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Abstract: We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO)
electrodes, especially for the application of imperceptible amorphous-InGaZnO (a-IGZO) thin-film
transistors (TFTs) in humidity sensors. The imperceptible a-IGZO TFT with 50-nm ITO electrodes
deposited at Ar:O2 = 29:0.3 exhibited good electrical performances with Vth of −0.23 V, SS of
0.34 V/dec, µFE of 7.86 cm2/V·s, on/off ratio of 8.8 × 107, and has no degradation for bending
stress up to a 3.5-mm curvature. The imperceptible oxide TFT sensors showed the highest sensitivity
for the low and wide gate bias of −1~2 V under a wide range of relative humidity (40–90%) at drain
voltage 1 V, resulting in low power consumption by the sensors. Exposure to water vapor led to a
negative shift in the threshold voltage (or current enhancement), and an increase in relative humidity
induced continuous threshold voltage shift. In particular, compared to conventional resistor-type
sensors, the imperceptible oxide TFT sensors exhibited extremely high sensitivity from a current
amplification of >103.
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1. Introduction

Recently, imperceptible devices that are ultra-thin, ultra-light, and transparent have been
spotlighted as next-generation new-concept electronic devices, because they can be fashioned to be
undetectable to human touch and sight [1–5]. In particular, sensors with imperceptible characteristics
can be applied to various applications such as e-skin devices for checking health signals or monitoring
environmental conditions [6–10]. The ultra-light slim devices on polymer substrates can also be
attached to objects with round shapes, and transparent sensors can be embedded on commercial
glasses such as building windows and tables without blocking visibility.

Typical sensor devices consisting of inorganic semiconductors are of the resistor type, in which the
resistance of the semiconductor body increases (or decreases) with increasing oxidation (or reduction)
of a gas [11–14]. More developed semiconductor sensors are based on Schottky or p-n junction diodes,
and these exhibited highly responsible and enhanced sensitivity due to their reduced reverse current
level. The sensibility performance of semiconductor sensors can be determined by off-state current
values; the diode is shown to have very adequate electrical performance. On the contrary, resistor-type
sensors comprise nanoparticles or polycrystalline to enhance sensibility by enlarging the reactive
surface area [15–18].

The relatively complex thin-film transistors (TFTs) have been applied as driving devices for
display application, rather than sensing devices. These transistors play an intrinsic role of switching
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or amplifying in solid-state semiconductor devices. The recently developed amorphous-InGaZnO
(a-IGZO) TFTs show unstable performance against ambient conditions such as light irradiation or
water vapor environments [19–21], although this drawback as a driving device can be seen as a merit
in sensor devices. Nevertheless, research on chemical sensor or humidity sensor applications using
oxide TFTs is relatively little due to the complex process and low reproducibility in fabricating such
sensors. Our recent studies demonstrated the possibility of low-temperature fabrication of oxide TFTs,
and proved that these devices can be fabricated with ultra-slim or transparent characteristics [22].

To realize imperceptible oxide TFTs with ultra-light and slim physical properties, some technical
issues should first be resolved. The first is the development of a low-temperature process for the use
of flexible polymer substrates, and the second is the use of fully transparent materials in the channel,
electrode, and gate insulators. Finally, the ultra-slim device thickness should be compatible with
chemically or mechanically detachable processes. These technical requirements for rigid conventional
TFTs are summarized in Figure 1.
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Figure 1. Schematic showing the technical step and core issues for the development of
ultra-thin imperceptible thin-film transistors (TFTs): rigid→ flexible and transparent→ ultra-slim
→ imperceptible.

Based on our current technical status, transparent In-Sn-O (ITO) electrodes must be checked for
good electric performances, high optical properties, and the possibility of undergoing the wet etching
process. In this study, we fabricated high-performance imperceptible TFTs by developing optimized
ITO coating conditions at room temperature on a flexible parylene polymer substrate, and conducted
humidity sensing tests under different relative humidity conditions.

