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Abstract: Big data mining, analysis, and forecasting play vital roles in modern economic and
industrial fields, especially in the energy system. Inaccurate forecasting may cause wastes of scarce
energy or electricity shortages. However, forecasting in the energy system has proven to be a
challenging task due to various unstable factors, such as high fluctuations, autocorrelation and
stochastic volatility. To forecast time series data by using hybrid models is a feasible alternative
of conventional single forecasting modelling approaches. This paper develops a group of hybrid
models to solve the problems above by eliminating the noise in the original data sequence and
optimizing the parameters in a back propagation neural network. One of contributions of this paper
is to integrate the existing algorithms and models, which jointly show advances over the present
state of the art. The results of comparative studies demonstrate that the hybrid models proposed not
only satisfactorily approximate the actual value but also can be an effective tool in the planning and
dispatching of smart grids.

Keywords: energy system; comparative study; optimization algorithms; forecasting validity degree;
time series forecasting

1. Introduction

The energy system is a complex system that achieves the simultaneous generation, transportation,
distribution and consumption of electrical energy, playing a pivotal role in each field of social
production. It is essential that the electrical power system have sufficient capacity to address
dynamic change, which could otherwise affect the quality of the power supply and even endanger
the safety and stability of the electrical system. Currently, the control of electrical systems helps
to plan electricity management, arrange reasonable operation modes, save energy, reduce the costs
of generating electricity and enhance both economic and social benefits [1]. Three indicators in the
electrical system are crucial for adapting to modern and scientific power grid management: short-term
wind speed, electrical load and electricity price because they are connected to generation, distribution
and consumption, respectively.

First, the short-term wind speed can have a great influence on the generation of electricity.
Faced with resource shortages, environmental pollution and ecosystem degradation, developing
and utilizing clean energy with high efficiency has become an important topic. Wind is a clean and
inexhaustible type of energy and one of the most promising energy resources [1]. Wind energy has
achieved rapid development worldwide, and, as shown in Figure 1, the newly increased wind power
installed capability has reached 51477 MW. The power of wind is proportional to the wind speed;
therefore, the wind speed determines the magnitude of the wind power. Compared with the long- and
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middle-term wind speed, the randomness, fluctuation and intermittent nature of short-term wind speed
makes it more difficult to control wind turbines or ensure the normal operation of the power grid [2].
Second, with the continuous increase in the installed capacity and the consumption of electrical power,
forecasting the electrical load becomes more and more significant [3]. Electrical load forecasting means
to estimate and forecast the electricity demand through analysing and researching the historical data
and extracting the inner relationship of data from the perspective of known economic and social
development and the demands of the electrical system, considering factors such as politics, economy
and climate. In recent years, large-scale power outages in large-scale areas have been caused by extra
electrical load, resulting in great economic losses [4]. Thus, the scientific control of electrical load
seems vital. Finally, the indicator electricity price is related to its consumption, which can be adjusted
with changes in supply and demand until it tends to be reasonable. Forecasting the electricity price is
crucial because it has already become one of the cores of electricity marketization [5]. On the one hand,
the electricity price could balance the economic interests of participants in the market. On the other
hand, the market would also be faced with large risks in electricity price owing to the fluctuation of
the wind [6].
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Based on the discussion above, we can see that forecasting the electrical power system with high
accuracy and reliability is a widespread difficulty; however, it is of great significance. Based on the
computational mechanism, the forecasting methods can be divided into four types: statistical methods,
physical methods, intelligent methods and hybrid methods.

1.1. Statistical Forecasting Methods

Statistical methods construct mathematical and statistical models to conduct time series
forecasting and offer better real-time performance [7]. Statistical forecasting methods achieve reduced
forecasting errors if the input variables are under normal conditions [8]. Autoregressive integrated
moving average (ARIMA) is a typical statistical technique that is widely used in time series forecasting.
Kavasseri and Seetharaman [9] examined the use of a fractional-ARIMA model to forecast wind speeds
on the day-ahead and two-day-ahead horizons. The forecast errors in wind speed were analysed
and compared with the persistence model, and the results indicated significant improvements in
forecasting accuracy. Wang et al. [10] proposed residual modification models to improve the precision
of seasonal ARIMA for electricity demand forecasting. They applied a seasonal ARIMA approach,
an optimal Fourier method optimized by particle swarm optimization (PSO) and combined the PSO
optimal Fourier method with seasonal ARIMA to correct the forecasting results for electrical power in
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northwest China. The final results showed that the forecasting accuracy was higher than the seasonal
ARIMA model alone and that the combined model was the most satisfactory. Shukur and Lee [11]
stated that the non-linearity in the patterns of wind speed data was the reason for inaccurate wind
speed forecasting using a linear ARIMA model, and the inaccurate forecasting of the ARIMA model
reflected the uncertainty of the modelling process. Babu and Reddy [12] explored both linear ARIMA
and non-linear artificial neural network (ANN) models to devise a new hybrid ARIMA-ANN model
for the forecasting of electricity price. Cadenas and Rivera [13] also combined ARIMA and ANN for
wind speed forecasting using measured hourly wind speed time series at different sites during one
month. The final results demonstrated the effectiveness of the proposed model.

1.2. Physical Forecasting Methods

Physical forecasting methods utilize physical variables to achieve time series forecasting
considering a series of meteorological parameters; therefore, they can perform accurate forecasting [7].
However, they always require more complicated computations and incur a considerable cost in time.
Numerical weather prediction (NWP) is a widely used physical forecasting method. The NWP model
is a computer programme that is aimed to solve equations of the atmospheric processes and describing
how the atmosphere changes with time [14]. Zhang et al. [15] compared three deterministic and
probabilistic NWP-based wind resource assessment methodologies to evaluate the distribution of wind
speed, and the results showed that NWP could achieve reliable probabilistic assessments and provide
accurate deterministic estimates. Giorgi et al. [16] integrated the neural network with NWP to evaluate
the wind speed and wind power, and the combined method offered an interesting improvement in
performance, especially with longer time horizons. Felice et al. [17] studied the influence of temperature
on daily load forecasting for Italy. The actual capability of available weather forecasts to contribute to
the prediction of electricity loads was evaluated using weather data from NWP models. The results
demonstrated that the weather data provided by NWP models led to performance improvements.
Sile et al. [18] argued that NWP models were a reliable source of meteorological forecasts and could
also be used in wind resource assessment. They also analysed the influence of wind speed and wind
direction on model errors.

