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Abstract: Power generation using waste-gas is an effective and green way to reduce the emission
of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of
mechanical structures in the BFG power plant is of vital importance to guarantee their safety and
efficient operations. In this paper, we describe the detection of crack growth of bladed machinery
in the BFG power plant via vibration measurement combined with an enhanced spectral correction
technique. This technique enables high-precision identification of amplitude, frequency, and phase
information (the harmonic information) belonging to deterministic harmonic components within
the vibration signals. Rather than deriving all harmonic information using neighboring spectral
bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction
method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity.
We demonstrate that the identified harmonic information via the proposed method is of suppressed
numerical error when the same level of noises is presented in the vibration signal, even in comparison
with a Hanning-window-based correction method. With the proposed method, we investigated
vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones,
related to the fundamental working frequency of the centrifugal compressor, is corrected. The
extracted spectral information indicates the ongoing development of an impeller blade crack that
occurred in the centrifugal compressor. This method proves to be a promising alternative to identify
blade cracks at early stages.

Keywords: structural health monitoring; crack detection; power plant; blast furnace gas; centrifugal
compressor; bladed machinery; spectral correction

1. Introduction

The iron and steel manufacturing industry is one of the most energy-intensive industries in the
world. As a kind of byproduct, blast furnace gas (BFG) is an important type of waste gas generated
during blast furnace operations where iron ore is reduced with coke into metallic (pig) iron [1]. It is
reported that approximately 1500~2000 m3 of BFG can be emitted on condition that one ton of pig iron
is produced. Containing combustible and contaminating gases such as CO and CH4, the emission of
BFG without proper processing emerges as a major source of the fog and haze in China. However,
owing to its property of low heat value, it is relatively difficult to realize repeat utilization of BFG.
In current steel-making operations, the development of furnace gas utilization for power generation
is rapidly promoted because it enables alternative disposal of the problem gas while simultaneously
harnessing it as an energy source [2].
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The system of a BFG power plant consists of multiple types of rotary mechanical components
such as motors, bearings, gears, and other bladed machinery. Normal and safe operation of these
mechanical systems is of vital importance to ensure highly efficient reutilization of BFG. However,
these mechanical components usually operate at severe working conditions of high temperature,
varying working speed, and heavy load. Therefore, failures due to fatigue are likely to occur, resulting
in not only economic loss but also catastrophic accidents [3]. To prevent major mechanical downtime,
effective online condition monitoring techniques, which can be applied to the BFG power generation
plant, are indispensable. In recent decades, researchers have paid attention to developments in these
techniques [4–6]. Currently, health state monitoring and fault diagnosis of motors, bearings, and gears
have received extensive research [7–9]. A considerable amount of attention is focused on the hot
topic of advanced signal processing approaches for the analysis of vibration signals collected from
the above rotary machinery [10–12]. The evolution of such advanced signal processing techniques
with important improvements is beneficial for the understanding and interpretation of complex
dynamic behaviors of machineries. Such techniques include wavelet transform [13,14], empirical
mode decomposition [15,16], sparse representations [17,18], as well as time-frequency analyzing
approaches [19,20].

Compared with other rotary components (bearings, gears, and motors), in situ dynamic analysis of
bladed machinery is more difficult. Among the various failure types of bladed machinery, a significant
problem that has not been properly addressed is the detection of crack growth. Doing work to the
input BFG via impeller blades, the bladed machinery can generate high-pressure output gases. Because
the working impeller blades must be exposed to extreme environments of high temperatures and
corrosive BFG at high speeds, cracks are inevitable after long service. However, it is extremely difficult
to detect incipient cracks using online condition monitoring techniques, especially at early stages of
crack development. Typically, a fatigue crack becomes conspicuous only after the crack reaches about
80% of the total fatigue life of a structure [21]. This problem has attracted research interest from the
scientists and engineers. At present, there are various non-destructive evaluation and structural health
monitoring techniques that are available to detect the occurrence of cracks in laboratory environments.
These techniques incorporate = ultrasonic, acoustic emission, thermal imaging, eddy current, magnetic
particle inspection, X-ray, etc. measurements [22–25]. Among the various alternatives, a traditional
contact measurement method is to mount strain gauges on the blade surface and record the testing
signals using a data acquisition system [26–28]. Despite its effectiveness, this method is not developed
such that it can overcome the hurdles to satisfy the needs of online testing. On the other hand,
in state-of-the-art research, a considerable amount of attention has been paid to the analysis and
identification of dynamic/modal parameters such as natural frequencies, mode shapes, and modal
damping ratio from vibration signals of blade machinery for the purpose of crack detection.

In this paper, we attempted to monitor the health state of the bladed machinery in a BFG power
plant. Vibration features, induced by a blade crack developed on a centrifugal compressor, were
extracted using a novel signal processing approach. This approach derives harmonic information of
high precision from the vibration signals. The varying of the health state of rotary machines can lead
to a change in deterministic harmonic components, which are located in the lower frequency range
of the collected dynamic signals. Traditionally, fast Fourier transform (FFT) is suitable for extracting
information about these harmonic components. However, owing to the analyzing characteristics
of FFT, severe distortions on information of frequency, amplitude, as well as phase are likely to
occur [29]. In the past decades, a spectrum correction method has been developed for the purpose
of high-precision correction of such information. Among these available techniques, ratio-based
spectral correction methods, using FFT bins windowed by specific window functions, are popular with
researchers due to their fast implementation and high precision. A large amount of new studies try to
make theoretical contributions regarding the use of new types of windows [30–33]. Although some
published articles have made comparisons in terms of the performance of these spectral correction
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techniques, very little attention has focused on the problem of retrieving precise harmonic information
in the presence of strong corrupting noise, which is actually very common in practical applications.

To achieve good spectral correction performance in low signal-to-noise (SNR) conditions, some
comparatively classical methodologies turn out to be very effective. These methodologies include
zero-padded discrete Fourier transform (DFT) [34], the chirp Z-transform [35], and the Goertzel
algorithm [36]. Zero-padded discrete DFT can be implemented via the algorithm of FFT, and it
generated interpolated spectral bins across the entire frequency domain, therefore deriving information
with high precision. However, the resulting accuracy is determined by the number of padded zeros.
In some applications, the padded zeros may be hundreds or thousands of times that of the original
signal in length. Chirp Z transform is similar to zero-padded DFT in its mathematical principle.
Similarly, chirp Z transform can also approximate the continuous spectrum via interpolated spectral
bins in a specific spectral range of interest. Chirp Z transform can be very time-consuming because
computations of discretized spectral interpolation on the unit-circle in the Z plane must rely on the
original DFT algorithm. The Goertzel algorithm is very efficient in calculating information of signals
of single tone harmonic component. However, the precise frequency information should be available
as prior knowledge for the Goertzel algorithm; otherwise it still demands a lengthy calculation period.
To improve the efficiency of the above conventional algorithms, we propose an enhanced spectral
correction method.

