]. Permanent installation
will allow measurements to be more frequent and remove errors introduced by re-installing transducers.
The financial consequences of prolonged operational shutdowns have previously aroused strong
interest in developing ultrasonic transducers that can operate at elevated temperatures above 350 ◦C
for a long time. Li [10] has developed BiScO3-PbTiO3 (BS-PT) high-temperature transducers. However,
lithium niobate decreases in sensitivity over time when left in high temperature. Hou et al. [11] have
directly deposited thick piezo films onto high temperature structures. Sinding et al. [12] have sprayed
piezoelectric powder on the surfaces of structures. The attachment procedure for these transducers is
intricate and time-consuming, requiring several deposition steps and subsequent poling to achieve
robust attachment. None of them have achieved ideal results for high temperature longtime usage.
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Therefore, some non-contact technology has also been developed, such as laser-ultrasonic wave
technology and electromagnetic acoustic transducers. Applications of laser-ultrasonic wave technology
are covered in different research areas, and include defect inspection [13] and online monitoring [14].
However, its applicability in the industrial field is limited because of the comparatively expensive
price and characteristics that are easily influenced by external disturbance. Electromagnetic acoustic
transducers do not require couplant for transmitting sound, which makes them suitable for the
inspection of very hot and very cold parts [15–17]. However, whether a electromagnetic acoustic
transducer is based on the Lorenta force [18] or the magnetostrictive principle [19], most of these
transducers require strong magnets, and so the transducer tends to be bulky and heavy, which make it
not suitable for structural health monitoring (SHM) [20].

To overcome the above-mentioned deficiencies, the most promising inexpensive method is to
use a buffer waveguide bar to isolate the fragile transducers from the hot or corrosion specimens.
Such an implementation enables the application of commercially available standard piezo-crystals
as transducers. As a result, many researchers have studied the design of the waveguide bars.
Lawrence [21] has announced a system that uses thin wire to minimize dispersion, but the transmitted
power propagating into the specimen is too low. In order to overcome some of the problems of a
single thin wire, Lawrence [22] has changed to a bundle of thin wires. Nevertheless, cross-talk between
individual wires may complicate the signal analysis, and there are practical difficulties associated
with attaching each individual wire to the test structure. Jen [23] has disclosed a tapered ultrasonic
waveguide bar with an external layer of attenuation cladding. The cladding can remove the effects of
the waveguide bar’s boundaries by damping and limiting surface reflections. However, the signal
is slightly delayed, distorted, and strongly attenuated. Heijnsdijk [24] has disclosed a coiled foil
waveguide bar. The thickness of the foil is arranged to be much smaller than the smallest wavelength
of the propagated signal, thus satisfying the low frequency-dimension product for non-dispersive
transmission. This coiled foil is better suited to extensional rather than torsional waves. Peter [25]
has disclosed an elongate strip of ultrasound transmissive material, which transmitted some shear
modes of ultrasonic waves with notable non-dispersion, but it isn’t suitable for longitudinal wave.
Kwon [26] has designed a tapering waveguide bar. When the tapered waveguide bar is adopted, the
surviving lower shear horizontal wave can carry most of the transmitted power into the specimen.
Due to the squared bottom of the waveguide bar, it seems more suitable for a flat structure rather
than a cylindrical structure. According to these research studies, it is understood that the geometric
structure of the waveguide bar is the key parameter affecting the dispersion and scattering of waves.
However, the quantitative relation between the geometry of waveguide bars and the dispersion of
waves has not been investigated. Consequently, the aim of the present study is to provide a criterion
for the structural design of the waveguide bars.

2. Selection of a Guided Wave Source

Part of the core technology of applying waveguide bars to monitor high temperature components
is that the signal transmission should be as strong as possible, and with as little distortion as possible.
When the transmitted power into components is strong enough, the signals can transmit from the
transducers to the tested component and back again. When the ultrasonic signals travel in the
waveguide bars without distortion, the algorithm to evaluate damage to components is relatively
simple and easy. In order to reach the core technology, the transmitting energy and directivity of the
excited wave are critical to the selection of the wave source.