1.3. Intelligent Forecasting Methods

Intelligent forecasting methods mainly include artificial intelligence neural networks or
evolutionary algorithms. ANN is proven to perform much better than the techniques discussed above
because it can handle complex relationships, adaptive control, decision-making under uncertainty,
and prediction patterns [19]. Liu et al. [20] applied multilayer perceptron (MLP) neural networks
to forecast the wind speed based on the mind evolutionary algorithm (MEA) and genetic algorithm
(GA). Lou and Dong [21] constructed an electric load forecasting model based on random fuzzy
variables (RFVs) and further presented a novel integrated technique, random fuzzy NN (RFNN),
for load forecasting. Real operational data collected from the Macau electric utility was applied to
test the effectiveness of the model, which showed a much higher variability. Coelho and Santos [22]
proposed a non-linear forecasting model based on radial basis function neural networks (RBF) to
conduct multi-step-ahead and direction-of-change forecasting of the Spanish electricity pool prices.
They proved that the developed model outperformed other methods. Keles et al. [23] presented
a methodology based on ANN to forecast electricity prices, which is applied for in-sample and
out-of-sample analyses, and the results showed that the overall methodology led to well-fitted
electricity price forecasts. Anbazhagan and Kumarappan [24] proposed a day-ahead electricity price
classification that could be implemented using a three-layered feed-forward neural network (FFNN)
and cascade-forward neural network (CFNN). This method was important because it could help to
improve the forecasting accuracy and thus provide robust and accurate forecasting results. Wang and
Liu [25] designed two key techniques for forecasting, including clustering and axiomatic fuzzy set
(AFS) classification. The main novelty was that the proposed model could both predict the value and
capture the prevailing trend in the electricity price time series with good interpretability and accuracy.



Energies 2016, 9, 640 4 of 34

Researchers have simulated a series of evolutionary algorithms [26], such as the GA [27], simulated
annealing (SA) [28], PSO [29], ant colony algorithm (ACA) [30], and other types of algorithms. GA and
PSO are the most commonly used evolutionary algorithms, and PSO has been proven to show better
performance on smaller network structures than GA [31]. PSO is an evolutionary optimization
algorithm using n dimensions to search for the optimum solution within the search region. It is
simple to understand and can solve both continuous and discrete problems, and this is because
that PSO only needs funtion evaluations instead of initial values. Besides, it can also escape local
optimal solutions [32]. Aghaei et al. [33] developed a modified PSO algorithm used for multiobjective
optimization. In the proposed method, a new mutation method was performed to improve the
global searching ability and restrained the premature convergence to local minima to achieve higher
accuracy in electrical demand forecasting. Carneiro et al. [34] applied PSO to estimate the Weibull
parameters for wind speed, and PSO was demonstrated to be a valuable technique for characterizing
the particular wind conditions. Bahrami et al. [35] used PSO to enhance the generation coefficient of
the grey model, which played an effective role in improving the accuracy of short-term electric load
forecasting. Liu et al. [36] applied the wavelet-particle swarm optimization multilayer perceptron to
predict non-stationary wind speeds. However, they proved that the contribution of PSO was less than
that of the wavelet component.

1.4. Hybrid Forecasting Methods

The hybrid of a GA with existing algorithms can always produce a better algorithm than either the
GA or the existing algorithms alone [37]; therefore, the successors could employ hybrid or combined
models to achieve good performance. Liu et al. [38] applied wavelets and wavelet packets to preprocess
the original wind speed data and concluded that the wavelet packet–ANN had the best performance
compared with other traditional models. Ghasemi et al. [39] proposed a novel hybrid algorithm
for electricity price and load forecasting, including the flexible wavelet packet transform (FWPT),
conditional mutual information (CMI), artificial bee colony (ABC), support vector machine (SVM) and
ARIMA. The results showed that the proposed hybrid algorithm had high accuracy in simultaneous
electricity forecasting. Ahmad et al. [40] reviewed the development of electrical energy forecasting
using artificial intelligence methods, including support vector machine (SVM) and ANN. The results
indicated that the hybrid methods were more applicable for electrical energy consumption forecasting.
Hu et al. [41] utilized ensemble empirical mode decomposition (EEMD) and SVM to improve the quality
of wind speed forecasting, and the proposed hybrid method was proven to achieve an observable
improvement in the forecasting validity. These results showed great promise for the forecasting of
intricate time series that were also both volatile and irregular. Shi et al. [42] applied hybrid forecasting
methods to handle both linear and non-linear components. The results showed that the hybrid
approaches were viable options for forecasting both wind speed and wind power generation time
series, but they did not always produce a superior forecasting performance for all the forecasting time
horizons investigated.

Table 1 summarizes the reviewed forecasting methods.

Table 1. Summary of forecasting methods.

Models Variables Data Set Ref.

Statistical Forecasting Methods

Fraction-ARIMA Wind speed Hourly data in North Dakota [9]

Fourier and seasonal-ARIMA residual
modification model Electricity demand 2006–2010 in northwestern China [10]

Kalman filter and ANN based on ARIMA Wind speed 2000–2004 in Mosul, Iraq;
2006–2010 in Johor, Malaysia [11]

ARIMA and ANN Electricity price 2013 in New South Wales [12]

ARIMA and ANN Wind speed Hourly data in California,
Zacatecas and Quintana Roo [13]
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Table 1. Cont.

Models Variables Data Set Ref.

Physical Forecasting Methods

MERRA, AnEn based on
MERRA and WIND Toolkit Wind speed Nine locations in the United States [15]

NWP and ANN Wind speed; wind power Three wind turbines in
southern Italy [16]

NWP Electricity load 2003–2009 in Italy [17]

NWP Wind speed; wind power 2013 in Latvia [18]

Intelligent Forecasting Methods

MLP based on MEA and GA Wind speed Stimulated 700 data [20]

RFNN Electrical load Hourly data in Macau [21]

RBF Electricity price 2008 in Spain [22]

ANN Electricity price January to June in 2013 [23]

FFNN and CFNN Electricity price 2002 in Spain and 2020 in New York [24]

Clustering and AFS Electricity price 2000 in Spain [25]

Evolutionary Algorithms

PSO for multiobjective optimization Electrical demand “Baran and Wu” distribution
test system [33]

PSO for Weibull parameter optimization Wind speed 2012–2013 in Brazilian
northeast region [34]

PSO to optimize the generation coefficient
of grey model Electric load 2004 in New York and 2010 in Iran [35]

PSO for MLP Wind speed 700 data in Qinghai, China [36]

Hybrid Forecasting Methods

Wavelet-ANNs Wind speed 700 data in Qinghai, China [38]

FWPT, CMI, ABC, SVM and ARIMA Electricity price and load 2014 In New York and 2010
in Australia [39]

SVM and ANN Electrical energy
consumption A review of methods [40]

EEMD-SVM Wind speed 2001–2006 in Zhangye, China [41]

ARIMA, ANN and SVM Wind speed;
power generation

2005–2007 in USA [42]

Based on the review above, the drawbacks of traditional forecasting methods can be summarized.
Traditional regression methods have high requirements for the original data, including more limited
forms of data. They are more applicable to forecasting data with linear trends, whereas for data
with high fluctuation and noise, they would become less effective. However, it is well known that
time series data in the electrical power system always include a large amount of non-stationary
data with seasonality or other tendencies. Moreover, if the environmental or sociological variables
change suddenly, the forecasting errors will become large, which is the major drawback of statistical
methods [43]. On the other hand, in most cases, the one-step forecasting results have higher accuracy;
nevertheless, multi-step forecasting always leads to less accurate or reliable forecasting results.
The single forecasting methods, such as back propagation neural network (BPNN), can easily get into
a local optimum and exhibit a low rate of convergence.