The power generation system studied in this paper is a celebrated power plant that had the
highest burning rate (1131 km3/h) in the world in 2011. An accidental event occurred due to a fully
developed blade crack on the centrifugal compressor, which is the key part of a booster fan. In the
described case study, a range of vibration sensors were mounted on bearing housings of the shaft, on
which the centrifugal compressor is installed such that vibration signals were collected. Ten vibration
tests were conducted and a few records of velocity signals were collected via a data acquisition
system. To investigate the harmonic information of the harmonic tones related to the fundamental
working frequency, we propose a novel spectral correction technique with a post-processing step of
active frequency shift operations on the FFT spectrum. Essentially, this proposed technique utilizes a
conventional ratio-based spectral correction method on the information of interpolated Fourier spectral
bins. The enhanced performance of the proposed active frequency-shift spectral correction (AFSSC)
method is validated via numerical simulations. Sinusoidal signals corrupted with white Gaussian
noise are employed to compare the performance of the proposed AFSSC with three other comparison
methods. It is demonstrated that the proposed AFSSC using rectangular window possesses the
most superior spectral correction capability. Moreover, a normalized health state indicator is further
constructed using the corrected information to measure the energy weight of the harmonic tones. After
using the health indicator, the energy weight of the component 2×, the second-order harmonic tone of
the fundamental working frequency, successfully reveals the ongoing development of the blade crack.

2. Fundamentals of Ratio-Based Spectrum Correction

Fourier transform aims at decomposing a continuous signal into the sum of a few harmonic tones
of various frequencies, shown as

x(t) =
n

∑
i=1

Ai cos(2π fit + φi) + ε(t), (1)

where ε(t) denotes the non-interesting interferences and the parameters Ai, fi, φi denote the amplitude,
frequency, and phase of a specific harmonic component, respectively. Conventional spectral correction
techniques are based on discrete fast Fourier transform, which realizes fast approximations of
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continuous Fourier spectra. For a record of discrete digital signal x(n) with the sample length of
L, its fast Fourier transform can be expressed as

F{x}k :=
L−1

∑
n=0

x(n) · exp(−j
2πkn

L
) , (k ∈ Z, j :=

√
−1). (2)

From Equation (2), it is demonstrated that FFT only provides frequency information at the
angular frequency w = 2πk/L. Equivalently, the signal spectrum is discretized at evenly spaced
points with a uniform resolution of 2π/L. Indexes of the discretized frequency bins are referred to as
Fourier grids of FFT. As a result, precision harmonic information (amplitude, frequency, and phase)
characterizing the sinusoidal components may be not directly available in the resulting spectrum.
This is because, in discrete spectrum analysis, the picket-fence effect and the spectral aliasing effect
are commonly unavoidable due to the limited duration observation interval and the difficulty of
integral period truncation when sampling. As for those components without exact positive periodic
sampling, errors occur in the spectral triad of {amplitude (A), frequency (f ), and phase (φ)}. On the
other hand, the presence of massive spectral bins, emerging in the form of nontrivial side lobes of an
actual sinusoidal component, also complicates the extraction of exact information about harmonic
components. To illustrate this problem, we use the following simple cosine signal of unique tone:

x(t) = A cos(2π fct + φ), (3)

where the actual frequency of the existent harmonic component is fc. Its Fourier transform can be
represented as

X( f ) =
A
2

ejφδ( f − fc) +
A
2

e−jφδ( f + fc). (4)

In Equation (4), δ(t) is the Dirac delta function, which is defined as 1 at t = 0 and zero at other t
of nonzero values.

In actual measurements, x(t) is digitized using a time-shifted window wT(t) with a time length
of T. Let the Fourier transform of wT(t) be denoted as

WT( f ) = F{wT(t)} =
∣∣∣WT( f )

∣∣∣ejϕ( f ), (5)

such that the corresponding Fourier transform of the windowed signal wT(t)x(t) can be expressed
as X( f ) ∗WT( f ) on the basis of Fourier’s convolution theorem. If we concentrate on the positive
frequency part of wT(t)x(t), the following expression can be obtained:

X( f ) ∗WT( f ) ≈ A
2

ejφδ( f − fc) ∗ |WT( f )|ejϕ( f ) =
A
2
|WT( f − fc)|ej[ϕ( f− fc)+φ]. (6)

In a specific realization of discrete Fourier transform, if the recorded sample length is L and the
sampling frequency is fs, the resulting spectral resolution in the Fourier spectrum is ∆ f = fs/L and
the kth(k ∈ Z+) spectral bin is associated with the frequency at (k− 1) fs/L. The interference from its
counterpart in the imaginary part is unavoidable but if fc is located relatively far from the extremes of
the positive axis marked at fl = 0 and fh = fs/2, the undesirable negative effect can be neglected. As
such, the phase of the windowed signal at f = fc can be written as

ϕ(k− kc) ≈ φ(k)− θ. (7)

However, it should be pointed out that the choice of k can also be a decimal besides the positive
integer mentioned above.

Additionally, we define the following useful concepts of frequency error (FE) with its normalized
version when the digital signal is segmented with a specific type of window function. According to the
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fundamentals of signal processing, the actual single tone harmonic component is associated with the
point with the maximal modulus in the spectral domain. We also name such a point a window vertex.
Window vertexes may not be available in the fast Fourier Transform (FFT) spectrum because FFT only
provides spectral bins evenly spaced at the spectral resolution ∆ f . As a result, frequency error, defined
as the error between the actual frequency value and the frequency of its left neighboring spectral bin,
occurs. This phenomenon can be observed in Figure 1. FE can be mathematically described as

FE( fc) :=
⌊

fcL
fs

⌋
· fs

L
− fc, (8)

where b · c is a Gaussian function that rounds the input decimal number to the nearest integers
towards minus infinity. Correspondingly, the normalized frequency error (NFE) of an actual frequency
component in the FFT is defined as

∆k :=
⌊

fcL
fs

⌋
− fcL

fs
. (9)
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It is also known that ∆k < 0.

2.1. Principles of Ratio-Based Spectral Correction Methods

In this subsection, we mainly focus on a review of two classical ratio-based spectrum rectifying
methods [29]. That is, one rectifying method using rectangular window and another using a Hanning
window. Moreover, we show that both of these methods can run into severe problems in specific
engineering circumstances.

2.1.1. Rectangular-Window-Based Correction Method

The rectangular window of length L is defined by

wr(n) = 1 f or n = 0, 1, 2 . . . , L− 1. (10)

Its spectral counterpart is expressed as

Wr(w) =
sin(Lw/2)
sin(w/2)

ej(N−1)w/2, (11)

where the modulus is Wr(w) = sin(Lw/2)/ sin(w/2). It is easy to know that

Wr(w) =
sin(Lw/2)
sin(w/2)

ej(N−1)w/2, (12)
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because the spectral resolution of FFT is ∆w = 2π/L. The frequency associated with the kth spectral
bin is w(k) = k · ∆w = (2πk)/L for k = 0, 1, . . . , L/2− 1. Therefore, the modulus function can be
rewritten as

Wr(w) =
sin(Lw/2)
sin(w/2)

ej(N−1)w/2. (13)

The approximation in Equation (13) is made on the assumption that the sampling length L is
adequately large in value.

