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Abstract: An important goal of China’s electric power system reform is to create a double-side
day-ahead wholesale electricity market in the future, where the suppliers (represented by GenCOs)
and demanders (represented by DisCOs) compete simultaneously with each other in one market.
Therefore, modeling and simulating the dynamic bidding process and the equilibrium in the
double-side day-ahead electricity market scientifically is not only important to some developed
countries, but also to China to provide a bidding decision-making tool to help GenCOs and DisCOs
obtain more profits in market competition. Meanwhile, it can also provide an economic analysis
tool to help government officials design the proper market mechanisms and policies. The traditional
dynamic game model and table-based reinforcement learning algorithm have already been employed
in the day-ahead electricity market modeling. However, those models are based on some assumptions,
such as taking the probability distribution function of market clearing price (MCP) and each rival’s
bidding strategy as common knowledge (in dynamic game market models), and assuming the
discrete state and action sets of every agent (in table-based reinforcement learning market models),
which are no longer applicable in a realistic situation. In this paper, a modified reinforcement learning
method, called gradient descent continuous Actor-Critic (GDCAC) algorithm was employed in the
double-side day-ahead electricity market modeling and simulation. This algorithm can not only get
rid of the abovementioned unrealistic assumptions, but also cope with the Markov decision-making
process with continuous state and action sets just like the real electricity market. Meanwhile, the time
complexity of our proposed model is only O(n). The simulation result of employing the proposed
model in the double-side day-ahead electricity market shows the superiority of our approach in terms
of participant’s profit or social welfare compared with traditional reinforcement learning methods.

Keywords: bidding strategy; double-side day-ahead electricity market; gradient descent continuous
Actor-Critic (GDCAC) algorithm; reinforcement learning; market clearing price (MCP)

1. Introduction

1.1. Background and Motivation

In China, with the development of the economy and society, electricity consumption has increased
rapidly in recent years [1]. In order to meet the economic and social development need of an effective
power supply, besides the continuous power system construction, the electricity industry in China has
undergone a series of restructuring and changes in the last decades, similar to many other countries
around the world. The direct objective of the electricity market restructuring in many countries,
including China, is to enhance the competition and improve the operational efficiency [2]. Before 2015,
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there have already been many regulatory reforms in China’s electricity sector, which mainly include
the Investment Decentralization in 1986, the first unbundling reform (the unbundling of Government
Admin and Business Operation) in 1997, and the second unbundling reform (the unbundling of
Electricity Generation and Transmission) in 2002 [1,3].

However, the first two reforms only provided weak incentives because most power plants were
still dominated with state ownership participation so that they only face soft budget constraints.
Furthermore, the entire electricity industry was still operated vertically by the State Power Corporation
(SPC) which contains sectors of generation, transmission and distribution. In 2002, SPC was separated
into 11 new corporations including five power generation corporation groups, two power grid
corporations, and four auxiliary corporations [2], which is known as the third reform aiming at
increasing competition in the electricity industry in China. Although some issues such as mandatory
plan systems, the integration of government administration with enterprises, and the integration of
plants with the power grid have been basically solved, there are still many unsolved issues which
seriously hinder the efficiency of the electricity industry in China: firstly, a transaction mechanism,
which plays the decisive role of the market in the difficult to realize allocation of resources is
missing; secondly, the pricing relationship doesn’t line up, which is the consequence of market
pricing mechanism deficiencies; thirdly, the transformation of the government function is not in
place so that many planning and coordination works concerning the electricity market are hard
to implement; fourthly, the development mechanism is unsound, making the development and
utilization of renewable energy very difficult; finally, the legislative work is lagging, which hinders the
deregulation of the electricity industry.

To get over those problems listed above, in March 2015 the Communist Party of China (CPC)
Central Committee and the State Council issued the policy paper “Several opinions on further
deepening the reform of the electric power system” (which is also known as Chinese State Council
(2015) No. 9 Policy Paper in China) in which one of the general lines of the future reform of the
electricity industry is described as that based on further improving the decoupling of government
administration of enterprises, of plants with the power grid and the main-auxiliary separation,
freeing the consumption side option, and establishing effective electricity markets with double-side
competitive transaction mechanisms in many regions.

Just like many developed countries around the world which have already experienced
restructuring of their power systems, in the future the electricity markets which will be established in
China based on the general reform lines abstracted from the Chinese State Council (2015) No. 9 Policy
Paper and Reference [4] can be classified according to many standards. For example, considering
different traders, a market existing between the generating companies and distribution companies,
retailers or large consumers is called the wholesale marketplace. A market existing between retailers,
distribution companies and end users is called the retail marketplace. Considering different durations
of the transaction, the electricity market can be classified as forward market, spot market and auxiliary
market [4–6].

The day-ahead wholesale electricity market is one of the most common forms of spot market in
many countries. In a double-side day-ahead electricity market, the sellers (i.e., generating companies,
which we call GenCOs for the sake of description convenienc,) and the buyers (i.e., distribution
companies, retailers or large consumers, for the sake of description convenience and without loss of
generality, we indiscriminately call all of them DisCOs) are required to submit bids for selling and
buying energy to an independent system operator (ISO) for every time interval of the next day based
on the supply and demand curves, respectively. After receiving all time interval biddings for the next
day from GenCOs and DisCOs, the aggregated timely supply and demand bidding curves can be then
constructed by the ISO to determine the market clearing price (MCP). Meanwhile, the corresponding
supply and demand schedules for every time interval in the next day can also be determined by ISO,
in which the constraints such as the security and stability of transmission network and the power
balance of power system must be taken into account [7]. GenCOs and DisCOs get paid in accordance
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with the MCP and their accepted schedules, or according to their bid (pay as bid, (PAB)). In this paper,
we take the MCP mechanism into account.

Generally, the restructured day-ahead wholesale electricity market can be defined as an imperfect
competitive market or more accurately an oligopoly market, due to the limited number of power
producers, long period of power plant construction, large scale of capital investment, transmission
constraints, and transmission losses [7,8]. This imperfect competitive or oligopoly nature of the
electricity industry makes GenCOs and DisCOs bid strategically in a day-ahead market to obtain
more profits. For example, due to the oligopolistic nature, a GenCO has the market power to bid
at a higher price than its marginal cost, which is defined as the bidding strategy of the GenCO.
DisCOs have the market power to bid at a lower price than their marginal revenue, which is defined
as the bidding strategy of the DisCO. Hence one can see that different bidding strategies of GenCOs
and DisCOs determine different shapes of their supply and demand curves which in turn affect
MCP, the schedules of market, the profits of all GenCOs and DisCOs, and even the welfare of
society. Therefore, to scientifically model and simulate the dynamic bidding process and market
equilibrium in the double-side day-ahead electricity market is not only of importance to some
developed countries, but also to China, so that for participants (GenCOs or DisCOs), it can provide
a bidding decision-making tool to obtain more profits in market competition, and for the government,
it can provide an economic analysis tool to help design proper market mechanisms and policies.