1.5. Contribution

To overcome the disadvantages discussed, this paper develops a series of hybrid forecasting
models based on different types of improved PSO algorithms to realize accurate and reliable forecasting
in the electrical power system. The hybrid models solve the problems above and have the following
unique features:
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(1) Focus on a complex system. From the review above, we know that most researchers focus
primarily on the forecasting of a single indicator, whereas this paper explores a new idea and
constructs seven hybrid models based on PSO to forecast short-term wind speed, electrical load and
electricity price in the electrical power system. The effectiveness of the hybrid models is validated
by proving their performance experimentally. The proposed models address the forecasting
problems in the complex system, which is of great significance with high practicability.

(2) Address the non-stationary data. One of the main features of the proposed hybrid models is the
integration of already existing models and algorithms, which jointly show advances over the
current state of the art [44]. The selection of the type of neural network for the best performance
depends on the data sources [45]; therefore, we need to compare the proposed models with other
well-known techniques by using the same data sets to prove their performance effectively and
efficiently. The hybrid models can handle non-stationary data well [46].

(3) High forecasting accuracy. Hybrid models can also help escape a local optimum and search for the
global optimum through optimizing the threshold and weight values. In addition, the proposed
hybrid models can achieve high forecasting accuracy in multiple-step forecasting, as proven in
Experiment IV. This paper develops many types of PSOs: different types of inner modifications
of PSO are compared, and combinations of PSO with other artificial intelligence optimization
algorithms are analysed. In distinct situations, different types of PSO should be applied.

(4) Fast computing speed. The hybrid models have a fast computing speed, allowing short-term
forecasting of the electrical power system with high efficiency.

(5) Scientific evaluation metrics. The forecasting validity degree (FVD) is introduced to evaluate
the performance of the model, in addition to the common evaluation metrics, such as the mean
absolute percentage error (MAPE), mean absolute error (MAE) and mean square error (MSE).
Thus, we can achieve a more comprehensive evaluation of the developed hybrid models.

The overall structure of this paper is organized as follows: Sections 2 and 3 introduce time series
decomposition and optimization of the BP neural network, respectively. The three experimental
simulations and the analysis results are reported in Section 4. Section 5 discusses the results,
and Section 6 presents the conclusions.

2. Time Series Decomposition

The preprocessing of the time series plays an important part in improving the forecasting accuracy
by obtaining a smoother time series. The essence of empirical mode decomposition is the stabilization
processing of a signal through decomposing the fluctuation or tendency in the real signal and then
generating a series of data sequences with different characteristic scales. In recent years, this approach
has gradually shown its unique advantages in processing non-stationary and non-linear signals [47].
However, it suffers from the mode mixing problem. As an improved algorithm, ensemble empirical
mode decomposition overcomes this drawback of empirical mode decomposition and maintains
the advantages, giving it wider applications [48]. The basic concept of ensemble empirical mode
decomposition is to add Gaussian white noise to the analysed signal equally, and signal regions with
different scales can map suitable scales in relation to the background white noise. Each single signal
could generate very noisy results because each test has the white noise added. However, the added
white noise would ultimately be eliminated because it has zero mean [49]. The overall average is
regarded as the final results.

The detailed steps are as follows:

Step 1. Initialize the parameters. Set the number of integration Ng according to the standard
deviation of the signal, and the amplitude of added white noise is a. Ng begins from 1 and m = 1.

Step 2. Perform the process of decomposition using empirical mode decomposition. Decompose
the added white noise signal and xm = x + nm: nm represents the added white noise with a pre-set
amplitude, and x denotes the signal analysed. The decomposed results are called intrinsic mode



Energies 2016, 9, 640 7 of 34

functions (IMFs), denoted as ci,m, (i = 1, 2, ...). After decomposition, the remaining non-zero signal is
the residual function rm.

Step 3. Circle Step 2 through m = m + 1 until the number of the integration arrives at Ng.
Step 4. Calculate the ensemble average of IMFs, obtaining the final result.

Remark 1. For each IMF or trend term, the kth white noise counteracts it after calculating the average.
The IMF or trend term at each time maintains the natural dyadic filter window; therefore, the final average also
maintains this type of quality, and the mixing mode problem is solved. Its pseudo-code is described below [38].
The pseudo-code of EEMD is described in Appendix A.

The ensemble empirical mode decomposition algorithm using parameters presented in [50] is
termed the fast ensemble empirical mode decomposition, which can improve the efficiency of the
algorithm. It would actually be applied to conduct the decomposition of each time series in this paper.
Taking a short-term wind speed series for example, Figure 2 compares the data before and after noise
reduction at three observation sites. The line chart shows that after reducing the noise, the time series
data seems more stable, which can help to achieve higher forecasting accuracy. Moreover, the table
shows that the standard deviation after the de-noising process is smaller than before the process.
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3. Optimization of Back Propagation Neural Network

Due to the instability of the structure of back propagation, this section introduces optimization
algorithms to optimize the weight and threshold of back propagation, including the standard particle
swarm optimization algorithm and seven forms of improved particle swarm optimization algorithms.

3.1. Standard PSO Algorithm

PSO is an evolutionary algorithm classified in the swarm intelligence group based on bio-inspired
algorithms, where a population of Np particles or the proposed solutions evolve with each iteration,
moving towards the optimal solution of the problem [51]. In fact, a new population in the PSO
algorithm is obtained by shifting the positions of the previous one in each iteration, and each individual
would be affected by its neighbour’s trajectory and its own during its movement [51,52].

A standard PSO has certain features.
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Feature 1. First, during the initial period, the solutions show stronger randomness with
increasing iterations.

Feature 2. Second, one of the advantages of PSO is the application of real number coding, unlike
the binary coding of the GA algorithm.