The torsional point loading and anti-plane shear loading can only excite shear waves [7]. All the
energy of loading is concentrated on the shear waves, and the signal strength of the wave is strong.
As a result, the torsional point loading and anti-plane shear sources exhibit the desirable characteristics
to be put into use in the waveguide monitoring systems. Moreover, the source radiating equally in
all directions is the ideal condition for the guided wave monitoring system. The directivity of the
torsional loading is formed into two hemispherical lobes, whereas the anti-plane shear line source
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radiates equally and strongly in all directions. That is to say, the anti-plane shear sources exhibited the
more desirable characteristics than the torsional point sources for the guided wave monitoring system.

3. Structural Design of Waveguide Bars

3.1. Theoretical Analyses

The anti-plane shear line loading source doesn’t exist in real life. A waveguide bar of large
width-to-thickness ratio (width >> thickness) is the closest practically implementable approximation.
The wave excited by the anti-plane shear line loading source is a shear horizontal wave (shorten for SH
wave), which can be depicted in Figure 1. The wave propagates in the x1 direction, the particle vibrates
in the x3 direction, and there is no out-of-plane particle displacement in the vibration of the SH wave.
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The explicit solutions for the group velocity in terms of frequency-thickness product fd are
constructed by Rose [27]. The group velocity Cg is

Cg( f d) = CT

√√√√1− (n/2)2

( f d/CT)
2 [ f d ≥ ( f d)n], (1)

where d equals to the thickness of the layer, f is frequency, CT is the shear wave speed. n ∈ {0, 1, 2, · · · }.
Since the material of many high temperature components is made of stainless steel, stainless steel

is also chosen as the material of waveguide bars in order to reduce refraction of the wave transmitting
from waveguide bars into components. The shear wave speed in a stainless steel layer is CT = 3200 m/s.
The group velocity curves for the first six SH modes in a stainless steel layer are plotted in Figure 2.
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3.2. Calculating the Thickness

According to Figure 2, when n = 0, the wave is in the SH0 mode, the group velocity of which is not
frequency-dependent. It is a non-dispersion wave propagating at the shear wave speed CT. All other
SH modes (n ∈ {1, 2, · · · }) are dispersive. As the frequency-thickness product fd approaches infinity for
any given fixed n, the group velocity of any SH mode approaches that of bulk shear waves CT. In this
case, it is different to achieve in actual engineering. Here, we consider that the frequency-thickness
product is small enough.

Supposing that the group velocity of SH1 is zero, Equation (1) can be written as

Cg( f d) = CT

√
1− (1/2)

( f d/CT)
2 = 0, (2)

In this case, a cut off frequency-thickness product can be calculated according to Equation (2)

fd* = 1.6 MHz·mm, (3)

When the frequency-thickness product fd is smaller than 1.6 MHz·mm, there is only SH0. Since
there is no out-of-plane particle displacement in a SH wave, it is less affected by the presence of
surrounding media. Furthermore, the group velocity of the SH0 wave mode isn’t frequency-dependent,
which can simplify the signal analysis for different acquisition frequencies. The characteristic that
the SH0 wave will not convert to other modes when defects exit can reduce the complexity of data
processing and improve the ability to identify defects. Therefore, the SH0 mode is preferred in
structural health monitoring over all the other SH modes. The SH0 mode is defined as a desired mode,
and all the other SH modes are defined as undesired ones in the present study. The frequency-thickness
product fd* is designated as the critical value of the frequency-thickness product to cut off the
undesired modes.

Useful frequencies for non-destructive inspection normally range from 1 MHz to 5 MHz [25].
When the acquisition frequency of non-destructive monitoring is selected, the thickness of the layer
can be calculated according to the critical value of the frequency-thickness product. For example, when
the signal frequency is 1 MHz, the thickness d can be calculated as 1.6 mm, according to Equation (3).
A geometrical thickness of the layer equal to 1 mm can be selected, taking into account the convenience
of material selection. At this condition, the undesired SH modes can be cut off and only SH0 can
propagate through the layer with 1 mm thickness, as shown in Figure 3. The first wave packet is
excitation signal, and the second is received signal. The received signal is very clear. The presence of
other modes that are much weaker than the main signal can be ignored.
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Therefore, the critical frequency-thickness product can be considered as the criterion for thickness
selection, when the signal frequency is selected.