The normalized frequency width of a main lobe is 2. As such, for a sinusoidal component without
exact positive period sampling, the accurate information of amplitude, frequency, and phase can be
retrieved using the two neighboring spectral bins located within the main lobe around the actual
frequency, which is shown in Figure 2.
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Assume a simple harmonic component whose harmonic parameters are {Ac, fc, φc} that is to be
corrected in its FFT spectrum. Let kc be the precise decimal index associated with the actual harmonic
component, ∆k the normalized frequency error between the decimal index (kc = b( fc · L)/ fsc) related
to the actual frequency ( fc), and its left neighboring spectral bin marked by k̃. Therefore, the normalized
frequency error ∆k is defined as

∆k = kc − k̃. (14)

For simplicity of explanation, a passenger function,

T(∆k) =
sin(π(∆k))

π(∆k)
, (15)

is introduced. It can be inferred that

v = y(k̃)
y(k̃+1)

= W(∆k)
W(∆k+1)

= L·sin(π(−∆k))·Ac
π(−∆k)

π(−∆k+1)
L·sin(π(−∆k+1))·Ac

= T(∆k)
T(∆k+1)

, (16)
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where y(k̃) and y(k̃ + 1) are amplitudes of the two neighboring frequency bins around the actual one.
Equivalently, the relationship in Equation (16) can be expressed as

k̃ · T(∆k) + (k̃ + 1)T(∆k + 1) = 0. (17)

In ratio-based spectral correction, ∆k can be also expressed as

∆k = − 1
1 + v

= − y(k̃ + 1)

y(k̃) + y(k̃ + 1)
. (18)

Hence, the index for the actual frequency can be obtained as kc = k̃ − ∆k. In conclusion, the
amplitude, frequency, and phase can be rectified as

amplitude = π(∆k)·T(k̃)
sin(π(∆k))

f requency = (k̃− ∆k) fs
L

phase = arctan Im(k̃)
Re(k̃)

− π(∆k)

, (19)

where Im(·) and Re[·] denotes the imaginary part and the real part of a complex-valued Fourier
spectral bin.

2.1.2. Cosine-Window-Based Correction Method

A cosine window is defined using the following mathematical prototype:

wL(n) = a− (1− a) cos
(

2πn
L

)
f or n = 0, 1, 2 . . . , L− 1. (20)

Correspondingly, its spectral counterpart is expressed as

WL(n) =
{

a · D(w) +
1− a

2

[
D
(

w− 2π

L

)
+ D

(
w +

2π

L

)]}
e−jNw/2, (21)

where D(w) represents the Dirichlet kernel defined as

D(w) =
sin(Nw/2)
sin(w/2)

e
jw
2 . (22)

By setting parameter a in Equation (20) at 0.5, we can obtain a Hanning window. The modulus
function of a Hanning window whose function vertex value is 1 (Figure 3a) can be deduced as

Mr(k) =
sin(πk)

πk
· a + (1− 2a)k2

1− k2 . (23)
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The plot of modulus function in Equation (23) is shown in Figure 3b.
Without loss of generality, we illustrate high-precision spectral correction using the Hanning

window. Let k̃ and k̃ + 1 be the indexes associated with the two neighboring frequency bins around
the actual frequency. Using the notations introduced in Section 2.1, a passenger function with respect
to normalized frequency error can be defined as

T(∆k) =
sin(π(∆k))

π(∆k)
· 1

2(1− (∆k)2)
. (24)

Substituting the variables k̃ and k̃ + 1 into Equation (24), we have the following relation:

v =
y(k̃)

y(k̃ + 1)
=

T(∆k)
T(∆k + 1)

=
∆k + 2
1− ∆k

. (25)

Equivalently, the above relation can be expressed as

(∆k− 1)T(k̃) + (∆k + 2)T(k̃ + 1) = 0. (26)

The normalized frequency error ∆k can be deduced as below:

∆k =
T(k̃ + 1)− 2T(k̃)
T(k̃) + T(k̃ + 1)

. (27)

Accordingly, the Hanning-window-based spectral correction for the harmonic information of
amplitude, frequency, and phase can be summarized as

amplitude = π∆k·T(k̃)
sin(π∆k) · 2[1− (∆k)2]

f requency = (k− ∆k) fs
L

phase = arctan Im(k′)
Re(k′) − π∆k

. (28)
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2.2. Problems in Ratio-Based Spectrum Correction Methods

Although ratio-based spectral correction can achieve high precision and adopts different kinds of
window functions, a common characteristic is the utilization of complex-valued spectral bins located
within the main lobe in the frequency domain. In a high signal-to-noise ratio (SNR) situation, for
spectral correction problems of a single tone, the Hanning window is reported to be of higher precision
compared with the rectangular window [29]. Magnitude responses of the two types of window
functions are plotted in Figure 4.
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Figure 4. Comparison between the magnitude spectra of a rectangular window and the
Hanning window.

From Figure 4, it is inferred that the main lobe bandwidth of the Hanning window is greater than
that of the rectangular window. However, the magnitude of the side lodes of the latter decays much
faster. Considering a simple harmonic signal whose frequency is exactly fs/4, where fs is the sampling
frequency, we can express the associated signal as

x(t) = A cos(2π fst + φ). (29)

For simplicity of comparison, we can set the amplitude A in the above equation at 1. In Figures 5a
and 6a, the spectra regarding the above signal when using different segmented windows are displayed.
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Figure 5. Demonstration of spectral aliasing of rectangular window: (a) magnitude response of the
positive component and the negative component in a 3D coordinate; (b) magnitude response of the
positive component and the negative component in a 2D coordinate; (c) zoomed-in plot of (b).
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Figure 6. Demonstration of spectral aliasing of a Hanning window: (a) magnitude response of the
positive component and the negative component in a 3D coordinate; (b) magnitude response of the
positive component and the negative component in a 2D coordinate; (c) zoomed-in plot of (b).

A Hanning window offers better energy concentration in comparison with a rectangular window.
However, no matter which type of window is employed, aliasing between the spectrum of the
positive-frequency part and that of the negative-frequency part is inevitable. From Figure 5b,
interferences between the two frequency parts are already visible on visual inspection. in Figure 6b,
it can be observed that interferences between the two parts are almost negligible. To better illustrate
their differences, zoomed-in plots of their aliasing effect are displayed in Figures 5c and 6c. Because
the rectangular window has a slow decaying rate, the amplitude at w = π/2 is approximately 0.002 of
the amplitude at the window vertex (Figure 5c). In other words, these interferences are likely to affect
the two spectral bins in the positive frequency axis that we used to correct the spectral bin information.
As mentioned, a Hanning window decays much faster in the frequency domain. The amplitude at
w = π/2 is approximately 10–6 of the amplitude at the window vertex.

In a noise-free situation, the above conditions explain why a Hanning window is superior
to a rectangular window in rectifying a simple sinusoidal wave. However, problems regarding
the correction precision would occur in both types of window functions when other interference
components, for example the measurement noise, are presented in the recorded signals. The causes are
listed below.