Feature 3. Third, particles can remember through learning from the last generation to find the
best solution in the shortest time. Finally, compared with the GA algorithm, the information flow is
unidirectional, which means that only gbest can deliver information to other particles. The basic steps
of the standard PSO are as follows:

Step 1. Initialize the velocity and position of each particle in the population: pbest indicates the
previous optimal position of each particle, and gbest represents the global optimal position.

Step 2. Calculate the objective function value, the fitness, of each particle.
Step 3. Update the velocity and position of each particle according to Equations (1) and (2).

vi.j(t + 1) = wvi.j(t) + c1r1[pi.j − xi.j(t)] + c2r2[pg.j − xi.j(t)] (1)

xi.j(t + 1) = xi.j(t) + vi.j(t + 1), j = 1, ..., d (2)

where w means the inertia weight, c1 is a constant called the cognitive or local weight, and c2 is a
constant called the social or global weight.

Step 4. Calculate the fitness of each particle after the update, and ensure the new pbest and gbest.
The pseudo-code of the standard PSO algorithm is listed in Appendix B.

3.2. Modified PSO Algorithm

This section introduces the modification of the PSO algorithm, including the inertia weight,
constraint factor and learning factor. For the inertia weight, three types of modifications are introduced,
which are the linear decreasing, self-adaptive and random inertia weight. The premise for the
modification of each part of the PSO is that the other parts of the PSO remain unchanged.

3.2.1. Linear Decreasing Inertia Weight Particle Swarm Optimization (LDWPSO)

Definition 1. The inertia weight could influence both the local optimization and global optimization of particles.
A larger inertia weight wmax is beneficial in improving the global searching ability; in comparison, a smaller
inertia weight wmin could enhance the local searching ability of the algorithm. The transformation formula is
as follows:

w = wmax −
t× (wmax −wmin)

tmax
(3)

where t is the number of iterations, and tmax is the maximum number of iterations.

Remark 2. According to Definition 1, we have modified the inertia weight based on Equation (3). The linear
decreasing inertia weight can achieve a high global search ability.

3.2.2. Self-Adaptive Inertia Weight Particle Swarm Optimization (SAPSO)

Definition 2. The self-adaptive inertia weight w is conductive to balancing the local and global search ability
and belongs to the non-linear adjustment method. When the fitness of each particle tends to be uniform or the
local optimum, the inertia weight w increases. At the same time, if the fitness is better than the average fitness of
each particle, the corresponding inertia weight is smaller, so this particle can stay. The adjustment equation is
given below:

w =

 wmin −
(wmax−wmin)×(f−fmin)

favg−fmin
, f ≤ favg

wmax, f > favg

(4)
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where wmax is the maximum inertia weight and wmin is the minimum inertia weight, fmin is the minimum
fitness, favg is the average fitness, and f is the fitness.

Remark 3. According to Definition 2, we have modified the inertia weight based on Equation (4).
The self-adaptive inertia weight has a higher ability to balance the local and global searching, which is beneficial
to searching for the optimal particle.

3.2.3. Random Weight Particle Swarm Optimization (RWPSO)

The other way to overcome the shortcomings of the linearly decreasing inertia weight is to choose
w randomly.

Definition 3. Random weight. If the best solution is obtained at the beginning of the evolution, the inertia
weight w could be generated smaller at random, which it is helpful in accelerating the velocity of the particle.
Furthermore, if the best solution cannot be found at the beginning, the random inertia weight w can overcome
the disadvantage of the slow convergence rate. The change equation of the inertia weight is as follows:

w = 0.5 +
rand()

2.0
(5)

Remark 4. According to Definition 3, we can obtain a random w between 0.5 and 1. Such modification can
bring the particle swarms closer to the objective function, which achieves a higher forecasting accuracy and
convergence rate.

3.2.4. Constriction Factor Particle Swarm Optimization (CPSO)

Definition 4. Particles can control the flying speed effectively, allowing the algorithm to reach a balance of
global and local exploration. The velocity equation is described below:

vi.j = φ
{

vi.j(t) + c1r1[pi.j − xi.j(t)] + c2r2[pg.j − xi.j(t)]
}

(6)

where φ is the constriction factor, φ = 2∣∣∣2−C−
√

C2−4C
∣∣∣ , C = c1 + c2 and C > 4.

Remark 5. According to Definition 4, we have modified the constriction factor based on Equation (6).
The introduction of constriction factors is beneficial in ensuring the convergence of the particles and cancelling
the constraint of the border on the velocity.

3.2.5. Learning Factor Change Particle Swarm Optimization (LNCPSO)

Definition 5. The experience information of each particle and its influences on the movement trail of the
experience information of other particles are determined by the learning factor C, which reflects the exchange of
information between particles. A larger c1 would allow particles to wander in the local region, and a larger c2

would result in the early convergence of a local optimum. The change equation is listed below:

c1 = c2 =
cmax − cmin

tmax
× t, c1, c2 ∈ [cmin, cmax] (7)

where t represents the number of iterations, and cmax and cmin denote the maximum and minimum learning
factor, respectively.

Remark 6. According to Definition 5, we have modified the learning factor of PSO based on Equation (7).
The modification can achieve a balance between c1 and c2, which ensures a suitable convergence rate and
searching ability.
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3.3. Combination with Other Intelligent Algorithms

3.3.1. Combination with Simulated Annealing Algorithm (SMAPSO)

The simulated annealing algorithm could accept both a good solution and a bad solution with
defined probabilities during the search process. At the same time, SA is effective for avoiding falling
into a local optimum. The algorithm starts from a certain initial solution and then generates another
solution from the neighbourhood randomly.

Step 1. Initialize the location m and velocity v of the particles according to random methods.
Step 2. Calculate the fitness of each particle based on the fitness function, and assign the fitness

value of each particle to Pi.
Step 3. Implement the simulated annealing.

(a) Set the initial temperature Tk(k = 0), and generate the initial solution x0.
(b) Repeat the following steps at temperature Tk until Tk arrives at a balanced state.

Generate a new solution x′ in the domain of x; calculate the objective function f(x′) of x′ and the
objective function f(x) of x; calculate the difference between f(x′) and f(x); and obtain x′ according to
min {1, exp(−∆f/Tk)} > random[0, 1].

(c) Annealing. Tk+1 = CTk,k← k + 1 ; if the condition of convergence is met, then the annealing
process ends. Otherwise, return to (b).

Step 4. Calculate the fitness value of each particle at the current temperature, using the equation
shown below:

TF(Pi) =
e−(f(Pi)−f(Pg))/t

N
∑

i=1
e−(f(Pi)−f(Pg))/t

(8)

Step 5. Update the location and velocity of each particle, ensure the global optimal value P′g,
and calculate the new fitness.