3.3. Calculating the Width

Dispersion characteristics in flat layers and in waveguide bars are not identical. Strictly speaking,
the term ‘shear horizontal’ doesn’t make sense in a waveguide bar other than an infinite plate. Hence,
the name SH0* mode is chosen to indicate the zeroth-order SH mode in a waveguide bar. In order to
compare the SH0 and SH0* modes, the group velocities of the waveguide bar with 1 mm thickness
are simulated by ANSYS/LS-DYNA software (ANSYS 12.0, ANSYS, INC., Canonsburg, PA, USA).
The material of the waveguide bar is 316 L steel. The material’s characteristics are listed in Table 1.
Three waveguide bars are designed, and the geometrical sizes to be analyzed by numerical simulation
are inventoried in Table 2. In the process of simulation, excitation signals are sent on one end, and
reception signals are caught on the same end of bars. The reception signals are part of excitation signals
that travel along the waveguide bar and conduct back from the end of the waveguide bars. The group
velocities of waveforms are calculated by the method of Time of Flight [28]. The group velocities’ curves
versus the frequency-width product of the reception signals are calculated and shown in Figure 4.
It is found that the dispersion behavior in stainless steel waveguide bars is a function of the product
of the frequency of the signal and the width of the waveguide bars. All SH0* curves of waveguide
bars with different widths are coincident. At frequency, well above the cut-off fw* = 15 MHz·mm, the
group velocity of SH0* modes asymptotically approaches the bulk shear velocity of the SH0 mode. The
waves also propagate clearly with advantageous non-dispersion, which can be noticed from Figure 3
in Section 3.2.

Table 1. The material characteristics of 316 L steel.

Elastic Modulus Poisson’s Ratio Material Density

E = 211 Gpa R = 0.286 d = 7800 kg/m3

Table 2. The geometrical sizes of waveguide bars for simulation.

Number Width/mm Thickness/mm Length/mm

1 20 1 150
2 25 1 150
3 30 1 150
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Therefore, the critical frequency-width product can be the criterion for width design to acquire
the ideal wave mode.

3.4. Frequency Dependence

The curves of the group velocity dispersion versus frequency for the SH mode of 1-mm thick steel
bars of different widths (30, 25 and 20 mm) are plotted in Figure 5. It is found that the group velocity
dispersion has a cut-off frequency that depends on the width of the bars. At frequencies well above
the cut-off, the group velocity asymptotically approaches the bulk shear velocity CT. Based on the
dispersion characteristics of the SH wave in waveguide bars, it can be found that the signal frequency
and the geometric width of waveguide bars are strongly interrelated at low frequency-width products.
Therefore, the signal frequencies in the application of non-destructive testing should be high enough
to make sure that the frequency-width product isn’t lower than the critical value. In this condition,
the waves propagating through the waveguide bars can be guaranteed to be in the SH0* mode.
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3.5. Structural Design Criteria

Based on the above-mentioned analysis, the critical frequency-thickness product and
frequency-width product can be the design criteria of the geometrical structure of the waveguide bar
for a given frequency in the normally used non-destructive frequency range (1 MHz, 5 MHz). When
the frequency-thickness products are smaller than the critical value fd*, and frequency-width products
are not smaller than the critical value fw*, waveguide bars can cut off the undesired wave modes.
For the waveguide bars designed by these criteria, the SH0* mode of ultrasonic waves can propagate
through with advantageous non-dispersion. It is an ideal condition to detect the deterioration process
of components.

4. Room Temperature Experimental Verification

4.1. Experimental System

In order to verify the reliability of the design criteria regarding the frequency-thickness product
and the frequency-width product, and thus design the geometrical structure of the waveguide bar,
an experimental system is set up by consulting references [29,30]. The diagram and the picture are
shown in Figure 6. The experimental system includes an ultrasonic testing system RITEC-SNAP 5000
(Ritec, INC., Warwick, RI, USA), an oscilloscope, an attenuator, an amplifier, a duplexer, a waveguide
bar, and a transducer. The transducer is the Olympus V153-RM (Olympus NDT, INC., Waltham, MA,
USA), which has a central frequency of 1 MHz and can excite shear horizontal waves. The duplexer
is the RDX-6 (Ritec, INC., Warwick, RI, USA), which is a transformer arrangement that delivers
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high-power pulses to a transducer, while returned signals from the same transducer are transferred to
a receiver. It can also filter signals at the same time. Ten cycle tone bursts modulated with a Hanning
window are generated at 1 MHz using the testing system, and recorded at a sampling rate of 50 MHz.
Moreover, six different waveguide bars are fabricated, and the pictures are shown in Figure 7. The
geometric structures of the bars are listed in Table 3. A purpose-made installation tool is designed to
fix the transducer on one end of the waveguide bar. In the process of testing, the transducer works
as exciter and receiver. The installation picture of transducers is evinced in Figure 8. The SWC shear
wave couplant is applied between the transducer and the end of the waveguide bar in experiments.
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4.2. Verification of Thickness