(1) As stated in Section 2.1, for spectral correction, both of the window functions employ two
spectral bins, located in the main lobe. We refer to these spectral bins as main lobe spectral bins (MLSB).
As any one of the MLSBs approaches the actual spectral bin, the other MLSB of rectangular will become
small in amplitude. Mathematically, this phenomenon can be expressed as

lim
∆k→0

min{y(k̃), y(k̃ + 1)} = 0 (30)

for the rectangular window and

lim
∆k→0

min{y(k̃), y(k̃ + 1)} = 0.5 (31)

for the Hanning window. As a result, if ∆k is small in value, one MLSB is likely to be corrupted even
in the presence of a low level of noise.
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(2) The higher the amplitude of an MLSB is, the greater noise resistibility is obtained. However, it
is not possible to ensure that all the MLSBs are high in amplitude in the FFT grids when the normalized
frequency error ∆k is small.

3. The Proposed Active Frequency Shift Spectral Correction Method

3.1. Analysis of Condition Numbers of the Two Windowed Spectral Correction Methods

As explained in the above sections, the correctness of MLSBs plays an important role in
guaranteeing precision results. It is expected that all MLSBs are large in amplitude such that each
of them is equipped with robust noise resistibility. In this subsection, we attempt to investigate the
energy distribution of the spectral bins located in the main lobe of the window function. The following
concept of condition number for the MLSB set is defined. LetMrec andMhan be the MLSB sets for the
two types of window function, respectively. For the rectangular window, there are two elements in the
set and the condition number is defined as

CNrec(∆k) =
min{‖Mrec‖}
max{‖Mrec‖}

. (32)

For the Hanning window,

CNhan(∆k) =
max{‖MLSB \max{‖Mhan‖}‖}

max{‖Mhan‖}
. (33)

In the above definitions, the operator ||·|| computes the modulus of a complex-valued Fourier
coefficient and the notation MLSB(k)\max{||Mhan||} means eliminating the spectral bin with the
maximal modulus form the original set. For a sinusoidal tone signal whose frequency is located near
fs/4 and does not belong to FFT grids, the plots of condition numbers regarding the two window
functions with respect to ∆k are displayed in Figure 7. As the condition number approaches unity in
value, MLSBs have similar amplitude.
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Figure 7. Condition numbers of rectangular window and Hanning window.

3.2. Algorithm of the Proposed Spectral Correction Technique

As indicated in Figure 7, the condition number of either type of window reaches the global
maximum at ∆k = 0.5. This means that in such a situation, both of the two neighboring spectral bins
around the actual frequency are high in amplitude. However, for the Hanning window, there are
always two spectral bins relatively low in amplitude. Owing to these facts, we attempt to propose a
novel active frequency shift spectral correction method based on a rectangular window.

Assuming that we have collected a digital signal x with L samples, the procedure of the proposed
ASFFC algorithm is summarized as below. In the procedure, an index integer m is introduced and
initialized as zero.
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Step 1. Let x(m)(t) = x, applying fast Fourier transform to the input signal.

x̂ = FFT{x}. (34)

Step 2. In the spectrum of the original signal, find some frequency ranges within which the
amplitudes are large and are related to the characteristic frequency of the investigated mechanical
system. A set of such spectral bins is denoted as

V f = { f1, . . . , fM}. (35)

The values of fi are local maxima in the Fourier spectrum. Choose the frequency bin of the
greatest amplitude in V (k)f and denote it as f̂ .

Step 3. Let the normalized integer index associated with the frequency f̂ be denoted as k̂; the
value of the index variable k̃ in Section 2.1 is updated using the following formula:

k̃ :=

{
k̂ f or T(k̂ + 1) ≥ T(k̂− 1)

k̂− 1 f or T(k̂ + 1) < T(k̂− 1)
. (36)

Step 4. Compute the harmonic information of two MLSBs, which are denoted as
{A(k̃), f (k̃), φ(k̃)} and {A(k̃ + 1), f (k̃ + 1), φ(k̃ + 1)}.

Step 5. Correct the harmonic information using the two MLSBs in Step 4 via a ratio-based spectral
correction method using a rectangular window. Let the corrected information of frequency be A′(k̃).

Step 6. Compute some interpolated spectral bins using the original definition of DFT. Let the
normalized frequency increment δ = 0.1; the set of the zoomed-in spectral grid Sk̂ is defined as

Sk̂ = {k̃, k̃ + δ, k̃ + 2δ, . . . , k̃ + 9δ︸ ︷︷ ︸
spectral bins between k̃ and k̃+1

, k̃ + 1,

k̃ + 1 + δ, k̃ + 1 + 2δ, . . . , k̃ + 1 + 5δ︸ ︷︷ ︸
spectral bins between k̃+1 and k̃+2

}
(37)

for A(k̃ + 1) ≥ A(k̃), and

Sk̃ = { k̃− 5δ, k̃− 4δ, . . . , k̃− δ︸ ︷︷ ︸
spectral bins between k̃−1 and k̃

,

k̃, k̃ + δ, k̃ + 2δ, . . . , k̃ + 9δ︸ ︷︷ ︸
spectral bins between k̃ and k̃+1

, k̃ + 1}
(38)

for A(k̃ + 1) < A(k̃).
Step 7. Find two spectral bins in the set Sk̃ such that

` = argmin
`∈Sk̃

|T(k + ` · δ)− T(k + (`+ 10)δ)|. (39)

Step 8. Apply ratio-based spectral correction algorithm as we introduced in the rectangular
window case using the two selected spectral bins (Equations (18) and (19)). As a result, the corrected
harmonic information { f ′(k̃), φ′(k̃)} is obtained.

Step 9. Synthesize a simple sinusoidal signal using the obtained corrected harmonic information

sk̂(t) = A′(k̃) cos(2π f ′(k̃)t + φ′(k̃)) (40)

and subtract sk̂(t) from x(m)(t).
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Step 10. Let x(m+1)(t) = x(m)(t)− sk̃(t) and m = m + 1 m. Eliminate f̃ from V f and go back to
Step 2. The iterative procedure ends when all the sinusoidal components are corrected.

The above procedure can be divided into two parts. Step 6 refers to the active frequency shifting
operation, which is capable of enhancing the noise resistibility of spectral bins in the subsequent
spectral correction steps. Step 7 is the classical spectral correction using a rectangular window. It should
be mentioned that the information of frequency is corrected prior to the frequency shifting operation
and the information of amplitude and phase is estimated after the frequency shifting operation, as
illustrated in Figure 8. Reasons for the proposed algorithm are explained in Section 4.
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Figure 8. The interpolated spectral bins around an actual harmonic component.

3.3. Condition Number Analysis after Frequency Shifting Operation

The interpolated spectral bins around an actual harmonic component are demonstrated in the
schematic diagram of Figure 9. The spectral interpolation step can also be combined with ratio-based
spectral correction using a Hanning window.

Curves of condition numbers belonging to a rectangular window as well as a Hanning window,
after the spectral interpolation step, are displayed in Figure 10. Serving as a post-processing process
after FFT, the active frequency shifting operation can also be combined with ratio-based spectral
correction using a Hanning window. Therefore, four spectral correction methods are available. The
abbreviations of the proposed method and those of the comparison methods are listed in Table 1.
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Table 1. Abbreviations of the proposed method and those of four comparison methods.