3.3.2. Combination with Genetic Algorithm (GAPSO)

The genetic algorithm (GA) conducts a search based on the population of chromosomes with
the operations of selection, crossover and mutation. GA has the ability to update particles rapidly,
avoiding the premature convergence problem of standard particle swarm optimization. Therefore, the
advantages of GAs can compensate perfectly for the disadvantages of particle swarm optimization [52].

Step 1. Initialize the number of particles m of group U, and set the maximum iteration to N.
Step 2. Calculate the fitness according to Equation (9).

Fitness =
k

k
∑

i=1
(ti − yi)

2
+ b (9)

where Fitness is the fitness function, and k and b are both constants. Here, ti is the actual value, and yi
is the forecasted value.

Step 3. Introduce the selection, crossover and mutation of the genetic algorithm. The group with
the better fitness is selected for the next generation. Then, the crossover operation of the location and
speed between i and j is given below:{

vi(t + 1) = θ1 × vi(t) + (1− θ1)× vj(t)

vj(t + 1) = (1− θ1)× vi(t) + θ1 × vj(t)
(10)
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{
xi(t + 1) = θ2 × xi(t) + (1− θ2)× xj(t)

xj(t + 1) = (1− θ2)× xi(t) + θ2 × xj(t)
(11)

Step 4. Update the individual optimum and global optimum of the groups. Compare the current
fitness of each particle and the fitness of the individual optimum pbest. If the current fitness is better,
then update pbest. Compare the individual optimum pbest and the global optimum of the group gbest.
If the current pbest is better than gbest, then update gbest.

Step 5. Repeat the above steps until the iteration reaches its maximum value.

3.4. Back Propagation Neural Network

A back propagation neural network is a feed-forward neural network implemented by the
back propagation algorithm and it is among the most widely applied neural network modes [53].
Back propagation can learn and store a large amount of input-output map relations without revealing
the mathematical equation that describes the relation. The learning rule is the steepest descent method,
and the sum of squared errors is minimized through the back propagation continuously adjusting the
weight and threshold [54].

Definition 6. The weight and threshold are two important network parameters, and their adjustment formula
can be expressed as follows:

wkj(t + 1) = wkj(t) +αδkHj (12)

ujh(t + 1) = ujh(t) +ασjIh (13)

θk(t + 1) = θk(t) +βδk (14)

θ̂j(t + 1) = θ̂j(t) +βσj (15)

where Hj is the output of hidden node j; Ih is the input signal from input node h; wkj(t) and wkj(t + 1) are
the weights between hidden node j and output node k before and after the training; ujh(t) and ujh(t + 1) are
the weights between hidden node j and input node h before and after the training; θk and θ̂j are separately the
threshold of output node k and hidden node j; α and β are the learning parameters between 0.1 and 0.9; and δk
and σj are the error signals of output node k and hidden node j, with the following equations:

δk = (Tk −Ok)Ok(1−Ok) (16)

σj = ∑
k
δkwkjHj(1−Hj) (17)

where Tk is the target output for output node k. Ok and Hj are the actual output in output node k and hidden
node j. The formula of Hj is given below:

Hi = f[
ni

∑
h=1

ujhIh + θ̂j] (18)

where ni is the number of input nodes. The function f is the S activation function:

f(x) =
1

1 + e−x (19)

The output layer calculates the sum using a linear weighting method:

Ok =
nh

∑
j=1

wkjHj + θk (20)

where nh is the number of hidden nodes.
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3.5. The Hybrid Models

The time series data in the electrical system exhibit high fluctuation, so it is necessary to denoise
the time series data in advance. The fast ensemble empirical mode decomposition introduced above
is applied for the decomposition of the data to improve the forecasting accuracy. Artificial neural
networks can obtain the data laws and can be used in time series forecasting. Among them, the back
propagation neural network is one of the most widely applied neural network modes. However,
in practical application, it still has some limitations. It is difficult to determine the weight and threshold
of the structure of back propagation. Accordingly, seven improved particle swarm optimization
algorithms were all employed to seek the optimal value of the weight and threshold of back propagation
and compared to determine the most effective hybrid model for time series forecasting. The detailed
steps are listed below and shown in Figure 3.
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Step 1. Fast ensemble empirical mode decomposition is employed to denoise the original time
series data of three indicators.

s(t) =
n

∑
j=1

cj(t) + rn(t) (21)

Step 2. Back propagation is introduced to forecast the time series data of wind speed, electricity price,
and electrical load.

Step 3. The seven improved particle swarm optimization algorithms are applied to optimize the
weight and threshold of the structure of back propagation. The loss function and weight allocation are
listed below:

y = mean(x̂(0)s − x(0)s )
2

(22)
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

wkj = x(1 : w1r×w1c)

ujh = x(1 + w1r×w1c : w1r×w1c + w2r×w2c)

θk = x(1 + w1r×w1c + w2r×w2c : w1r×w1c + w2r×w2c + b1r× b1c)

θ̂j = x(w1r×w1c + w2r×w2c + b1r× b1c : w1r×w1c + w2r×w2c + b1r× b1c + b2r× b2c)

(23)

where w1, w2, b1 and b2 are the weight and threshold values, respectively.
Step 4. Four metrics, including MAPE, MAE, MSE and FVD, are used to evaluate the forecasting

performance of the proposed hybrid models by comparing them with a series of traditional models,
models combined with other algorithms and the single models.

Step 5. The hybrid models proposed in this paper forecast time series based on the historical data,
and multi-step forecasting is conducted to testify further to the effectiveness of the model.

(a) One-step forecasting: The forecasted value x̂(t+ 1) is obtained based on the historical time series
{x(1), x(2), x(3), ..., x(t− 1), x(t)}, and t is the sampled time of the time series.

(b) Two-step forecasting: The forecasted value x̂(t + 2) is obtained based on the historical time
series {x(1), x(2), x(3), ..., x(t− 1), x(t)} and the previously forecasted value x̂(t + 1).

(c) Three-step forecasting: The forecasted value x̂(t + 3) is calculated based on the historical time
series {x(1), x(2), x(3), ..., x(t− 1), x(t)} and the previously forecasted values {x̂(t + 1), x̂(t + 2)}.

Figure 3 presents the flow chart of the hybrid models. The first part of the hybrid model is the
FEEMD. White noise is added to the original time series data, and EMD decomposition is conducted
to obtain the intrinsic mode functions. The preprocessed time series data are used to forecast the wind
speed, electrical load and electricity price. The second part is BPNN optimized by different types of PSO,
including LDWPSO, RWPSO, SAPSO, LNCPSO, CPSO, SMAPSO and GAPSO. Through optimizing
and updating the weight and threshold values in BP, the optimal values can be obtained for forecasting.