1.2. Literature Review and Main Contributions

There are many papers related to modeling and simulating the dynamic bidding process or
equilibrium of the day-ahead electricity market, which generally can be divided into two kinds:
single-side studies and double-side studies. In single-side studies, researching generation-side bidding
strategies and equilibrium represents the main consideration. A supply function equilibrium (SFE)
game model for modeling GenCO’s strategic bids was presented by Al-Agtash et al. [8], where the
competition among all GenCOs with imperfect information about their rivals and the transmission
constraints were taken into consideration. In reference [9], Damoun et al. proposed a direct SFE-based
approach to compute the robust Nash strategies for GenCOs in the spot electricity market without
taking transmission constraints into consideration. In the study performed by Alberto et al. [10],
the Nash equilibrium of the single-side day-ahead market was analyzed with a static game model
considering the transmission constraints. Gao, et al. [11] researched on how to find the optimal bidding
strategy of a GenCO in the single-side day-ahead electricity market, based on the parametric linear
programming method and with the assumption that all GenCOs in the day-ahead market pursue profit
maximization. In the papers by Kumar et al. [12] and Wang [13], every GenCO in the single-side market
optimizes its bidding strategy by evaluating the strategy probability distributions of its rivals with
the information about their cost functions (complete information) and their strategies from last game
iteration (but imperfect information). The dynamic evolution process of GenCOs’ bidding strategy was
simulated by shuffled frog leaping algorithm (SFLA) [12] and genetic algorithm (GA) [13], respectively.
Liu et al. [14] reported an incentive bidding mechanism in which the semi-randomized approach is
applied to model the information disturbance in the electricity auction markets. Nojavan et al. [15],
used the information gap decision theory to model the market price with severe uncertainty so that
an optimal bidding strategy can be determined for the day-ahead market. In the study performed by
Wen and David [16], a GenCO estimated other rivals’ bidding strategies using Monte Carlo simulation,
and the stochastic optimization model of GenCOs for strategic bids pursuing profit maximization
was established. In the study performed by Kumar et al. [17], from a GenCO’s point of view, all of
other participants’ bidding strategy variables were taken as random variables which obey a Gaussian
distribution, and the dynamic game process in the single-side day ahead electricity market was
solved by the fuzzy adaptive gravitational search algorithm. All the methods listed above are actually
based on game theory. Azadeh et al. [18] simulated the dynamic adjustment process of GenCOs in
day-ahead market through multi-agent-based method. In the literature from Rahimiyan et al. [19],



Energies 2016, 9, 725 4 of 20

a GenCO’s optimal bidding strategy problem was modeled and simulated by the Q-learning algorithm
considering discrete state as well as action sets and the game model-based approach, respectively.
Comparison of those two methods confirms the superiority of Q-learning in this issue.

In the aspect of double-side studies, research on simultaneous generation-side and
consumption-side bidding strategies and the market equilibrium represent the main consideration.
Shivaie et al. [20] proposed an environmental/techno-economic game approach for bidding strategies
of GenCOs and DisCOs in a security-constrained day-ahead electricity market, and the dynamic
process of bidding adjustment was simulated by a bi-level harmony search algorithm. In Reference [20],
every GenCO and DisCO was assumed to have imperfect information about ongoing strategies of its
rivals, but complete information about historical ones so that the parameters in optimization model
of every GenCO or DisCO were estimated as the historical strategies of its rivals. In the study by
Menniti et al. [21], an evolutionary game model only to simulate the behaviors of the generation-side
was proposed, and the modeling approaches of this paper can also be extended to the consumption-side
issue. The classical evolutionary game theory can only solve problems with a discrete strategy set,
which is not in line with the actual situation in the day-ahead electricity market. Ladjici et al. [22,23]
proposed a stochastic optimization model for GenCOs, which is also suitable for DisCOs in the
day-ahead electricity market, and the evolutionary processes of strategies within continuous intervals
were simulated by using competitive co-evolutionary algorithms drawn lessons from the classical
evolutionary game theory mentioned above. However, the assumption of these two papers is that
the strategy probability distribution functions of every participant are taken as common knowledge in
the marketing game.

From the experiences in some developed countries, common characteristics of GenCOs and
DisCOs in the deregulated day-ahead electricity market include:

(1) Every participant (GenCO or DisCO) has no idea about what the cost and revenue functions of
all its rivals are;

(2) Every participant has no idea about what the ongoing and historical strategies of all its rivals and
those strategies’ real probability distribution functions are in the day-ahead market every day;

(3) The common information published by ISO after the completion of bidding and market clearing
every day is only the MCP of every time intervals of the next day. One participant can only be
noticed by ISO its own producing or consuming schedules in every time interval of the next day;

(4) Every participant can adjust its bidding strategy within a continuous interval of values, and the
MCP also changes within a continuous interval of values over time.

Considering the above provisions from Equations (1)–(3), the modeling approaches of all
literatures introduced above except for reference [19] are not quite suitable for the actual situation of the
day-ahead electricity market. That is because every participant in market neither has information about
the cost and revenue functions of all its rivals (then do not know their profits) nor has information
about the ongoing and historical strategies of all rivals, or even the probability distribution functions
of strategy choosing by rivals. The modeling and simulating approach in [19] does not require
that information, and an agent representing a participant learns the best strategy while meeting
with a certain state of the market (the MCP formed in last iteration) through its experiences of the
past. In the literature from Salehizadeh [24], an agent-based fuzzy Q-learning algorithm was used
for modeling the dynamic bidding strategy adjustment of GenCOs in a spot electricity market by
considering renewable power penetration, in which the fuzzy rule was used to define the continuously
changing states of renewable power production. In the literature from Thanhquy [25], the participants’
dynamic behaviors in single-side day-ahead electricity markets were modeled by Q-learning with
greedy, ε-greedy, and Boltzmann ε-greedy action decision method, respectively. The comparison result
shows that with Boltzmann ε-greedy decision method, the participants in the day-ahead market can
receive more profits after sufficient learning iterations, because the value of the temperature variable
in the Boltzmann action choosing probability distribution function of every agent (participant) can be
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adjusted as the iteration proceeds. Similar studies in electricity market simulation and other areas can
also be found in [26–36].

Taking provisions (1)–(4) into consideration, the methods both in [8–18,20–23] and in [19,24–33]
are not quite suitable for modeling and simulating the practical day-ahead electricity market exactly,
the reason of which is that in the real day-ahead electricity market, every participant can adjust its
bidding strategy within a continuous interval of values, but the literatures suitable for provisions (1)–(3)
have assumed that the sets for alternative actions (e.g., bidding strategies) or potential states
(e.g., historical MCP) are discrete.