Abbreviations Contents

HanRB Ratio-based spectral correction technique using Hanning window.
HanAFSSC HanRB using active frequency shifting operations as a preprocessing step.

RecRB Ratio-based spectral correction technique using rectangular window.
RecAFSSC RecRB using active frequency shifting operations as a pre-processing step.

AFSSC The proposed method.
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Figure 10. Condition numbers of rectangular-window-based and Hanning-window-based spectral
correction methods enhanced by spectral interpolations.

4. Numerical Analysis of the Proposed AFSSC Method

In this section, we attempt to verify the enhancement of the proposed AFSSC method in retrieving
harmonic information corrupted by strong noises.

4.1. Performance Comparison in the Presence of Noises

Assuming that a record of measured simple sinusoidal signal, corrupted by white Gaussian noise
wgn(t), is synthesized as below:

s(t) = cos(2π fct + φ) + wgn(t), (41)

where φ is a variable representing the phase of the signal. The sampling frequency fs of the simulated
signal is 1000 Hz. The sampling length is 1000 for the signal. Correspondingly, the spectral resolution
of s(t) via FFT is calculated at 1 Hz. The value of fc is located in the positive frequency part not
belonging to spectral grids generated by FFT.

4.1.1. Tests when the Frequency and the Amplitude of the Signal Are Both Fixed.

Let the frequency of the harmonic component in Equation (41) be set to 20.01 Hz. Owing to the fact
that the spectral resolution of s(k) is 1 Hz, the frequency of the spectral bin with the greatest modulus in
the corresponding FFT spectrum is calculated at 20 Hz. Hence, the normalized frequency error of using
FFT to estimate fc is ∆k = 0.01. The amplitude of the single-tone signal is set to 1. In the following
independent spectral correction tests, the parameter of φ is discretized in the real-valued interval of
[0, π] with a phase increment π/1000. That is to say, 1000 independent tests were implemented for
each parameter combination. In the following tests, all the values of signal (cos(2π fc · t + φ)) to noise
(wgn(t)) ratio are set to 3 dB. A typical example of s(t) with its Fourier spectrum x̂( f ) is shown in
Figure 11.
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Figure 11. Plots of the simulated sinusoidal wave corrupted by white Gaussian noise (SNR = 3dB): (a)
time domain wave; (b) FFT spectrum.

In Table 2, the correction results of the four comparison methods (HanRB, HanAFSSC, RecRB,
and RecAFSSC) are listed. Mean values and standard deviations of the absolute correction errors are
computed, displayed in the bar charts in Figure 12. Among the results, RecAFSSC exhibits the highest
precision in correcting the harmonic information of frequency and phase. As for the amplitude, RecRB
achieves the highest precision and RecAFSSC is only inferior to RecRB.
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Figure 12. (a) Mean values of the estimated errors regarding the harmonic information (frequency,
amplitude, and phase) using different spectral correction methods, and (b) standard deviations of the
estimated errors regarding the harmonic information (frequency, amplitude, and phase) using different
spectral correction methods.

Table 2. Comparisons of the four techniques when fc = 20.01Hz.

Spectral Information HanAFSSC HanRB RecAFSSC RecRB

Frequency (Hz) Mean 0.0228 0.0282 0.0149 0.0209
Std. 0.0168 0.0207 0.0113 0.0149

Amplitude Mean 0.0325 0.0312 0.0274 0.0252
Std. 0.0246 0.0235 0.0209 0.0195

Phase (rad)
Mean 0.0789 0.0926 0.0614 0.0715
Std. 0.0593 0.0690 0.0468 0.0528
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As the analyzing frequency of the simulated signal is 500 Hz, which is half of the sampling
frequency according to the Shannon’s information theory of sampling, the parameter fc can also be
properly set at 250.01 Hz and 480.01 Hz. Tests with a similar procedure to that mentioned above are
conducted. Corresponding results, which are listed in Tables 3 and 4, maintain the same conclusions
as we have obtained in the case when fc = 20.01Hz.

Table 3. Comparisons of the four techniques when fc = 250.01Hz.

Spectral Information HanAFSSC HanRB RecAFSSC RecRB

Frequency Mean 0.0232 0.0304 0.0148 0.0210
Std. 0.0161 0.0218 0.0114 0.0153

Amplitude Mean 0.0324 0.0306 0.0278 0.0251
Std. 0.0248 0.0232 0.0209 0.0188

Phase
Mean 0.0797 0.0990 0.0637 0.0709
Std. 0.0555 0.0717 0.0543 0.0581

Table 4. Comparisons of the four techniques when fc = 480.01Hz.

Spectral Information HanAFSSC HanRB RecAFSSC RecRB

Frequency Mean 0.0262 0.0302 0.0154 0.0284
Std. 0.0173 0.0238 0.0113 0.0193

Amplitude Mean 0.0325 0.0305 0.0280 0.0259
Std. 0.0234 0.0221 0.0204 0.0185

Phase
Mean 0.0829 0.1025 0.0648 0.0926
Std. 0.0622 0.0791 0.0488 0.0642

4.1.2. Tests when the Amplitude of the Harmonic Is Fixed

In the following tests, instead of selecting a fixed frequency shift, we explore the correcting
performance of the proposed AFSSC method when ∆k changes continuously in the normalized
frequency range (0, 0.5). As shown in Tables 2–4, since the change of fc does not affect the conclusion
of the results, we can set fc at (249 + ∆k) Hz, in which ∆k ∈ (0, 0.5). The curves in Figure 13 give
detailed comparisons of the four methods with respect to amplitude, frequency, and phase.

The Y axis in Figure 13 is the mean of the absolute error of some specific harmonic information.
As indicated in Figure 13a,b, it can be inferred that (i) RecRB offers the optimal performance in
correcting the information of amplitude, especially when ∆k is small, and (ii) RecAFSSC is superior in
correcting the frequency no matter what the value of ∆k is. Moreover, RecAFSSC is also of highest
precision in correcting the phase information when ∆k is small (∆k ∈ (0, 0.3), as shown in Figure 13b.
When ∆k ∈ [0.3, 0.5], the performance of RecRB outperforms the proposed RecAFSSC in correcting the
phase information. However, the improvement of the former over the latter is quite small. We can also
say that these two methods are of equal accuracy for ∆k ∈ [0.3, 0.5]. In conclusion, simulations in this
subsection have clarified the enhanced performance of the proposed AFSSC technique. The proposed
technique actually combines the advantages of RecRB and RecAFSSC. Considering the information
in Figures 7, 10 and 13, we can also conclude that (i) for higher values of CN, attained via the active
frequency shifting, operation is beneficial for enhancing the correction accuracies of frequency and
phase, and (ii) higher values of CN can reduce the correcting accuracy of amplitude.



Materials 2017, 10, 925 17 of 29Materials 2017, 10, 925 17 of 29 

 

 

Figure 13. Comparisons on the comparison of four comparison methods with respect to information 
of (a) amplitude, (b) frequency, and (c) phase. 