4. Experimental Simulation and Results Analysis

This section is aimed at proving the effectiveness of the proposed hybrid models through four
experiments after introducing the data sets, data preprocessing and evaluation metrics. The four
experiments compare the hybrid models with other famous traditional forecasting models, models with
different optimization algorithms and forecasting with different steps.

4.1. Data Sets

This paper selects three indicators for forecasting in the electrical system: the data sets include a
short-term wind speed time series, an electrical load time series and an electricity price time series. First,
for short-term wind speed data, the time interval is 10 min, covering from 1 January to 25 January at three
observation sites. The data from 20 days are applied to forecast the data for one day. The number of
training data points is 2880, and the number of testing data points is 144. For example, the first training
data set covers from 1 January to 20 January, and the corresponding testing data set is 21 January.
Similarly, the final training data set is from 5 January to 24 January, and the corresponding testing
data set is 25 January. The average of five forecasting days would be calculated as the final results of
the hybrid model at each observation site to overcome the instability of back propagation. For the
electrical load and electricity price time series data sets, the span is from 1 January to 25 January, collected
from New South Wales (NSW). The data from 20 days are used to forecast the data for one day.
The number of training data points is 960, and the number of testing data points is 48. The data applied
in this paper are all primary data obtained from the local wind farms.

Figure 4 describes the data selection scheme of three indicators in the electrical power system.
Figure 4a shows how to choose the data to build the model and conduct the forecasting. Figure 4b
shows the forecasting values of the time series data. Figure 4c is the structure of the BPNN, including
the input, hidden and output layers. Finally, Figure 4d depicts the data selection scheme for
multiple-step forecasting.
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4.2. Evaluation Metrics

It is crucial to apply effective evaluation metrics to assess the forecasting accuracy and this paper
introduces two types of metrics: the evaluation of multiple points and the overall performance of
the model.

4.2.1. Evaluation of Multiple Points

In addition to evaluating a single point, it is also necessary to assess the forecasting accuracy of
multiple points. Three metrics, including MAE, RMSE and MAPE, are applied for this evaluation.

MAE and RMSE measure the average magnitude of the forecasting errors, and their equations are
given below:

MAE =
1
n

n

∑
i=1

∣∣∣x(0)(t)− x̂(0)(t)
∣∣∣ (24)

MSE =
1
n∑n

i=1

∣∣∣x(0)(t)− x̂(0)(t)
∣∣∣2 (25)
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MAPE is an effective method for measuring forecasting errors, and smaller values indicate a
higher degree of forecasting accuracy of the model. The MAPE criteria are listed in Table 2 [55]. If the
value of MAPE is smaller than 10%, the forecasting degree is excellent; if the value is between 10% and
20%, the forecasting degree is good; if the value is between 20% and 50%, the forecasting degree is
reasonable; however, if the value is larger than 50%, the forecasting degree is incorrect, which indicates
that the forecasting result is very poor.

MAPE(%) =
1
n∑n

i=1

∣∣∣∣∣x(0)(t)− x̂(0)(t)
x(0)(t)

∣∣∣∣∣ (26)

Table 2. Criterion of MAPE.

MAPE(%) Forecasting Degree

<10 Excellent
10–20 Good
20–50 Reasonable
>50 Incorrect

4.2.2. Forecasting Validity Degree

Currently, the evaluation of the validity of most models uses the error sum of squares and the
sum of the absolute value of the errors; in fact, these metrics cannot reflect the validity of forecasting
methods well due to the different dimensions of different sequences. This paper introduces the
forecasting validity degree based on the element of the invalid degree of k-order forecasting relative
error [56]. The validity of forecasting methods should be reflected by the comprehensive and average
accuracy. That is to say, a method with a high forecasting accuracy in certain periods may not have
a high forecasting validity. When the forecasting accuracy is high in all periods, we can say that the
method achieves a high forecasting validity. The greater the average forecasting accuracy, the higher
the forecasting validity.

Assume the observed value of the indicator sequence is {xt, t = 1, 2, ..., N}, there are m single
forecasting methods to forecast the sequence, and xit is the forecasting value at time t with the ith
method, i = 1, 2, ..., m, t = 1, 2, ..., N. Some concepts are listed below

Definition 7. The value of eit is the relative error of the ith method at time t (i = 1, 2, ..., m, t = 1, 2, ..., N).
E = (eit)m×N is the matrix of relative error.

eit =


−1, xt−xit

xt
< −1

xt−xit
xt

, − 1 < xt−xit
xt

< 1

1, xt−xit
xt

> 1

(27)

Remark 7. Obviously, 0 ≤ |eit| ≤ 1. Matrix E is the sequence of the forecasting relative error using the ith
forecasting method at each time t. The tth column of E is the sequence of the forecasting relative error at time t
with each method.

Definition 8. The forecasting accuracy of the ith method at time t is Ait = 1− |eit| (i = 1,2,...,m, t = 1,2,...,N ).
Clearly, 0 ≤ Ait ≤ 1, and when |(xt − xit) /xt| > 1, the forecasting accuracy is Ait = 0.

Remark 8. The value eit has randomness due to the influences of all types of factors, so
{Ait, i = 1, 2, · · · , m, t = 1, 2, · · ·N} can be regarded as a sequence of random variables.

Definition 9. The element of the k-order forecasting validity degree with the ith method can be shown as follows:
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mk
i =

N

∑
t=1

QtA
k
it (28)

where k is the positive integer, (i = 1, 2, · · ·m) and {Qt, t = 1, 2, · · · , N} is the discrete probability distribution

of the mth forecasting method at time t:
N
∑

t=1
Qt = 1 , (Qt > 0).

Remark 9. When the a priori information of the discrete probability distribution is unknown,
N
∑

t=1
Qt = 1 /N, t = 1, 2, ..., N. In effect, mk

i is the k-order origin moment of the forecasting accuracy sequence

{Ait, t = 1, 2, ..., N} with the ith forecasting method.

Definition 10. The k-order forecasting validity degree can be denoted as H
(
m1

i , m2
i , · · · , mk

i
)
, and H is a

k-element continuous function.

Definition 11. When H (x) = x is a one-element continuous function, H
(
m1

i
)
= m1

i is the one-order

forecasting validity of the ith forecasting method; when H (xi) = xi

(
1−

√
y− x2

i

)
is a two-element

continuous function, H
(
m1

i , m2
i
)
= m1

i

(
1−

√
m2

i −
(
m1

i
)2
)

is the two-order forecasting validity of the ith

forecasting method.