2. Results and Discussion

2.1. Resistivity of ITO Via Gas Ratio and Thickness

To fabricate imperceptible TFTs with ultra-light and ultra-slim physical characteristics, all
electrodes (source, drain, and gate) must use inorganic-based transparent conductive oxide (TCO)
such as ITO for high-speed interconnections. When ITO is used for transparent electrodes, these ITO
films should be deposited at low temperatures due to the low glass transition temperatures of flexible
polymer substrates. Moreover, the films should be as thin as possible due to their low flexibility.
Unfortunately, a low deposition temperature and a very low film thickness significantly enhance the
electrical resistivity of the inorganic TCO films [23,24], resulting in the delay and degradation of the
electrical signal. In particular, imperfect electrical properties of the TCO layers originate from various
defect sites like impurities, vacancies, and anti-site atoms. These defects are very susceptible to any
change in the chemical environment, including humidity. Thus, improper TCO coating can induce
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variations in electrical properties due to humidity change, and hinders the sensing operation in the
channel region of the TFT. Previous research has shown that the electrical and optical properties of ITO
are strongly dependent on the deposition conditions such as temperature and gas mixture ratio [25].
We changed the Ar:O2 gas ratio during the deposition for the optimization of ITO films to be used in
imperceptible TFT-based sensors, because the elevation of the growth temperature was limited due to
the use of polymer substrate.

Figure 2 shows the statistical data on the electrical resistivity of ITO films as a function of Ar:O2

gas ratio during deposition and according to film thickness. As shown in Figure 2a, the resistivity of
ITO films with similar thicknesses (~100 nm) show a reduction tendency from 1.23 × 10−3 Ω·cm to
0.75 × 10−3 Ω·cm up to an Ar:O2 gas ratio of 29:0.3. For the deposition in a pure Ar atmosphere, the
oxide films typically exhibited granular grains, less dense pores, and a degradation of transmittance
below 80% (not shown here). Because O2 gas was injected during the deposition, the pores acting
electron scattering were reduced. Therefore, the resistivity of the ITO film decreased. However, at an
Ar:O2 gas ratio of 29:0.4, the resistivity of ITO started to increase. Excess oxygen flow under room
temperature during deposition resulted in semiconducting or insulating electrical properties of the
ITO layers, due to the formation of insufficient charge carriers. Thus, the appropriate oxygen content
should produce high-quality TCO films with the lowest resistivity (0.75× 10−3 Ω·cm) at Ar:O2 = 29:0.3,
with a high transmittance of >90%. Consequently, we fixed the Ar:O2 gas ratio at 29:0.3 during ITO
deposition by radio frequency (RF) sputtering. Next, we altered the ITO film thickness (147, 50, and
8 nm respectively). In typical oxide films, a decrease in the film thickness is expected to induce frequent
electron scattering due to the grain boundary compared to electron transport in thick ITO films [26].
Thus, a thinner film distinctly indicates a larger electrical resistivity. However, considering mechanical
durability against bending stress, a decreased ITO thickness is profitable. Under bending stress, the
amount of applied stress depended on the distance from a neutral layer that does not receive any
bending stress. Thus, the fabrication of thinner TFTs is one of the best ways to delay mechanical
breakdown. Figure 2b shows that the decrease in film thickness results in an increase in electrical
resistivity, where 150-, 50-, and 8-nm ITO films show resistivity of 0.62, 0.89, and 1.28 × 10−3 Ω·cm.
Interestingly, the 50-nm thickness is accompanied by a slight increase of resistivity, and this value is
sufficient for the fabrication of imperceptible TFTs.
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2.2. Contact Resistivity of ITO/IGZO and Mo/IGZO