As far as this paper can tell, there is no literature in this area which proposes a feasible method
which can model and simulate the double-side day-ahead electricity market in accordance with all
four provisions listed above simultaneously. Therefore, the objective of this paper is to establish
a suitable and feasible method that can model and simulate the dynamic bidding adjustment process
and equilibrium of a double-side day-ahead electricity market scientifically, in which every participant
has the ability to gradually learn the decision-making conditions adaptively through imperfect and
incomplete information (i.e., satisfying provisions (1)–(4) simultaneously) and in its repeated bidding
process. The participants in the electricity market can use this decision-making tool to obtain more
profits in a competitive environment. Meanwhile, the government can use the simulation result to test
the effects of diverse policies implemented in electricity market.

The rest of the paper is organized as follows: in Section 2, the agent-based double-side day-ahead
electricity market model is established mathematically. Participants’ bidding and market clearing
mechanisms are also discussed in this section. In Section 3, the mathematical principles of the
gradient descent continuous Actor-Critic (GDCAC) algorithm [37], which can model and simulate
the dynamic bidding strategy adjustment process of GenCOs or DisCOs in a double-side day-ahead
electricity market while simultaneously conforming to provisions (1)–(4), is introduced in details. Then,
our proposed methodology for modeling and simulating the dynamic bidding process of GenCOs or
DisCOs in a double-side day-ahead electricity market conforming to provisions (1)–(4) simultaneously
is established based on the GDCAC algorithm. In Section 4, a simulation is performed, and the results
shows the superiority of our proposed method in participant’s profit and social welfare compared
with traditional reinforcement learning methods. Section 5 concludes the paper.

2. Agent-Based Double-Side Day-Ahead Electricity Market Model

2.1. Participants’ Bidding Model

In a double-side day-ahead electricity market, all GenCOs and DisCOs have the ability of learning
by doing in order to maximize their own profits through their experiences in the competitive bidding
procedure. Therefore, each of the GenCOs and DisCOs can be considered as an agent [19,24–33]. In this
paper, without loss of generality, it is assumed that each GenCO has only one generation unit and
submits one bid curve for each time interval of the next day, and considers the profit obtained through
bidding in corresponding time interval of the next day, the same as each DisCO.

For GenCO i (i = 1, 2, . . . , Ng), the formulation of its bid curve for time interval t (t = 1, 2, . . . , 24)
of the next day is a supply function based on its real marginal cost function:

SFi,t(Pgi,t, kgi,t) = kgi,t(aiPgi,t + bi), Pgi,t ∈ [Pgi,min, Pgi,max] (1)

where, Pgi,t, kgi,t represent the power production (MW) and bidding strategy ratio of GenCO i in time
interval t, respectively.

The marginal cost function of GenCO i is:

MCi(Pgi,t) = aiPgi,t + bi (2)
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where, ai, bi represent the slope and intercept parameter of GenCO i’s marginal cost function,
respectively.

Because of the market power of GenCO i, it can bid with a supply function higher than its real
marginal cost, so the bidding strategy ratio variable kgi,t satisfies kgi,t ∈ [1, ki,max].

For DisCO j (j = 1, 2, . . . , Nd), the formulation of its bidding curve for time interval t (t = 1, 2, . . . , 24)
of the next day is a demand function based on its real marginal benefit function:

DFj,t(Pdj,t, kdj,t) = kdj,t(−cjPdj,t + dj), Pdj,t ∈ [Pdj,min, Pdj,max] (3)

where Pdj,t, kdj,t represent the power demand (MW) and bidding strategy ratio of DisCO j in time
interval t, respectively.

The marginal revenue function of DisCO j is:

MDj(Pdj,t) = −cjPdj,t + dj (4)

where –cj and dj represent the slope and intercept parameter of DisCO j’s marginal revenue function,
respectively.

Because of the market power of DisCO j, it can bid with a demand function lower than its real
marginal revenue, so the bidding strategy ratio variable kdj,t satisfies kdj,t ∈ (0, 1] .

The profit of GenCO i after the completion of market for time interval t of the next day is:

Rgi,t = MCPt · Psgi,t − (
1
2

ai · Psgi,t
2 + bi · Psgi,t) (5)

where, MCPi represents the MCP in time interval t; and Psgi,t represents the scheduled power
production of GenCO i in time interval t. For the sake of simplicity and without loss of generality, it is
assumed that the fixed cost of GenCO i is not considered in this paper.

The profit of DisCO j after the completion of market for time interval t of the next day is:

Rdj = (−1
2

cj · Pddj,t
2 + dj · Pddj,t)−MCPt · Pddj,t (6)

where Pddj,t represents the scheduled and dispatched power consumption of DisCO j in time interval t.
For the sake of simplicity and without loss of generality, it is assumed that the fixed benefit of DisCO j
is not considered in this paper.

Taking [8,12,13,20–22] as references, we only consider one (negotiation) time interval for the
next day. Hence, maximizing Equations (5) and (6) are the objectives of GenCO i and DisCO j in the
double-side day-ahead electricity market, respectively.

2.2. Market Clearing Model

After receiving all bids for a certain time interval of the next day from GenCOs and DisCOs,
the aggregated supply and demand bidding curves can then be constructed by the ISO to determine
the MCP as well as the corresponding supply and demand schedules for the corresponding time
interval in the next day. The ISO’s market clearing management model for t can be described as follows:

MaxPgi,t,∀i,Pdj,t,∀j

Nj

∑
j=1

[kdj,t(−
1
2

cjPdj,t
2 + diPdj,t)]−

Ni

∑
i=1

[kgi,t(
1
2

aiPgi,t
2 + biPgi,t)] (7)

s.t.
Nj

∑
j=1

Pdj,t =
Ni

∑
i=1

Pgi,t (8)

LFl = l fl(Pd1,t, ..., PdNj,t, Pg1,t, ...PgNi,t),∀l (9)
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|LFl| ≤ LFl,max,∀l (10)

Pdj,t ∈ [Pdj,min, Pdj,max],∀j (11)

Pgi,t ∈ [Pgi,min, Pgi,max],∀i (12)

where Equation (8) represents the power balance constraint, Equation (9) represents the power
flow function in a transmission line l, and Equation (10) represents the system security constraints.
The concrete formations of Equations (9) and (10) can be seen in [31]. By solving this optimization
problem represented by Equations (7)–(12), the optimal scheduled power volumes of every GenCO
and DisCO in time interval t corresponding to the maximal social welfare can be obtained. If we take
the system security constraints into account, then the locational marginal prices (LMPs) of the whole
system in time interval t can be calculated based on the dual variables of Equation (9), otherwise,
the MCP of whole system in time interval t can be calculated based on the dual variable of Equation (8).