Remark 10. Definition 11 indicates that the one-order forecasting validity index is the mathematical
expectation of the forecasting accuracy series. When the difference between one and the standard
deviation of the forecasting accuracy series is multiplied by its mathematical expectation, the two-order
forecasting validity index is obtained [57].

According to Definition 7, we define the forecasting accuracy of the ith forecasting method at
time t, Ait, as follows:

Ait =

{
1− |eit| , 0 ≤ |eit| ≤ 1

0, |eit| ≥ 1
(29)

It is clear that Ait has the property of a random variable.

Definition 12. The forecasting validity degree of the ith method in the forecasting interval (N + 1, N + T) can
be expressed as

mif =
N+T

∑
t=N+1

QitAit (30)

where Qit signifies the discrete probability distribution of the forecasting accuracy Ait of the ith forecasting

method in the forecasting interval at time t.
N+T
∑

t=N+1
Qit = 1,Qit > 0, t = N + 1, N + 2, ..., N + T.

Therefore, mif can be regarded as the objective function of the combination forecasting model,
and its optimizing model is

maxmif =
N+T
∑

t=N+1
QitAit,

s.t.


At = 1−

∣∣∣∣ m
∑

i=1
lieit

∣∣∣∣ , t = N + 1, ..., N + T,

m
∑

i=1
li = 1, li ≥ 0, i = 1, 2, ..., m

(31)

It is a linear programming problem, so the forecasting validity degree can be calculated based on
Equation (31).
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4.2.3. Diebold Mariano Test

Diebold and Marino [58,59] proposed the original Diebold Mariano (DM) test, and its essence is
described as follows:

The forecasting errors eit can be defined as

eit = yt − ŷit(i = 1, 2, 3, ..., m) (32)

where yt is the actual time series data, ŷit is the ith competing forecasting series, and m denotes the
number of forecasting models.

The square-error loss function is chosen as shown in Equation (33) because it is symmetric around
the original points and penalizes larger errors more severely. The equal accuracy hypothesis is tested
to judge the forecasting performance of each model. The null and alternative hypotheses are listed in
Equation (34):

L(yt, ŷit) = L(eit) =
T

∑
t=1

(eit)
2 (33)

H0 : E[L(e1t)] = E[L(e2t)]

H0 : E[L(e1t)] 6= E[L(e2t)]
(34)

The DM test is based on the loss function d and the sample mean loss differential d, given in
Equations (35) and (36), respectively:

dt = L(e1t)− L(e2t) (35)

d =
1
T

T

∑
t=1

dt =
1
T

T

∑
t=1

[L(e1t)− L(e2t)] (36)

Therefore, the DM test statistic is

DM =
d√

2πf̂d(0)
T

→ N(0, 1) (37)

where 2πf̂d(0) is a consistent estimator of the asymptotic variance of
√

Td. The DM statistics cover a
normal distribution, so we can reject the null hypothesis at the 5% level if |DM| > 1.96; otherwise, if
|DM| ≤ 1.96, the null hypothesis cannot be rejected [60].

4.3. Experimental Setup

Three experiments are conducted to prove the effectiveness of the hybrid proposed models,
Experiment I, Experiment II and Experiment III. The electrical load time series data are the most
regular, the wind speed time series data are intermediate, and the electricity price time series data are
the most irregular. Therefore, three experiments are performed to testify to the validity of the proposed
hybrid models in the electrical power system. In each experiment, three types of comparisons are
conducted to prove the effectiveness of the model comprehensively and successfully.

Initially, the hybrid FE-NPSO-BP model is compared with PSO-BP to verify the denoising
performance of FEEMD. In this comparison, modified PSO algorithms include LDWPSO, SAPSO,
RWPSO, CPSO and LNCPSO. The main differences lie in the adjustment of the inertia weight,
constriction factor and learning factor. The combined PSO algorithms include SMAPSO and GAPSO.
NPSO refers to both modified and combined PSO. Secondly, the hybrid models are compared with
some famous forecasting models, such as ARIMA, first-order coefficient (FAC), second-order coefficient
(SAC), grey model (GM), Elman neural network (ENN) and BP, demonstrating the advantages of
EF-NPSO-BP as proposed in this paper. ARIMA, FAC and SAC belong to statistical models that
are more applicable when forecasting the time series with a linear trend. In comparison, GM, ENN
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and BP have a high ability to forecast the non-linear trend, tolerate error, and learn adaptively.
Finally, other optimization algorithms, including the standard PSO, artificial fish swarm algorithm
(AFSA), cuckoo algorithm (CA), SA, GA, and ant swarm algorithm (ASA) are applied to optimize
the threshold and weight values of BP. The aim of the comparison is to prove the effectiveness of the
modification or combination of the PSO, and the parameters of each algorithm are set according to
other literature reports.

4.4. Experiment I

Table 3 shows the forecasting results of the electrical load time series data by applying hybrid
models with different improved PSO algorithms, conventional models, and BP optimized by other
optimization algorithms. The results clearly showed the following:

(a) First of all, for the comparison of FE-NPSO-BP, in one-step forecasting, LNCPSO has the best
MAPE, MAE and FVD at 2.08%, 85.468 and 0.926, respectively. GAPSO achieves better MSE in
one-step forecasting. For three-step forecasting, RWPSO has the lowest MAPE, at 2.72%. The
forecasting error between the combined PSO and modified PSO is small. Therefore, in summary,
the forecasting result is similar for modified PSO and combined PSO when forecasting electoral
load time series.

(b) For BP optimized by different algorithms, in one-step forecasting, FE-CA-BP has the lowest
MAPE, which is 2.18%. FE-PSO-BP and FE-ACA-BP have the best MAPE with 2.69% and 2.90%.
For the other indexes, different models achieve different values. Therefore, it can be summarized
that BP optimized by other single optimization algorithms is less stable, and it is difficult to find
a suitable method to forecast the electrical load time series accurately.

(c) Finally, compared to conventional models, GM has the best forecasting performance, and the
MAPE is 2.96% and 2.25% in three-step and one-step forecasting, respectively. The MAPE of
ARIMA in two-step forecasting is 2.77%. In general, the performance of machine-learning-based
methods is better than for traditional statistical models.

Remark 11. In one-step forecasting, the forecasting accuracy of the electrical load time series is approximately
2% because the time series is more regular. The results show that the effects of the modified and combined particle
swarm optimization are similar. FE-NPSO-BP outperforms both conventional models and BP optimized by
other algorithms.
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Table 3. Comparison of hybrid models with different optimization algorithms and conventional models for electrical load time series.