The most important parameter for metal electrodes is the contact resistance at the
metal-semiconductor junctions. To confirm contact resistivity between the electrode and the oxide
channel, the transmission line method (TLM) is a very convenient tool [27]. Many groups have
researched the contact resistivity between IGZO films and various electrodes by using TLM [28,29] and
other techniques [30,31]. Generally, it is well-known that the contact resistivity between the electrode
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and the channel contributes on the electrical performance (on current and mobility) of TFTs [32].
Typical electrodes for driving TFT devices in the display application are opaque Mo- and Cu-based
electrodes. However, transparency is a prerequisite for the development of imperceptible TFT sensors,
and relatively thin TCO electrodes are required for this. Thus, we have compared the contact resistance
of thin ITO films deposited at room temperature with that of the popular Mo metal layer on IGZO
channels via circular TLM. The contact resistivity can be estimated from the following equation:

RT =
RS
2π

[
ln
(

r1

r1 − d

)
+ LT

(
1
r1

+
1

r1 − d

)]
(1)

where r1, RT, RS, and LT indicate the radius of the circular pattern, total resistance, sheet resistance,
and transfer length traversed by the current flow, respectively. LT is defined as LT =

√
(ρC/Rs). d

indicates the distances between the circular patterns (10, 15, 20, 25, 30, and 35 µm).
As shown in Figure 3, the estimated contact resistivity at the ITO/IGZO and Mo/IGZO junctions

is 1.9 × 10−4 Ω·cm and 1.2 × 10−4 Ω·cm, respectively. These C-TLM results confirm that our ITO films
on the IGZO have electrical contact characteristics almost similar to the Mo/IGZO junction, implying
the sufficient electrical performance of the thin ITO deposited at room temperature on the IGZO.
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2.3. Electrical Performance

We fabricated imperceptible ultra-thin TFTs (thickness≈ 5 µm) using the developed ITO electrodes
and evaluated their transfer performances.

Figure 4a,b show transfer curves at drain voltages of 0.1, 1, 5, and 10 V from all the transparent
ultra-thin imperceptible TFTs with transparent ITO electrodes, and ultra-thin TFTs with opaque Mo
electrodes on flexible parylene substrates. First of all, µFE, indicating how quickly electrons move
through the channel layer, is calculated by the follow equation:

µFE =

[
L

WCiVD

dID
dVG

]
MAX

(2)

where L and W are the length and width of channel, respectively, and VD, ID, and VG are the drain
voltage, drain current, and gate voltage, respectively. Sub-threshold swing (SS) values, indicating
switching velocity from the off- to the on-state of the TFT, are obtained from:

SS =

[(
d log ID

dVG

)
MAX

]−1
(3)

The insets in Figure 4a,b show the summary of representative electrical performances of these TFTs
with ITO electrodes and Mo electrodes. Similar to the TLM results, the imperceptible IGZO TFT shows
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outstanding transfer performances comparable to ultra-slim TFTs based on Mo electrodes, considering
the Vth, µFE, SS and on/off ratio values. The Vth, µFE, SS and on/off ratio of imperceptible TFT are
−0.23 V, 7.86 cm2/V·s, 0.34 V/dec and 8.8 × 107. Those of ultra-slim TFT are −0.59 V, 7.12 cm2/V·s,
0.26 V/dec and 4.4× 108. The hysteresis curves in Figure 4c,d show that the imperceptible TFT exhibits
marginal Vth shift, while the ITO- and Mo-based ultra-slim TFTs exhibit similar ∆Vth of 0.21 and 0.20 V.
Since the ∆Vth in the hysteresis curve depends on the amount of defect sites existing in the channel
and gate dielectric interface, we can conclude that there is no meaningful difference in defect density
at the channel/gate dielectric interfaces.
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Figure 4. Transfer characteristics (VD = 0.1, 1, 5, and 10 V) and hysteresis curves (VD = 10 V) of
imperceptible TFTs with ITO electrodes (a,c), and ultra-thin TFTs with Mo electrodes (b,d).

2.4. Mechanical Stability and Optical Property

Ultimately, the fabricated transparent and ultra-thin/light imperceptible TFT was attached to
human skin and arbitrary round objects.