2.3. Agent Learning Mechanism

In a real double-side day-ahead electricity market, the rivals of a GenCO are the rest of GenCOs
and all DisCOs in the same market, and the rivals of a DisCO are the rest of DisCOs and all GenCOs in
the same market. As listed in Section 1.2, every participant (a GenCO or a DisCO) has no idea about
its rivals’ strategies historically and currently, what it knows is the information about historical MCPs.
Literatures [19,25,26,29,33] have proposed that an agent-based GenCO (or DisCO) learns from the
MCP (or LMP) of the last round market competition calculated and published by the ISO to decide
which bidding strategy can be used in current market bidding competition in order to pursue its own
profit maximization.

Based on the viewpoints expressed in [19,25,26,29,33], this paper proposes that an agent-based
GenCO or DisCO participating in a double-side day-ahead electricity market learns from the historical
MCP, calculated and published by the ISO yesterday (for today), to decide which bidding strategy
can be applied for the next day in order to pursue its own profit maximization. Hence, there are some
definitions described in this paper as follows:

(1) Transaction day: In a transaction day T (T = 1, 2, . . . ), since the market is assumed to be cleared in
a day-ahead single (negotiation) time interval basis, every GenCO or DisCO bids only one supply
or demand function for the single time interval corresponding to the next day by use of MCP
information calculated and published by the ISO in transaction day T−1 (for transaction day T).

(2) State variable: Historical MCP information calculated and published by the ISO in transaction
day T−1 constitutes a value of the state variable in transaction day T.

xT = MCP(T−1) (13)

(3) Action variable: In a transaction day T, the GenCO i or DisCO j’s bidding strategy constitutes
a value of its action variable. Hence, the action variable for GenCO i and DisCO j can be
respectively described as follows:

ugi,T = k(T)gi (14)

udj,T = k(T)dj (15)

(4) Iteration: We consider each transaction day as one iteration.

An agent-based participant has the ability of learning-by-doing or learning from its own
experience so that when it has experienced sufficient iterations, the participant can take the optimal
action (bidding strategy) which produces the most profit in face of any given state (xT) of the
environment (market). Hence, from a viewpoint of long period of time (many iterations), the values of
ugi,T, udj,T (i = 1, 2, . . . , Ng; j = 1, 2, . . . , Nd) and xT can be adjusted dynamically with the iterations,
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which may be or not be constant after enough iterations, just as defined in [11–13] as Nash equilibrium
of the market.

Now, the issue that we need to tackle with is as follows: practically, not only xT, but also ugi,T and
udj,T (i = 1, 2, . . . , Ng; j = 1, 2, . . . , Nd) vary within a topologically continuous, bounded and closed set
included in R respectively. Therefore, we need to find an appropriate method to model and simulate
the dynamic process of strategy adjusting of every GenCO and DisCO in the incomplete and imperfect
informational double-side day-ahead electricity market (satisfying provisions (1)–(4) simultaneously).

3. Methodology

In order to solve the issue mentioned in the last paragraph of Section 2, we proposed a modified
reinforcement learning algorithm, namely the GDCAC algorithm.

Classic table-based reinforcement learning algorithms (e.g., SARSA algorithm, Q-learning
algorithm et al.) can rapidly solve the Markov Decision Process (MDP) problems with discrete
state and action spaces. For example, every GenCO’s and DisCO’s bidding strategy and the MCP of
the market are assumed to vary within both two discrete and finite sets [19,25,26,29,33]. However,
as mentioned above, the assumption of discrete sets of strategy (action) and MCP (state) isn’t suitable
for the actual situation of double-side day-ahead electricity market. Therefore, when using the classic
reinforcement learning algorithm which uses a lookup table to store the state or state-action value
information to model and simulate actual day-ahead electricity market bidding issue, the problem of
“curse of dimensionality” will be generated, which challenges the classic table-based reinforcement
learning algorithms on both memory space and learning efficiency. A common solution is to combine
the classic reinforcement learning algorithms with function approximation methods in order to enhance
the abstraction ability and generalization ability on state space and action space [37,38].

In this paper, the Actor-Critic method is used as basic structure of the agent-based participants’
learning model in which the state value function corresponding to the Critic and the strategic/optimal
action selecting policy function corresponding to the Actor are both approximated by the linear
function model. The temporal difference (TD) error-based method is used to learn the parameters of
the state function on line. The sigmoid function of TD error is used to construct a mean squared error
(MSE) about policy parameters which is learned on line by a so-called gradient descent method [37,38].
After enough iterations of GDCAC algorithm, the parameters of the state value function and the
strategic/optimal action selecting policy function are approximated optimally. Meanwhile, the agent
can tell the optimal action in face of whatever state it met within continuous state space.

3.1. Policy Search

The reinforcement learning methods can be divided into three kinds, namely value iteration,
policy iteration and policy search. Value iteration methods calculate the optimal value function in
an iterative way. After reaching the convergence of the optimal value function, the optimal policy
to select the best action in face of any state is determined by the optimal value function, and the
typical value iteration algorithm is Q-learning algorithm. In policy iteration methods, the agent selects
the actions according to an initial policy and interacts with the environment. During the process of
interaction, the agent assesses the value function of the initial policy, and after reaching the convergence
of the value function, the agent can obtain a better policy using the greedy method according to the
value function. Then, the agent will take this obtained better policy as a new initial policy to repeat the
aforementioned process, and finally get an optimal or near optimal policy. A typical policy iteration
method is the SARSA algorithm [38]. Both the value iteration and policy iteration method are based
on a lookup table to assess the value function, and their major defect has been briefly described above.
Classic policy search methods are also based on a lookup table to store the value function information.
In the process of interaction with the environment, the agent uses the immediate reward which is fed
back by the environment to adjust its policy, which makes the probability of choosing the better action
increase and the probability of the bad action decrease. Because of the explicit representation feature
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of policy, the modification work of improving policy search method to become suitable for solving
agent-based reinforcement learning problems with continuous state and action spaces is easier than
that of the other two methods. Therefore, the modified policy search method is commonly used under
the situations of continuous state and action spaces [37,38].