We laid special stress on analyzing the reception signal at one of the normally used frequencies,
which is 1 MHz. In order to prove the effect of the thickness of waveguide bars on the purity of the
signal, two waveguide bars have been designed and fabricated. The width of the waveguide bars is
designed as 15 mm, according to the critical frequency-width product fw*. The thicknesses of the bars
are chosen as 1 mm and 4 mm, respectively. When the thickness is 1 mm, the frequency-thickness
product fd = 1 MHz·mm, which is smaller than the critical frequency-thickness product fd*. When the
thickness is 4 mm, the frequency-thickness product fd = 4 MHz·mm, which is bigger than the
critical frequency-thickness product fd*. The picture of the waveguide bars is shown in Figure 9.
The experimental waveforms of waveguide bar 1 and waveguide bar 2 are plotted in Figure 10. There
is cross-talk at the beginning of the time domain of the waveforms. In the present study, the cross-talk
signals are not analyzed; instead, the reception signals back from the ends of the waveguide bars are
analyzed. In Figure 10a, there is a main reception signal, and the presence of other modes is much
weaker than the main signal, so that the reception signal can be considered as only one mode, and
all other modes are cut off. The calculated group velocity 3012 m/s is in good agreement with the
theoretical group velocity 3200 m/s of the SH0 wave in the steel layer, so the received signal is in SH0*
mode. It is noticed that for the received signals in Figure 10b, waveforms are dispersive. The group
velocity of the first one packet is calculated as 3016 m/s, and the group velocity of the second one is
calculated as 2740 m/s, which is in good agreement with the theoretical group velocity 2752 m/s of
SH1 mode. There are still other modes following after SH1 wave mode.
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In other words, when the real frequency-thickness product of the waveguide bar is smaller than
the critical value, only SH0* can propagate through. Otherwise, the reception signal will disperse.
Therefore, the critical frequency-thickness product fd* = 1.6 MHz·mm can be the design criterion for a
given signal frequency.
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4.3. Verification of Width

In order to prove the effect of the width of waveguide bars on the purity of the reception signal,
two waveguide bars have been designed and fabricated. The thickness of the bars is designed as
1 mm, which is based on the critical frequency-thickness product fd*. The width of the waveguide
bars is 7 mm and 15 mm, respectively. When the width is 7 mm, the frequency-width product
fw = 7 MHz·mm, which is smaller than the critical frequency-width product fw*. When the width is
15 mm, the frequency-width product fw = 15 MHz·mm, which is equal to the critical frequency-width
product fw*. The picture of the waveguide bars is shown in Figure 11. The signals propagated through
waveguide bar No. 1, No. 3 and No. 4 are plotted in Figure 12. In Figure 12a,b, only the SH0* mode
exists, and all of the other SH modes are cut off. In Figure 12c, waveforms are dispersive, and more
than one SH mode exists in the reception signals.
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Therefore, when the real frequency-width product of the waveguide bar isn’t smaller than the
critical value, only the SH0* mode can propagate through. Otherwise, the reception signal will disperse.
Therefore, the critical frequency-width product fw* = 15 MHz·mm can be the design criterion for a
given signal frequency.

4.4. Verification of the Frequency Dependence

According to the critical frequency-width product fw* = 15 MHz·mm, three steel waveguide bars
are chosen. They are No. 4, No. 5 and No. 6. For the signal frequency 1 MHz, the frequency-width
products are all bigger than the critical value fw*.