4.2. Discussion of the Proposed AFSSC with Classical High-Precision Harmonic Information Correcting 
Algorithms 

As mentioned in Section 1, some classical spectral refinement techniques such as zero-padded 
DFT, chirp Z transform, and the Goertzel algorithm are also helpful to correct the spectrum in the 
presence of strong masking noises. To some extent, the essence of the above methods is identical. 
That is, they attempt to approximate the window vertex, which represents the almost precise 
spectral bin of the original signal, in different numerical ways. The mathematical principles behind 
them can be uniformly summarized as discrete Fourier-transform-based spectral interpolation. In 
the proposed method, Step 4 in Section 3.2 can be regarded as an equivalent realization of CZT 
around the main lobe of the window function at a refined normalized spectral resolution, 

0.1kD = . In this equivalent spectral refinement process, 15 additional spectral bins are 
interpolated to enhance the accuracy of the related harmonic information. Although the 15 spectral 
bins are derived using DFT, this process can also be speeded up via the Goertzel algorithm, which 
is especially efficient in generating spectral bins with known frequency values. Zero-padded DFT, 
implemented via FFT algorithm, can make a refined Fourier spectrum with extreme precision. It is 
especially suitable for correction harmonic information of signals containing many single-tone 
components. However, for zero-padded DFT, high precision is attained at the expense of great 
computational cost. In Figure 14, we vividly illustrate the differences among the various kinds of 
spectral refinement methods as well as the proposed AFSSC algorithm. AFSSC is proposed in 
combination with local spectral refinement with a ratio-based spectral correction method. The 
former can acquire spectral bins with proper noise resistibility and the latter can estimate the actual 
harmonic information with high efficiency. 

Normalized frequency Shift 

M
ea

n 
of

 A
bs

ol
ut

e 
Er

ro
r 

(a) (b)

M
ea

n 
of

 A
bs

ol
ut

e 
Er

ro
r 

Normalized frequency Shift 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.016

0.018

0.02

0.022

0.024

0.026

0.028

 

 
HanRB
HanAFSSC
RecRB
RecAFSSC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

 

 
HanRB
HanAFSSC
RecRB
RecAFSSC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

 

 
HanRB
HanAFSSC
RecRB
RecAFSSC

M
ea

n 
of

 A
bs

ol
ut

e 
Er

ro
r 

Normalized frequency Shift 
(c)

Figure 13. Comparisons on the comparison of four comparison methods with respect to information of
(a) amplitude, (b) frequency, and (c) phase.

4.2. Discussion of the Proposed AFSSC with Classical High-Precision Harmonic Information Correcting
Algorithms

As mentioned in Section 1, some classical spectral refinement techniques such as zero-padded
DFT, chirp Z transform, and the Goertzel algorithm are also helpful to correct the spectrum in the
presence of strong masking noises. To some extent, the essence of the above methods is identical. That
is, they attempt to approximate the window vertex, which represents the almost precise spectral bin
of the original signal, in different numerical ways. The mathematical principles behind them can be
uniformly summarized as discrete Fourier-transform-based spectral interpolation. In the proposed
method, Step 4 in Section 3.2 can be regarded as an equivalent realization of CZT around the main
lobe of the window function at a refined normalized spectral resolution, ∆k = 0.1. In this equivalent
spectral refinement process, 15 additional spectral bins are interpolated to enhance the accuracy of the
related harmonic information. Although the 15 spectral bins are derived using DFT, this process can
also be speeded up via the Goertzel algorithm, which is especially efficient in generating spectral bins
with known frequency values. Zero-padded DFT, implemented via FFT algorithm, can make a refined
Fourier spectrum with extreme precision. It is especially suitable for correction harmonic information
of signals containing many single-tone components. However, for zero-padded DFT, high precision is
attained at the expense of great computational cost. In Figure 14, we vividly illustrate the differences
among the various kinds of spectral refinement methods as well as the proposed AFSSC algorithm.
AFSSC is proposed in combination with local spectral refinement with a ratio-based spectral correction
method. The former can acquire spectral bins with proper noise resistibility and the latter can estimate
the actual harmonic information with high efficiency.
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5. Application of AFSSC in a Case Study of Crack Growth Detection in Bladed Machinery of BFG
Power Plant

In this section, a case study regarding the structural health monitoring of a BFG power plant
is introduced. The project of this power plant was launched by a major manufacturer that supplies
high-end steel products in China. As this manufacturer is located in a major metropolis of eastern China,
there is high demand regarding environmental protection issues. This power plant was established to
promote exhaustive burning of environmentally harmful BFGs such that residual energies can also be
recycled for steel product manufacturing. A schematic diagram of the BFG power plant is given in
Figure 15.
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Figure 15. Schematic diagram of the BFG power plant.

The installed capacity of this power plant is 350 MW. In addition to BFG, alternative input fuels
of the power plant can also be coke oven gas (COG), corex gas (or other industrial gas), natural gas, or
light oil. The power plant is world-renowned for its combustion boiler. The maximal flow rate of the
boiler is 1131 km3/h, the highest burning flow rate in the world in 2011. As indicated in Figure 15,
the fueling system has three dual-speed booster fan units. As the key component of the booster
fans, the centrifugal compressor can operate at a lower speed of 744 r/min (12.4 Hz) and a higher
speed of 993 r/min (16.55 Hz). The tower house boiler belongs to the type of micro-positive pressure
combustion, which is equipped with 18 composite gas burners. These burners are deployed at three
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distinct layers. As the power plant is an important asset, routine inspections regarding its health state
were conducted.

5.1. Failure Case Description

An accident occurred on the booster fan of this BFG power plant. This accidental event was
caused by a broken blade on the centrifugal compressor. There are 11 impeller blades arranged in the
radial direction of the centrifugal compressor. The fault source was found to be a fully developed crack
on the faulty impeller blade (Figure 16), which reduced the mechanical strength between the faulty
blade and the impeller base.
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Figure 16. Photograph of the centrifugal compressor with a fully developed blade crack.

The faulty blade was thrown away due to strong centrifugal force at a time when the booster fan
was operating at the lower speed (744 r/min). The faulty blade knocked against the volute and caused
severe structural damage. A piece of volute debris even broke the housing of the booster fan, as shown
in Figure 17. Fortunately, there were no casualties caused by this fault. However, to prevent the future
occurrence of such accidents, condition monitoring of this machinery should be strengthened.
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5.2. Monitoring Data Analysis Using the Proposed AFSSC Method

The mechanical transmission chain of the booster fan is illustrated in Figure 18. A more detailed
description of the centrifugal compressor is given in Figure 19.Materials 2017, 10, 925 20 of 29 
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Figure 19. Detailed schematic diagram of the booster fan and its key component, the
centrifugal compressor.

As shown in Figures 18 and 19, as the key component of the booster fan, the centrifugal compressor
is driven by an AC motor via a rigid coupling. There are three bearing housings from the end of the
motor output to the right end of the centrifugal compressor. Vibration sensors were deployed on the
bearing housings due to the convenience of accessibility. In each sensor point, vibrations in three
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directions (axial, horizontal, and vertical) were measured. Signals collected from the axial directions
are acceleration signals and signals from the horizontal direction are velocity signals. The acronym
GE in Table 5 refers to the envelope amplitude of acceleration signals. It was acquired via hardware
integrations in the data acquisition appliance. Because location 2 and location 3 are closer to the
centrifugal compressor, we focus on analyzing the signals collected from them.