Figure 5a shows that we cannot clearly recognize the existence of the TFT on skin due to
its high transparency (around 90%) and ultra-slim structure. Transmittances of pure glass and
PVA/parylene-coated glass used for comparison are 91.9% and 89.9% at a 550-nm wavelength, and
that of our imperceptible TFT is 87.1%. Our imperceptible TFTs are also stably driven without any
electrical degradation under bending stress on the round objects, as shown in Figure 5b,c, where the
imperceptible TFTs are tested on wooden sticks with curvature radii of 10, 7.5, 5, and 3.5 mm.
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3.5 mm) and (c) their transfer characteristics.

2.5. Humidity Sensing Performance

Many researchers have studied the effect of ambient conditions on oxide semiconductors for
chemical sensing applications, and their typical performance has been measured in regard to variation
of electrical resistance. Unfortunately, resistor-type sensors exhibit relatively low sensibilities (or small
changes in the resistance). On the contrary, TFT-based sensor devices with a complex device structure
are expected to demonstrate high responsivity due to the low off-current and the intrinsic amplification
characteristics of the transistors. According to previous studies, chemical ambience such as gas,
pH, and humidity induce the change in important transfer parameters of TFT such as Vth, SS, and
off-current. For display applications, the effect of water vapor on IGZO TFTs has been surveyed; when
the IGZO film was exposed to water vapor, an H2O molecule or hydroxyl is formed, which donates free
electrons to the IGZO channel. These additional electrons increase the electron carrier concentration of
the IGZO film and make the film conductive, resulting in an increase in the off-current or negative shift
of Vth [33]. The high susceptibility of the electrical performance to water vapor suggests the possibility
as a sensor device for a humidity test. Noticeably, our transistors are transparent and ultra-slim. Thus,
these TFTs can be attached to glass or human skin, and also fabricated on commercial window glasses
such as buildings, automobiles, tables, etc.

Figure 6a shows the variation of electrical performance of the imperceptible IGZO TFT under
various humidity conditions (40, 50, 60, 70, 80, and 90%) at VD = 1 V. To investigate the effect of
humidity on the TFT performance, we continuously increased the humidity from 40% to 90%, together
with a vacuum condition as a reference. When exposed to water vapor, the imperceptible TFT shows a
continuous negative shift of Vth from 1.55 V (vacuum state) to −0.74 V (90% relative humidity) with
negligible change of the off-current level and the SS value. Typically, water vapor can be absorbed on
the back channel surface of oxide semiconductors and act as electron donors on the surface. Additional
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electrons generated from water vapor accelerate the accumulation of the channel layer and cause a
negative Vth shift. However, no severe variation of the SS value in this device was founded as relative
humidity increased. This indicates that the water vapor did not induce an additional charge trapping
at channel/gate dielectric interface. To obtain the sensitivity of imperceptible TFTs against relative
humidity, sensitivity values can be calculated by:

S =
(Ihumidity − Ivacuum)

Ivacuum
(4)
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Figure 6. (a) Variation in transfer characteristics of imperceptible TFT under various humidity
conditions. (b) Sensitivity values of imperceptible TFT as a function of gate voltage under different
humidity conditions.

Unlike the resistor-type sensors, the TFT devices with the third electrode, gate bias, and the applied
gate bias exhibit different sensing characteristics. As shown in Figure 6b, the highest sensitivity is
observed for VG =−1~2 V at VD = 1 V, implying the low-voltage operation of this sensor. Consequently,
we found that high sensing performance can be obtained in the threshold region of the transistors.
The insert in Figure 6b shows the calibration curve as a function of the humidity. Our imperceptible
TFTs have superior linearity against humidity conditions at a gate voltage of 1V. Many researchers
have studied resistive-type humidity sensors based on metal oxide with various structures, such
as thin-film [34–36], nanoparticles [37], composites [38] and nanocrystals [39]. The sensitivity of
resistive-type humidity sensors is mainly below 103. Surprisingly, the sensitivity values of our sensor
devices are extremely large (>103). Considering the ultra-light and imperceptible characteristics of the
TFT, this sensor is expected to have wide applications.
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3. Materials and Methods