3.2. Introduction of the Gradient Descent Continuous Actor-Critic Algorithm

The Actor-Critic method consists of two parts, namely the actor and the critic. The actor part
represents a clear policy which gives the probability of each action being selected at each state, and the
critic part represents a value function which is the value function of the policy for the maintenance
of the actors. The agent complies with the policy maintained by the actor to generate an action.
In applying the action on the environment, the critic is responsible for receiving environmental
immediate feedback reward and then updates the value function. At the same time, the critic calculates
the corresponding TD error which is given back to the actor who adjusts the policy according to TD
error in order to increase the probability of selecting the better action and decrease the probability of
selecting the worse action. The basic structure of the Actor-Critic method is shown in Figure 1.
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In order to tackle with the issues of continuous state and action spaces, references [37,38] have
proposed a method of using linear function to model the state value function and policy. The state
value function model corresponding to the critic based on linear function can be described as follows:

V̂(x) =
n

∑
i=1
φi(x)θi =

→
φ(x)T

θ (16)

where, φi : X→ R (i = 1, 2, . . . , n) represents the ith basis function of state x ∈ X.
Then, a fixed basis function vector of state x ∈ X can be described as:

→
φ(x) = (φ1(x),φ2(x), ...,φn(x))T (17)

The linear parameter vector is:

θ = (θ1, θ2, ..., θn)
T ∈ Rn (18)
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Then, we define a linear function A : X→ U as the optimal policy model corresponding to the
actor where the functional relationship between the optimal action uopt(x) ∈ U and state x ∈ X is
as follows:

uopt(x) = A(x) =
→
φ(x)T

ω (19)

where, the linear parameter vector is:

ω = (ω1,ω2, ...,ωn)
T ∈ Rn (20)

In order to balance the exploration and exploitation in the reinforcement learning process,
the policy by which the action is generated in face of every state must have the ability of exploration
which is to select the sub-optimal action with a certain probability at each choice of action. This paper
employs a Gaussian distribution function as the action generating model (policy) corresponding to
the actor:

ρ(x, u) =
1√
2πσ

exp
{
− 1

2σ2 (u−
→
φ(x)T

ω)
2}

(21)

where, σ > 0 is a standard deviation parameter which represents the exploring ability of the algorithm.
Equation (21) indicates that when facing the state x, the probability of selecting the optimal action
→
φ(x)T

ω is the largest.
Therefore, the MSE function of parameter θ corresponding to the critic is:

MSE(θ) =
1
2

∫
x∈X

P(ρ)(x)[V(ρ)(x)−
→
φ(x)T

θ]
2
dx (22)

where, P(ρ)(x) is the probability distribution function of the state under policy ρ. The ideal goal is to
find the global optimal parameter θ* which satisfies:

MSE(θ∗) ≤ MSE(θ) (23)

Equation (23) indicates the generalization error of Equation (16) is minimized. However, we have
no priori-knowledge about the real value function V(ρ)(x). Therefore, minimizing Equation (22)
directly is impossible.

What we all know is that the gradient of a function represents the fastest increasing direction of
the function value, and the negative gradient is the fastest decreasing direction of the function value.
We can calculate the approximate formation of the gradient of MSE(θ):

grad(MSE(θ)) = −
∫

x∈X

P(ρ)(x)[V(ρ)(x)−
→
φ(x)T

θ]
→
φ(x)dx (24)

As mentioned above, because we have no priori-knowledge about V(ρ)(x) and P(ρ)(x), [38] has

used TD error to approximately replace V(ρ)(x)−
→
φ(x)T

θ. Assuming that at time step (iteration) T,
the agent implements action uT in the state of environment xT and receives the immediate reword rT,
then the state of the environment shifts to xT+1. The TD error at time step T is:

δT = rT + γ
→
φ(xT+1)

T
θT −

→
φ(xT)

T
θT (25)

where, 0 ≤ γ ≤ 1 is a discount factor, θT is the estimated value of linear parameter vector θ at time
step T. Based on the gradient descent method, the updating formula of parameter vector θ is:

θT+1 = θT + αTδT
→
φ(xT) = θT + αT [rT + γ

→
φ(xT+1)

T
θT −

→
φ(xT)

T
θT ]
→
φ(xT) (26)
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where, αT > 0 is the step length parameter which satisfies the following mathematical conditions:

∞

∑
T=1

αT = ∞ and
∞

∑
T=1

(αT)
2 < ∞ (27)

Then, the problem of parameter vector ω updating corresponding to the actor is analyzed.
Assuming that in the state of environment x, the agent respectively implements action u1 and u2

(u1 6= u2), and then the state of environment x will shift to state x1 and x2 correspondingly, and the
corresponding immediate rewords are r1 and r2, respectively. Therefore, the two TD errors relevant to
u1 and u2 are:

δ(x, u1) = r1 + γ
→
φ(x1)

T
θ−

→
φ(x)T

θ and δ(x, u2) = r2 + γ
→
φ(x2)

T
θ−

→
φ(x)T

θ (28)

If δ(x, u1) > δ(x, u2), which means r1 + γ
→
φ(x1)

T
θ > r2 + γ

→
φ(x2)

T
θ, then the action u1 is

better than u2 in the state of environment x, which is to say the parameter vector ω needs to be
adjusted/updated so as to make A(x) closer to u1 than u2. In this state of environment x, the probability
of selecting action u1 needs to be larger than that of u2. On the contrary, if δ(x, u1) < δ(x, u2),

(i.e., r1 +γ
→
φ(x1)

T
θ < r2 +γ

→
φ(x2)

T
θ), then the action u2 is better than u1 in the state of environment x,

which is to say the parameter vector ω needs to be adjusted/updated so as to make A(x) closer to u2

than u1. In this state of environment x, the probability of selecting action u2 needs larger than u1.
Therefore, the MSE function of parameterω corresponding to the actor is:

MSE(ω) =
1
2

∫
x∈X

P(ρ)(x)
∫

u∈U

sig[δ(x, u)][
→
φ(x)T

ω− u]
2
dudx (29)

where, sig [δ(x, u)] is the sigmoid function of TD error δ(x, u). Reference [38] gives its formulation
as follows:

sig[δ(x, u)] =
1

1 + e−mδ(x,u)
(30)

where, m > 0 is an adjustable parameter. From Equation (30), it is easy to know that sig [δ(x, u)] is
a monotonically increasing function of δ(x, u), and sig [δ(x, u)] ∈ (0, 1] .

If we minimize sig [δ(x, u)] [
→
φ(x)T

ω− u]
2
, T then in the state of environment x, the larger the

value of TD error δ(x, u), the higher the probability of selecting action u. The approximate formation
of the gradient of MSE(ω) is:

grad[MSE(ω)] =
∫

x∈X

P(ρ)(x)
∫

u∈U

1
1 + e−mδ(x,u)

[
→
φ(x)T

ω− u]
→
φ(x)dudx (31)

Similar to the value function parameter θ updating method, assuming that at time step T, the agent
implements action uT in the state of environment xT and receives immediate reword rT, then the state
of the environment shifts to xT+1, and the TD error is δ(xT , uT) = δT . Based on the gradient descent
method, the updating formula of parameter vectorω is:

ωT+1 =ωT + βT
1

1 + e−mδT
(uT −

→
φ(xT)

T
ωT)

→
φ(xT) (32)

where, βT > 0 is the step length parameter which satisfies the mathematical conditions as follows:

∞

∑
T=1

βT = ∞, and
∞

∑
T=1

(βT)
2 < ∞ (33)

The pseudo-code of GDCAC algorithm is as follows:
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(1) Input: the feature extraction function
→
φ : X→ Rn , discount factor , 0 ≤ γ ≤ 1, step length

parameter series {αT}∞
T=0, {βT}

∞
T=0, and parameters σ, m.