To investigate the historical measurements of this faulty booster fan, the collected vibration signals
stored in the factory database were checked. There are 10 sets of historical data that can be traced. The
data, along with the scheme of each measurement, are listed in Table 5. The earliest test was conducted
about 11 months before the accidental event. For the historical measurements, the booster fan operated
at the lower speed (744 r/min, indicated by letter ‘L’) eight times and the higher speed (993 r/min,
indicated by letter H) two times. Because their working speeds are not exactly the same, this adds
to the difficulty of the signal analysis. Among these measurements, the sample frequency and the
sampling length in each channel are uniformly set at fs = 2560 and L = 4096.

Table 5. Information of the 10 historical vibration tests (date, rotation speed, units).

Test
Number

Interval
(Days)

Sensors on Bearing Shell 2# Sensors on Bearing Shell 3#
Remarks

Axial
(mm/s)

Horizon
(mm/s)

Vertical
(GE)

Axial
(mm/s)

Horizon
(mm/s)

Vertical
(GE)

1 - L L L L L L
Low speed

operations (1-The
initial test’)

2 99 L L L L L L
3 62 L L L L L L
4 35 L L L L L L
5 54 L L L L L L

6 29 H H H H H H High speed
operations7 5 H H H H H H

8 30 L L L L L L Low speed
operations9 29 L L L L L L

10 27 L L L L L L

5.3. Statistical Indicator Analysis of the Vibration Data

In order to make an overall analysis of the vibration measurement, a statistical analysis was
performed. Two indicators, the root mean square (RMS) value and the kurtosis in the time domain,
were used. RMS can detect the energy amplitude of the time series, while kurtosis can measure the
peakiness of the potential impact components. The two indicators for discrete series x of length L are
defined as

RMS{x} =
(

∑L−1
k=0 x2(k)

L

)1/2

(42)

Kurtosis{x} = µ4

σ4 =
E[(x− µ)4]

(E[(x− µ)2])
2 , (43)

where µ4 is the fourth central moment and σ is the standard deviation.
In Figure 20, we plot the trends of RMS values according to the data from channels denoted

as ‘2A’, ‘2H’, ‘3A’, and ‘3H’. The concept of vibration severity (VS), indicated by the RMS value, is
introduced to describe the mechanical vibration level of the centrifugal compressor. It is observed that
VS at high speed states are generally much bigger than those at low speed states. However, there is
no explicitly positive trend growth regarding the RMS values computed via signals from the eight
measurements at low speed states. As indicated by the sub-figures, many VS indicated by ‘8~10’,
measured at dates closed to the date of the mentioned accidental event, are even smaller than those
measured at very early dates.

In Figure 21, we also display the trends of kurtosis values according to the data at channels
denoted as ‘2A’, ‘2H’, ‘3A’, and ‘3H’. No matter what the operation speed is, there is no explicit growth
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trend regarding kurtosis values. The kurtosis values of measurements at high speed are even smaller
than those at low speeds.

According to the results revealed by Figures 20 and 21, classical statistical analysis failed to
detect cracks during the duration of crack growth. The only finding is that the operation speed has a
significant influence on the vibration severity of the centrifugal impeller.
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5.4. Crack Feature Analysis via the Proposed AFSSC Method

According to the materials presented above, the rotation frequency of the centrifugal impeller at
low working speed can be computed as

fwl =
745
60
≈ 12.4167(Hz)

and the rotation frequency at high speed can be computed as

fwh =
993
60
≈ 16.5500(Hz).
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The frequency resolution of the vibration measurement is

∆ f =
2560
4096

= 0.625(Hz).

This means that we can obtain frequency bins, related to rotation frequencies form the Fourier
spectra, at 12.5 Hz and 16.25 Hz. From the fast Fourier spectra, the estimated working frequencies
are f̃wl = 12.5Hz and f̃wl = 16.25Hz. The related normalized frequency error are ∆wl = 0.0133
and ∆wh = 0.48. That is to say, there will be significant numerical errors in the estimated harmonic
information of amplitude, frequency, and amplitude when the original FFT spectra are investigated.
Therefore, we employ the proposed active frequency shift spectral correction method. Let X denote the
fundamental rotation frequency and i-X denote the corresponding ith-order harmonic component of
the fundamental working frequency.

In Figure 22, we demonstrate the time domain wave and the FFT spectral of vibration signals
collected from the horizontal channel at sensor point 3. We mainly focus on spectra analysis of
the lower frequency range, which is [0, 100]Hz. As can be seen, information from the four tests are
sufficient to reveal growth trends in two distinct domains (Test No. 2, Test No. 4, Test No. 8, and
Test No. 10 marked in Table 5. In the time domain, there are more nonstationary components as
we approach the date of the accidental event. Importantly, the FFT spectra give us more valuable
information. Although working loads of each test are different, the amplitudes of 2× and 3× are low
in early tests (Figure 22b,d). The energy of the fundamental frequency is dominant in the frequency
range of [0, 100]Hz. As the time evolves, there is significant growth for the amplitudes of 2× and 3×
(Figure 22f,h).

As such, in the following analysis, attention is focused on the information of 1×, 2×, and 3×.
Using the proposed AFSSC, corrected information regarding amplitude, frequency, and phase is listed
in Table 6.

To give a precise description of the information, we utilize the concept of a simple harmonic
phasor to incorporate the corrected spectrum information (j, Ai,j,]φi,j). That is, let the jth order
harmonic component in the ith vibration test be denoted by

Ei,j(t) = Ai,j · cos(2π fi,jt +]φi,j) , t ∈ [0, 1.6]

where Ai,j, fi,j, ]φi,j are the corrected amplitude, the corrected frequency, and the corrected phase of
Ei,j(t), respectively. Therefore, in the ith test, the velocity signal V(t) containing harmonic components
of 1×, 2×, 3× can be written as below:

Vi(t) = Ei,1(t) + Ei,2(t) + Ei,3(t)
= Ai,1 · cos

[
2π fit +]φi,1

]
+ Ai,2 · cos

[
2π(2 fi)t +]φi,2

]
+ Ai,3 · cos(2π(3 fi)t +]φi,3) , t ∈ [0, 1.6]

Because the dimension of the original vibration signal is velocity (mm/s), an operation of time
domain derivative is required to transform Vi(t) into its acceleration version Ai(t) such that the

Ai(t) =
dVi(t)

dt = −Ai,1 · fi · sin[2π fit +]Pi,1]

−Ai,2 · 2 fi · sin[2π(2 fi)t +]Pi,2]

−Ai,3 · 3 fi · sin[2π(3 fi)t +]Pi,3] t ∈ [0, 1.6]

For the acceleration signal Ai(t), we propose a normalized health indicator Weighti,j with respect
to each phasor Ei,j(t), which can be deduced using corrected harmonic information shown as below:

Weighti,j =
j · Ai,j

Ai,1 + 2Ai,2 + 3Ai,3
× 100% , j = 1, 2, 3.