The group velocities of the different wave modes excited in all those three waveguide bars
are calculated by time of flight method at different frequencies. The experimental results and
numerical results are compared in Figure 13. The experimental data proximately distribute around
their corresponding numerical values; that is to say, they are in good agreement with each other.
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According to Figure 13, it is also found that the wave signals propagating in the rectangular
waveguide bar have a cut-off frequency that depends on the width of the waveguide bars. For the
bars with different widths, they have a different cut-off frequency. For a given frequency, the designed
width needs to be wider than the calculated width, so that the real frequency-width product isn’t lower
than the critical value, even when the signal frequency fluctuates in engineering application.

4.5. Propagating Characteristics of Designed Waveguide Bars

The frequency-thickness products and frequency-width products of the waveguide bars
(No. 3–No. 6) all meet the design standards. The experiments are performed, and reception signals are
plotted in Figure 14. Waveforms are very clear with significant non-dispersion. The presence of other
modes that are much weaker than the SH0* mode can be ignored.

Therefore, it has been verified that the critical frequency-thickness product fd* and
frequency-width product fw* can be the basis to design the geometrical structures of waveguide
bars in order to get pure SH0* mode signal.
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5. High Temperature Experimental Validation

Propagating characteristics of designed waveguide bars are then tested at high temperature.
In this testing system, a high temperature furnace is applied. The test set-up is shown in Figure 15.
The waveguide bar goes through a hole in the insulating layer of the furnace and reaches outside
of the furnace. One end of the waveguide bar is bonded inside the furnace, and the other end is
coupled to the ultrasonic transducer, which works in room temperature. The waveguide bars designed
in the present study can be integrated in ultrasonic testing equipment to monitor high-temperature
components. The range temperature of this ultrasonic testing equipment mainly depends on the
material of the waveguide bar. The material selected for waveguide bars is 316 L steel, which can be
used up to 650 ◦C. Therefore, the ultrasonic testing equipment is expected to operate up to 650 ◦C.
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In the present study, the target temperature of 350 ◦C is tested. When the furnace is heated to
350 ◦C, the temperature is holding. The transducer end can be safely held by hand. There is no
noticeable increase in temperature. Due to the limitation of high-temperature installation tools, the
propagating characteristics of two waveguide bars have been tested, which are No. 1 and No. 4.
The received signals are compared with ones from room temperature experiments, as shown in
Figure 16. It is noticed that the received signal is very clear, too. The presence of other modes of signals
that are much weaker than the main signal can be ignored. These features are in line with those of
the room temperature experiment. Signal amplitudes remain strong. There is no drastic change in
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attenuation. However, differences still exist. The waveforms delay about 4% at higher temperature
because of the reduction of group velocity in the waveguide bar at high temperatures.Materials 2017, 10, 1027  12 of 14 
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Generally, the temperature of high-temperature components fluctuates slightly in a normal
working period, so the change of group velocity can be negligible. When the temperature fluctuates
obviously, the temperature compensation technology can be utilized. Therefore, the conclusion can
be drawn that the waveguide bars designed by the critical frequency-thickness product fd* and
frequency-width product fw* can be used to measure high-temperature components by pure SH0*
mode signal.

6. Conclusions

In order to introduce ultrasonic wave technology into high-temperature components monitoring
to improve their security, the waveguide bars have been designed to transmit the wave so that the
sensing part is not influenced by high temperature. According to wave source characteristics analysis,
a large aspect ratio rectangular waveguide bar is designed to approximately load the anti-plane
shear line source. In order to get a very clear wave signal with advantageous non-dispersion in
the waveguide bar, the transmitting characteristics are analyzed theoretically and numerically. It is
noticed that the frequency-thickness product of bars should be smaller than the critical value fd*, and
frequency-width product should be not smaller than the critical value fw* to cut off the undesired wave
mode. Moreover, some waveguide bars are designed and fabricated based on these design criteria,
and experiments are carried out. The experimental dependencies of group velocities on frequencies
are in good agreement with numerical simulation results. It is also found from the experimental
waveforms that the signals can propagate clearly and non-dispersedly in the waveguide bar when
the frequency-thickness products and frequency-width products of the bars meet the design criteria.
High temperature experiments are carried out, and the experimental results show that the designed
waveguide bars can work quite well. Therefore, the feasibility of the design method is verified.
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