(2) Initialize linear parameter vectors θ0 andω0.
(3) Repeat (for each episode)

Initialize state x0 randomly
Repeat (for each time step T = 0, 1, 2, . . . in the episode)

Choose and implement an action uT ∼ N(
→
φ(xT)

T
ωT ,σ2) from state xT, then observe

immediate reword rT and the next state xT+1;

δT = rT + γ
→
φ(xT+1)

T
θT −

→
φ(xT)

T
θT ;

θT+1 = θT + αTδT
→
φ(xT);

ωT+1 =ωT + βT
1

1+e−mδT
(uT −

→
φ(xT)

T
ωT)

→
φ(xT);

Until xT+1 is terminal

Until the desired number of episodes has been searched.

(4) Output: θ∗ = θT+1,ω∗ =ωT+1 and V*(x), A*(x).

3.3. The Proposed Market Procedure

The procedure of implementing the GDCAC algorithm for electricity market modeling by
considering continuous state (MCP) and action (bidding strategy) sets is as follows:

(1) Input: for GenCO i
→
φg : MCP→ Rn and for DisCO j

→
φd : MCP→ Rn , discount factor 0 ≤ γ ≤ 1,

step length parameter series {αT
(g)}∞

T=0 and {βT
(g)}∞

T=0 for GenCO i, step length parameter
series {αT

(d)}∞
T=0 and {βT

(d)}∞
T=0 for DisCO j, and parameters σ, m.

(2) Initialize the linear parameter vectors θ0
(gi) and ω0

(gi) for GenCO i, linear parameter vectors
θ0

(dj) andω0
(dj) for DisCO j.

(3) T = 0.
(4) Initialize kgi,0 ∈ [1, ki,max] for GenCO i and kdj,0 ∈ (0, 1] for DisCO j randomly, and calculate

x1 = MCP0 through Equations (1), (3), and (7)–(12).
(5) Repeat (for each time step T = 1, 2, . . . , TN).

GenCO i chooses and implements an action uT
(gi) = kgi,T ∼ N(

→
φg(xT)

T
ωT

(gi),σ2) from
state xT = MCPT−1, then observes the immediate reword rgi,T using Equation (5) and the next
state xT+1 generated by Equations (1), (3), and (7)–(12);

DisCO j chooses and implements an action uT
(dj) = kdj,T ∼ N(

→
φd(xT)

T
ωT

(dj),σ2) from
state xT = MCPT−1, and then observes the immediate reword rdj,T using Equation (6) and the
next state xT+1 generated by Equations (1), (3), and (7)–(12);

GenCO i updates: δgi,T = rgi,T + γ
→
φg(xT+1)

T
θT

(gi) −
→
φg(xT)

T
θT

(gi);

θT+1
(gi) = θT

(gi) + αT
(g)δgi,T

→
φg(xT);

ωT+1
(gi) =ωT

(gi) + βT
(g) 1

1+e−mδgi,T
(uT

(gi) −
→
φg(xT)

T
ωT

(gi))
→
φg(xT);

DisCO j updates: δdj,T = rdj,T + γ
→
φd(xT+1)

T
θT

(dj) −
→
φd(xT)

T
θT

(dj);

θT+1
(dj) = θT

(dj) + αT
(d)δdj,T

→
φd(xT);

ωT+1
(dj) =ωT

(dj) + βT
(d);

(6) Output: for GenCO i: θgi
∗ = θT+1

(gi),ωgi
∗ = ωT+1

(gi) and Vgi*(x), Agi*(x); for GenCO i:
θdj
∗ = θT+1

(dj),ωdj
∗ =ωT+1

(dj) and Vdj*(x), Adj*(x).
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From the step-by-step procedure listed in this subsection, it is easy to know that the time
complexity of our proposed GDCAC-based electricity market model is O(n). According to Reference [38],

we choose Gaussian radial basis function as
→
φg(x) and

→
φd(x).

4. Simulation and Discussions

Because in China the double-side day-ahead electricity market has not yet been established in any
region (it is clear that one of the development directions in China’s power restructuring in coming
days is to establish double-side spot electricity markets in many regions and levels—province, city or
district etc. [4]), the proposed GDCAC approach is implemented on a double-side day-ahead electricity
market test system containing six GenCOs and five DisCOs [20], but without taking network constraints
into consideration [9]. Considering that in a newly established electricity market, all participants are
initially short of bidding experience and historical market data, they must firstly go through a repeated
process of exploration and trial and error, accumulating experiences gradually, and then reach making
more rational bidding decisions in the face of any market environment state. Hence, in the first iteration
of market competition (T = 0), we assume every participant chooses its bidding strategy randomly
because of lack of experience [19,25], and in iteration T (T > 0), we assume every participant chooses
its bidding strategy by considering the historic MCP generated from iteration T−1 [19,25]. It is feasible
to simulate the strategic bidding process of an existing double-side spot electricity markets with our
proposed method by letting all participants know the historical MCP information when bidding in the
first iteration of market competition (T = 0) etc. The main contents of this section are as follows:

Firstly, in order to demonstrate the superiority of our proposed model for double-side day-ahead
electricity market over the classic table-based reinforcement learning model which was proposed
in [19,24–26,29,33], three scenarios are established in sub-Section 4.2, among which Scenario 1 assumes
that both the market state (MCP) and all participants’ action (bidding strategy) sets are discrete,
Scenario 2 assumes that GenCO1 is a GDCAC-based agent with continuous state and action sets while
other participants are the same as that in Scenario 1, and Scenario 3 assumes that all participants in the
market are our proposed GDCAC-based agents with continuous state and action sets.

Secondly, the comparison of profits of all participants in three scenarios after a given number
of iterations is shown in Section 4.2, which demonstrates the superiority of our proposed model;
Finally, the sensitivity analysis with respect to different numbers of training iterations are presented in
sub-Section 4.3, which leads to two new topics to be studied by means of our proposed double side
day-ahead electricity market model.

4.1. Data and Assumptions

The parameters of GenCOs’ and DisCOs’ bid functions are shown in Table 1 [20].

Table 1. Economical technological coefficients of GenCOs and DisCOs.