The associated energy weights are shown in Figure 23. Although the information of vibration
tests at different rotation speed may be incomparable, we still plot them in an identical coordinate for
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each harmonic component of jth-X. As for the fundamental frequency, the normalized energy weight
became larger from Test No. 1 to Test No. 3, and this indicator decreased in later tests. Remarkably,
values of the energy weight of the second order decreased in early tests and increased significantly in
later tests. There is no obvious growth trend regarding the third-order harmonic component.
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Figure 22. Time domain waves and FFT spectra of the vibration signal belonging to sensor point 3H:
(a) the time domain wave of Test No. 2, (b) Fourier spectra of Test No. 2, (c) the time domain wave of
Test No. 4, (d) Fourier spectra of Test No. 8, (e) the time domain wave of Test No. 8, (f) Fourier spectra
of Test No. 8, (g) the time domain wave of Test No. 10, (h) Fourier spectra of Test No. 10.

Table 6. Corrected information of frequency, amplitude, and phase using the proposed AFSSC.

Test
Number

Fundamental Frequency Fundamental Frequency ×2 Fundamental Frequency ×3

Amplitude (mm·s−1) Phase (◦) Amplitude (mm·s−1) Phase (◦) Amplitude (mm·s−1) Phase (◦)

1 1.316 136.065 0.269 −33.388 0.199 125.074
2 1.844 −33.603 0.187 −71.140 0.195 −4.870
3 2.180 158.022 0.112 −63.192 0.181 −150.955
4 2.670 −173.618 0.151 −6.510 0.282 20.693
5 2.252 47.781 0.185 104.608 0.235 −110.818
6 9.590 −43.643 1.558 −49.710 0.900 62.944
7 9.372 −63.354 1.460 −101.821 0.706 −26.358
8 2.110 −45.932 0.752 153.325 0.357 −31.131
9 1.884 63.890 1.027 6.055 0.440 −50.505
10 1.795 −162.645 1.171 −91.907 0.361 1.491

From the above results, it is concluded that the growth in the amplitude of higher-order harmonic
component successfully indicates the evolution of a dynamic imbalance in the centrifugal impeller.
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Therefore, the normalized indicator, proposed based on the AFSSC technique, can serve as an effective
measure of the crack growth in the blade.
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Figure 23. Energy weight of the three harmonic tones of the fundamental working frequency: (a) the
first order, (b) the second order, and (c) the third order.

5.5. Comparisons

To validate the enhancement of the proposed AFSSC in harmonic information recovery, we also
employ FFT and ratio-based spectral correction method to process the signals.

If we interpret the harmonic information by merely using FFT, there is no correction of amplitude
or phase and the spectral bins with maximal modulus around the harmonic tones are investigated.
Following the procedure introduced in Section 5.4, the normalized health indicator in the form of
energy ratio with respect to each harmonic tone (1×, 2×, and 3×) is shown in Figure 23.

To make a comparison, results in Figure 23 are also reproduced simultaneously in Figure 24.
Let the relative error of a jth order single-tone component in the ith test be defined as

REi,j =

∣∣∣Weighti,j −Weighti,j

∣∣∣
Weighti,j

× 100% , (44)

where j = 1, 2, 3 and Weighti,j indicates the energy ratio estimated via FFT.
In the early tests, the amplitude of the components 2× and 3× are low in energy, therefore the error

between Weighti,j and Weighti,j is relatively small, as can be observed in Figure 24a,b. As the crack on
the impeller blade developed, the differences became much greater in later tests. It should be noticed
in Figure 24b that the curve of the energy weight of 2× no longer exhibits a monotonic increasing
trend, which suggests the occurrence of a large estimation error. In Figure 24c, the difference between
Weighti,j and Weighti,j is so large that the results of Weighti,j regarding the harmonic component 3×
are not accurate at all. Moreover, we plot curves of relative error with respect to each harmonic tone of
each test (Figure 24d).
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6. Discussions on Potential Applications of AFSSC in Materials Engineering

In this paper, we propose the AFSSC algorithm to address spectral correction problems in the
field of structural health monitoring. AFSSC achieves a good trade-off between efficiency and accuracy.
It is suitable for correcting harmonic information from signals of relative short sampling length. To the
authors’ knowledge, there have been many studies employing FFT and its related spectral analyzing
techniques. Such techniques are often adopted to investigate the physical behaviors of materials. Li and
Shen applied FFT as an alternative approach to the finite element method to compute the effective
properties of composite materials with a periodic microstructure [37]. Nicholas and Marko presented a
computational procedure based on fast Fourier transforms to delineate elastic property closures for
hexagonal close-packed metals [38]. In their research, a database of non-zero Fourier transforms is built
for each component of the elastic stiffness tensor. Lu and Xu utilized Fourier transform infrared spectra
to characterize the properties of hybrid particles [39]. Since AFSSC is presented as an enhancement to
DFT, FFT as well as zoomed-in spectral interpolation, it will also be applicable in similar research to
retrieve delicate spectral information from the measured dynamic processes. We believe that it will
find more applications in the future.

7. Conclusions

In this paper, we investigate crack detection problem of blade machinery using vibration-based
condition monitoring techniques. The major findings are summarized as follows:
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(1) A novel spectral correction method is proposed. Rather than using spectral bins of the FFT
spectrum for correcting all harmonic information (amplitude, frequency, and phase), the
proposed AFSSC method utilizes zoomed-in spectral interpolations around the actual harmonic
components. The amplitudes of the two spectral bins, employed for ratio-based spectral
correction, are high in value such that robust noise resistibility is ensured. By utilizing the
active frequency shifting operation, the values of CN are increased, which is beneficial for
enhancing the correction accuracies of frequency and phase.

(2) Two numerical simulations are conducted to validate the enhanced effectiveness of the proposed
method. Sinusoidal signals are simulated with a small frequency shift compared to the FFT grids.
In the presence of strong white Gaussian noise, RecAFSSC is superior to any other comparison
technique in correcting information of frequency and phase for all possible normalized frequency
error. RecAFSSC is also the most advantageous method for correcting the phase information
when ∆k ∈ (0, 0.3), but only slightly inferior to the ratio-based spectral correction method, using
a rectangular window for correcting the phase information when ∆k ∈ (0.3, 0.5). However, as
to the amplitude, the original RecRB, even without the active frequency shifting process, is of
the highest correction accuracy. Therefore, we combine the advantages of RecRB and those of
RecAFSSC to design a procedure for the proposed method.

(3) A case study on the structural health monitoring of BFG power plant is conducted. There are
10 historical records of vibration signals before the occurrence of an accident involving the
centrifugal fan. This event was caused by a crack that developed in the impeller blade. These
data were collected from sensors mounted on the bearing housing. In analyzing the data, classical
statistical indicators failed to reveal crack features as no explicit evolution trends with respect
to time are detected. After applying the proposed AFSSC, the harmonic information related to
fundamental working frequency is extracted with high precision. A normalized health state
indicator, measuring the energy weight of each harmonic tone, is constructed. The results show
that the normalized energy weight of the 2× component, the second-order harmonic tone of the
fundamental working frequency, increases as time passes. This indicator successfully indicates
the ongoing development of an incipient crack in the fault blade of the machinery.
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