3.1. Preparation of Substrate

To form ultra-thin substrates, we deposited parylene (~10 µm) polymers via chemical vapor
deposition (CVD). To improve the surface roughness of the parylene substrate, we performed
UV/ozone treatment for 20 min. For chemical separation between the handling substrate (glass
or Si) and the flexible parylene substrate, we additionally coated water-soluble poly vinyl alcohol
(PVA, thickness 400 nm) by spin-coating.

3.2. Fabrication of TFTs

To investigate the effect of the Ar:O2 flow gas ratios on the electrical characteristics of ITO
electrodes, we deposited ITO films on glass substrates at various Ar:O2 gas ratios (Ar:O2 = 30:0,
29:0.1, 29:0.2, 29:0.3, 29:0.4) by radio frequency magnetron sputtering and simultaneously changed
the thickness of the ITO films at Ar:O2 = 29:0.3. The TFTs for use were fabricated with the bottom
gate inverted staggered type structure. The source, drain, and gate electrodes were patterned using
negative and positive photolithography (PR) with the wet etchant of HCl:deionized water = 1:5. Next,
a-IGZO channels were deposited by radiofrequency (RF) magnetron sputtering (150 W, Ar:O2 = 28:2,
3 mTorr, 55 nm) and were patterned with negative PR. The channel width and length were 50 and
500 µm, respectively. Then, 40-nm Al2O3 films with good dielectric property were deposited by atomic
layer deposition (ALD) at 150 ◦C. After the demonstration of the IGZO TFTs, the samples were soaked
in deionized water at 70 ◦C to detach the imperceptible IGZO TFTs from the handling substrates by
the dissolution of PVA.

3.3. Evaluation of Films and TFTs

The thicknesses of the deposited ITO films were measured by surface profiler equipment and the
electrical resistivity of ITO films deposited under various conditions (Ar:O2 gas ratio, thickness) were
obtained using HMS-3000 hall measurement equipment (Ecopia, Anyang-si, Korea). We used 4145B
parameter analyzer (HP, Yokogawa, Japan) to confirm the electrical performance and performance
variation of the fabricated TFTs when they were bent with various radii or exposed to different
relative humidity levels. Transmittances of imperceptible TFTs were characterized with a UV/visible
spectrometer. We characterized sensing performances under different relative humidity conditions in
an isolated gas chamber (MS tech). To tune the exact humidity status, we flew air gas passing DI water
into the chamber and loaded hygrometer within the chamber. Humidity sensing was performed by
checking the transfer performance of imperceptible TFTs in situ with respect to relative humidity.

4. Conclusions

We developed oxide TFTs in the order of rigid → separately transparent and flexible →
ultra-slim→ imperceptible. For the realization of complete imperceptible TFTs with high performance
comparable to those on rigid substrates, we surveyed optimized ITO coating conditions with relatively
small thicknesses at room temperature. Based on these technical developments, we proposed humidity
sensor devices with extremely high responsivity and imperceptible physical characteristics. The ITO
electrodes were deposited at an Ar:O2 ratio of 29:0.3 by RF sputtering at room temperature and the
50-nm thickness was sufficient for application in the imperceptible TFTs. The imperceptible TFTs
exhibited a high mobility of 7.86 cm2/V·s and a stable electrical performance under bending stress.
The TFT-based sensors showed the highest sensitivity for the low gate bias of −1~2 V, resulting in
low power consumption by this sensor. Compared to conventional resistor-type sensors, the oxide
TFT sensors exhibited extremely large sensitivities. Considering that these TFTs are ultra-light and
imperceptible, our sensors are expected to show wide applications because they can be patched or
embedded on several objects encountered in everyday life.
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