Participants ai (103 RMB yuan /MW2) bi (103 RMB yuan /MW) kgi,min kgi,max Pgi,min Pgi,max

GenCO1 0.046 14 1.0 3.0 0 210
GenCO2 0.074 10 1.0 3.0 0 600
GenCO3 0.062 12 1.0 3.0 0 200
GenCO4 0.043 25 1.0 3.0 0 520
GenCO5 0.031 20 1.0 3.0 0 250
GenCO6 0.064 20 1.0 3.0 0 400

Participants cj (103 RMB yuan /MW2) dj (103 RMB yuan /MW) kj,min kj,max Pdj,min Pdj,max

DisCO1 −0.052 25 0 1.0 0 250
DisCO2 −0.034 25 0 1.0 0 250
DisCO3 −0.031 20 0 1.0 0 300
DisCO4 −0.054 25 0 1.0 0 300
DisCO5 −0.013 20 0 1.0 0 300
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It is assumed that kg1, kg2, kg3, kg4, kg5, kg6 ∈ [1, 3] , kd1, kd2, kd3, kd4, kd5 ∈ [1, 3] , (actually, changing
the value interval of any strategy (kgi or kdj) will not affect the final results of the Nash equilibrium).
Table 2 presents the state and action sets of every participant while taking Scenarios 1, 2 and 3 into
consideration, respectively. All participants are considered as the learning agents who bid strategically
by using and adjusting their own strategic variables kgi or kdj (i = 1, 2, 3, 4, 5, 6 and j = 1, 2, 3, 4, 5).
The related parameters of the GDCAC algorithm and classic table-based reinforcement learning
algorithm which use the ε-greedy method to balance exploration and exploitation [19,24–26,29,33] are
also listed in Table 2.

Table 2. Related information about the three scenarios.

Scenarios Participants State Set (RMB yuan/MWh) Action Set ε γ α β σ m

Scenario 1

Gen1

{X1,X2, . . . „X20}

{Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen2 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen3 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen4 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen5 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen6 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Dis1 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis2 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis3 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis4 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis5 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -

Scenario 2

Gen1 [10 34] [1 3] - 0.5 0.1 0.1 4 1
Gen2

{X1,X2, . . . „X20}

{Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen3 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen4 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen5 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Gen6 {Ug1, Ug2, . . . , Ug20} 0.1 0.5 - - - -
Dis1 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis2 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis3 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis4 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -
Dis4 {Ud1, Ud2, . . . , Ud20} 0.1 0.5 - - - -

Scenario 3

Gen1

[10 34]

[1 3] - 0.5 0.1 0.1 4 1
Gen2 [1 3] - 0.5 0.1 0.1 4 1
Gen3 [1 3] - 0.5 0.1 0.1 4 1
Gen4 [1 3] - 0.5 0.1 0.1 4 1
Gen5 [1 3] - 0.5 0.1 0.1 4 1
Gen6 [1 3] - 0.5 0.1 0.1 4 1
Dis1 [0.3 1] - 0.5 0.1 0.1 4 1
Dis2 [0.3 1] - 0.5 0.1 0.1 4 1
Dis3 [0.3 1] - 0.5 0.1 0.1 4 1
Dis4 [0.3 1] - 0.5 0.1 0.1 4 1
Dis5 [0.3 1] - 0.5 0.1 0.1 4 1

Note: X1 represents the interval [10 11.2) RMB yuan/MWh, X2 represents the interval [11.2 12.4) RMB
yuan/MWh, . . . , X19 represents the interval [31.6 32.8) RMB yuan/MWh, and X20 represents interval [32.8 34]
yuan/MWh; Ug1 represents the interval [1 1.1), Ug2 represents the interval [1.1 1.2), . . . , Ug19 represents the
interval [2.8 2.9), and Ug20 represents the interval [2.9 3]; Ud1 represents the interval (0.3 0.335), Ud2 represents
interval [0.335 0.37), . . . , Ud19 represents interval [0. 93 0.965), and Ud3 represents interval [0. 965 1].

Set the central point parameters in the Gauss radial basis function to form the following set:

C = {10, 14, 18, 22, 26, 30, 34}

4.2. Simulation Result and Comparative Analysis

For the simulation on the three scenarios, every participant of the market will go through a process
of training with 3000 iterations in which all participants’ actions selecting policy consider the balance
of exploration and exploitation. After the training process, decision making process with 500 iterations
will be implemented by all participants, in which only greedy policy will be adopted by every
participant when selecting actions in face of a given state of the market. Using Matlab R2014a software
to program and run the models of three scenarios, the profits of all participants in three scenarios when
the market reaches the dynamic stability (namely Nash equilibrium [11–13]) can be obtained, which are
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listed in Table 3. At this time, the profit and bidding strategy of every participant and MCP in the
market are not changing over time (iterations). Figure 2 shows the dynamic adjusting processes of MCP
in Scenario 3. The dynamic adjusting process of all participants’ profits in Scenario 3 from horizontal
and vertical perspectives are depicted in Figures 3 and 4, respectively. From Figure 3, the variations of
eleven participants’ profits with 3500 iterations can be respectively seen. From Figure 4, the profits of
eleven participants can be compared with 3500 iterations.

Table 3. The profits of all participants when the market reaches the dynamic stability in three scenarios.
(Unit: 103 RMB yuan). Scen: Scenario.

Participants Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Dis1 Dis2 Dis3 Dis4 Dis5 Sum

Profits
Scen 1 1.3353 1.4581 1.3870 1.1777 1.8035 0.6384 1.2555 1.9202 1.4146 1.0530 1.4774 14.9207
Scen 2 1.4030 1.5142 1.3622 1.1502 1.7634 0.6217 1.2828 1.9620 1.4529 1.0759 1.5414 15.1297
Scen 3 1.4952 1.6809 1.5363 1.3604 2.0445 0.7442 1.1860 1.7686 1.3464 0.9963 1.4221 15.5809
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From Table 3, it can be seen that:

(1) After the same number of iterations (including 3000 iterations of training and 500 iterations
of decision making), GenCO 1’s profit in Scenario 2 is 1.4030× 103 yuan which is higher than
GenCO 1’s profit in Scenario 1 (e.g., 1.3353× 103 yuan). This indicates one can get more profit
by using our proposed GDCAC reinforcement learning model to bid in the market than using
the traditional Q-learning model with the same conditions (namely the same parameters values,
number of iterations, and adaptive learning mechanism of other participants);

(2) If we ignore the externality, the total social welfare of the electricity market is equal to the
summation of all participants’ profits. Therefore, after the same number of iterations, the social
welfare in Scenario 3 is higher than that in Scenario 2, and the social welfare in Scenario 2 is
higher than that in Scenario 1. This indicates with the increase in the number of participants by
using our proposed GDCAC reinforcement learning model to bid in electricity market, the total
social welfare can be higher and higher;

Regarding to the profit of a specific participant and the total social welfare of the electricity market,
our simulation of this case study shows the superiority of our proposed GDCAC model over the
table-based Q-learning one. The main reasons of this result are: (1) because the traditional table-based
reinforcement learning algorithm can hardly store the value function information about continuous
data sets, which will cause the curse of dimensionality; and (2) no matter how many sub-intervals
are divided from the original continuous state and action sets, the state and action sets in traditional
table-based Q-learning electricity model are still discrete, and the globally optimal action solution can
hardly be found to cope with the issues with continuous state and action sets such as double-side
day-ahead electricity market simulation.

Figures 5 and 6 show the dynamic adjusting processes of every participant’s bidding strategy
from the horizontal perspective and vertical perspective respectively. From Figures 2–6, it can be seen
that in Scenario 3 (actually the same as Scenarios 1 and 2), when we assume every participant employs
our proposed GDCAC reinforcement learning method to bid in the double-side day-ahead electricity
market, all market-related factors including MCP, profit and bidding strategy of every participant
will reach a dynamically stable state respectively and simultaneously. Even when the number of
training iterations and learning algorithm are set to be different among all participants, all market
factors will also reach dynamically stable states after enough iterations, which may have different
values from the former one. This dynamically stable state can be considered as a Nash Equilibrium
(NE) [11–13]. Moreover, it only takes about 2.23 s on a 2.5 GHz laptop computer for the double-side
day-ahead electricity market including eleven participants in Scenario 3 to find the equilibrium through
3500 iterations, which is attributed to the low time complexity of our proposed method.
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Figure 5. The dynamic adjusting processes of every participant’s bidding strategy (from a horizontal
perspective).



Energies 2016, 9, 725 17 of 20

1 
 

 
Figure 6. The dynamic adjusting processes of every participant’s bidding strategy (from a vertical
perspective).

4.3. Sensitivity Analysis

In order to examine the influence of different numbers of training iterations on NE of double-side
day-ahead electricity market in Scenario 3, we set five cases related to the number of training iterations,
and the results are listed in Tables 4 and 5, respectively.

Table 4. The obtained profits with different cases in Scenario 3 (unit: 103 RMB yuan).

Cases Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Dis1 Dis2 Dis3 Dis4 Dis5 Sum

Numbers of
training
iterations

1000 1.5441 1.7012 1.5932 1.4133 2.0992 0.7905 1.1380 1.7204 1.2790 0.9585 1.3209 15.5583
2000 1.4744 1.6543 1.4986 1.2826 1.9602 0.7249 1.2252 1.8838 1.3884 1.0241 1.4600 15.5765
3000 1.4952 1.6809 1.5363 1.3604 2.0445 0.7442 1.1860 1.7686 1.3464 0.9963 1.4221 15.5809
4000 1.5686 1.6696 1.4343 1.3713 2.1683 0.7986 1.1329 1.6471 1.2650 0.9255 1.2714 15.2526
5000 1.4315 1.6855 1.5455 1.3334 2.0525 0.7525 1.1844 1.8216 1.2907 1.0006 1.3901 15.4883

Table 5. The obtained strategies with different cases in Scenario 3.

Cases Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Dis1 Dis2 Dis3 Dis4 Dis5 MSE *

Numbers of
training

iterations

1000 1.1117 1.0986 1.1723 1.0576 1.0976 1.0308 0.9555 0.9398 0.9828 0.9477 0.9225 0.0854
2000 1.0719 1.1116 1.1238 1.0693 1.0494 1.0877 0.9661 0.9243 0.9518 0.8928 0.9645 0.0797
3000 1.0185 1.0186 1.0343 1.0791 1.0771 1.0291 0.9571 0.9640 0.9552 0.9471 0.9392 0.0491
4000 1.1068 1.1478 1.1146 1.0257 1.0332 1.0508 0.9145 0.9592 0.9623 0.9813 0.9294 0.0968
5000 1.0706 1.3096 1.1995 1.0471 1.0427 1.1625 0.9285 0.9928 0.9721 0.9899 0.9447 0.0881

Note: MSE represents the mean square error between the strategies of all participants and 1. For example, 0.0854 =√
1
11

[
(1.1117− 1)2 + (1.0986− 1)2 + (1.1723− 1)2 + (1.0576− 1)2 + (1.0976− 1)2 + (1.0308− 1)2 + (0.9555− 1)2 + (0.9398− 1)2 + (0.9828− 1)2 + (0.9477− 1)2 + (0.9225− 1)2

]
.

From Tables 4 and 5, it can be seen that:

(1) There is no monotonic relationship between the social welfare and the number of training
iterations, which may be caused by the system noises during training process. Therefore, in the
market simulation with our proposed GDCAC reinforcement learning model, how to find the
globally optimal number of training iterations that can bring the highest social welfare may be
a new topic to be studied.

(2) Social welfare increases with the decrease of MSE between all participants’ strategy values and 1.
It is known that every participant will respectively bid at its marginal cost or revenue when all
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participants’ strategy values equal to 1, which also means the perfect competition and the highest
welfare. Therefore, how to design the double-side electricity market mechanism especially for
China to pursue higher efficiency of resource allocation by means of our proposed GDCAC
reinforcement learning market model may be another new topic to be studied.

5. Conclusions

China is experiencing a new round of electricity market reforms, and the double-side day-ahead
electricity market will become more and more important in China’s energy trading area in the future.
On one hand, the participant who expects to pursue more profit and less business risk, needs to employ
a suitable and feasible technology to simulate the dynamic market environment and return it the
optimal bidding strategy under any market environment state. On the other hand, the government
hopes to effectively design the double-side day-ahead electricity market mechanism and formulate the
relevant policies, and also needs to employ a suitable and feasible technology to simulate the market
dynamic process and equilibrium consequence.

This paper a new double-side day-ahead electricity market modeling and simulating method
based on GDCAC algorithm is proposed. Some conclusions can be drawn as follows:

(1) Our proposed GDCAC reinforcement learning market model needs no common knowledge
of every participant’s cost or revenue, strategy probability distribution function of every
participant, MCP probability distribution function of the market, and scheduling result of every
participant, which need be more or less assumed to be known by every participant in most
game-based models.

(2) Our proposed GDCAC reinforcement learning market model can cope with the issues with
continuous state and action sets without causing trouble of ‘curse of dimensionality’, which cannot
be overcome by using traditional table-based reinforcement learning algorithms. Therefore,
our proposed model is more suitable and feasible for simulating the practical double-side
day-ahead electricity market in which both the state (MCP) and action (every participant’s
bidding strategy) sets are continuous.

(3) Because the time complexity of GDCAC reinforcement learning algorithm is only O(n),
our proposed model can be used in large-scale electricity market system simulation with a lot of
participants competing with each other simultaneously, which can hardly be achieved by using
game-based models or table-based reinforcement models.

(4) The simulation results show that by using our proposed model, a participant can get more profit
than that without using it. Meanwhile, if every participant in the market adopts our proposed
model simultaneously, the Nash equilibrium result of electricity market will bring higher social
welfare, which is very close to the situation of every participant using marginal cost or revenue
based bidding strategy.

Our proposed GDCAC reinforcement learning market model, which can simulate the dynamic
bidding process and market equilibrium in the double-side day-ahead electricity market is not only of
importance to some developed countries but also to China. For the participants (GenCOs or DisCOs),
it can provide a bidding decision-making tool to get more profits in the market competition. For the
government, it can provide an economic analysis tool to help design proper market mechanism
and policies.
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