Different
Improved PSO

FE-LDWPSO-BP FE-SAPSO-BP FE-RWPSO-BP FE-CPSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 2.97% 2.75% 2.38% 2.90% 2.71% 2.28% 2.72% 2.70% 2.31% 3.06% 2.72% 2.46%
MAE (m/s) 103.226 98.317 89.218 97.412 94.226 88.625 108.917 96.885 86.475 98.101 95.309 86.519

MSE (104 m/s2) 3.624 2.886 1.509 2.662 1.866 1.769 2.225 1.930 1.541 2.458 2.424 1.622
FVD 0.833 0.873 0.905 0.856 0.892 0.913 0.866 0.884 0.898 0.849 0.892 0.917

Index
FE-LNCPSO-BP FE-SMAPSO-BP FE-GAPSO-BP PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 2.81% 2.64% 2.08% 2.96% 2.84% 2.11% 2.88% 2.77% 2.32% 3.45% 3.39% 3.12%
MAE (m/s) 96.698 92.473 85.468 101.383 93.627 90.127 98.732 91.486 95.237 100.245 98.706 90.008

MSE (104 m/s2) 2.176 1.583 1.338 2.979 1.761 1.683 2.878 1.464 1.335 3.625 3.258 1.967
FVD 0.896 0.915 0.926 0.837 0.862 0.882 0.882 0.914 0.924 0.810 0.861 0.873

Optimization
algorithms

FE-AFSA-BP FE-CA-BP FE-GA-BP FE-PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 2.96% 2.76% 2.22% 3.02% 2.73% 2.18% 2.94% 2.82% 2.39% 3.01% 2.69% 2.61%
MAE (m/s) 112.316 101.245 92.618 118.205 98.313 90.103 106.374 92.425 87.339 101.095 93.687 90.105

MSE (104 m/s2) 2.437 1.896 1.728 2.416 2.128 1.624 2.289 1.826 1.655 2.316 1.774 1.614
FVD 0.851 0.884 0.914 0.842 0.893 0.921 0.862 0.881 0.909 0.847 0.892 0.911

Index
FE-ACA-BP FE-SA-BP

Three-step Two-step One-step Three-step Two-step One-step

MAPE 2.90% 2.71% 2.35% 2.92% 2.83% 2.36%
MAE (m/s) 103.884 97.662 91.038 104.239 97.186 88.495

MSE (104 m/s2) 2.594 1.889 1.526 2.719 1.872 1.585
FVD 0.849 0.872 0.904 0.856 0.895 0.918

Conventional
algorithms

ARIMA FAC SAC GM

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 3.27% 2.77% 2.41% 3.20% 2.82% 2.58% 3.12% 2.87% 2.33% 2.96% 2.79% 2.34%
MAE (m/s) 100.033 92.746 83.215 112.287 108.159 92.105 109.452 95.483 95.682 98.891 96.625 87.138

MSE (104 m/s2) 2.416 1.924 1.661 2.339 1.876 1.579 2.748 2.059 1.624 2.354 1.776 1.496
FVD 0.802 0.853 0.886 0.789 0.842 0.873 0.819 0.855 0.894 0.830 0.857 0.881

Index
BP ENN

Three-step Two-step One-step Three-step Two-step One-step

MAPE 2.98% 2.79% 2.45% 3.08% 2.91% 2.39%
MAE (m/s) 111.558 102.287 95.415 96.514 90.132 88.666

MSE (104 m/s2) 2.663 1.948 1.613 2.514 1.827 1.408
FVD 0.822 0.858 0.874 0.810 0.847 0.889
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4.5. Experiment II

Table 4 shows the forecasting results of the wind speed time series, which is less regular than the
electrical load time series. The forecasting of wind speed is a challenging task. This section demonstrates
the forecasting results using the hybrid models put forward in this paper. The findings are listed below:

(a) For the short-term wind speed time series and all forecasting steps, the combined PSO algorithms
achieve better forecasting accuracy. GAPSO has the best forecasting results, with a MAPE of 3.18%
and an FVD of 0.905 in one-step forecasting. In comparison, PSO-BP has the worst performance,
and the MAPE increases by 0.57% compared with GAPSO because FEEMD denoises the original
time series and makes the processed data smoother. It can be concluded that the combined
algorithms are more effective in forecasting the short-term wind speed, which is because GA has a
stronger ability to search for the global optimum and achieve a faster rate of convergence.

(b) Among the separate types of optimization algorithms, FE-CA-BP and FE-AFSA-BP have the best
forecasting performance. In comparison, the proposed hybrid model, FE-GAPSO-BP, increases
the forecasting accuracy by 0.06%, 0.18% and 0.17%. The forecasting differences among different
types of optimization algorithms are not significant.

(c) When comparing the proposed hybrid models with traditional forecasting methods, BP, ENN and
GM achieve the best MAPE, with 3.31%, 4.55% and 5.31%. Although ARIMA has better MAEs
in one- and two-step forecasting, the other indexes such as MSE and FVD are worse. BP has a
better FVD, but its forecasting performance is worse than that of GAPSO because the output of
the single BP is not stable and has a relatively low capability for fault tolerance.

Remark 12. The proposed FE-NPSO-BP outperforms the other traditional forecasting models, and the artificial
intelligence neural network has better forecasting performance than traditional statistical models. The forecasting
accuracy for short-term wind speed is approximately 3.2%.
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Table 4. Comparison of hybrid models with different optimization algorithms and conventional models for wind speed time series.

Different
Improved PSO

FE-LDWPSO-BP FE-SAPSO-BP FE-RWPSO-BP FE-CPSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.38% 4.38% 3.25% 5.35% 4.52% 3.33% 5.44% 4.49% 3.27% 5.28% 4.71% 3.29%
MAE (m/s) 1.354 0.899 0.528 1.469 0.904 0.621 1.183 0.945 0.613 1.448 1.106 0.753

MSE (104 m/s2) 0.624 0.531 0.456 0.608 0.497 0.386 0.594 0.493 0.374 0.618 0.523 0.406
FVD 0.813 0.854 0.878 0.826 0.846 0.883 0.834 0.862 0.894 0.855 0.880 0.897

Index
FE-LNCPSO-BP FE-SMAPSO-BP FE-GAPSO-BP PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.21% 4.67% 3.36% 4.99% 4.52% 3.22% 5.01% 4.26% 3.18% 5.96% 4.93% 3.75%
MAE (m/s) 1.443 0.824 0.529 0.912 0.614 0.505 1.154 0.718 0.417 1.689 1.441 0.820

MSE (104 m/s2) 0.593 0.478 0.396 0.608 0.453 0.325 0.578 0.429 0.331 0.662 0.593 0.512
FVD 0.842 0.866 0.890 0.861 0.882 0.901 0.852 0.873 0.905 0.808 0.823 0.849

Optimization
algorithms

FE-AFSA-BP FE-CA-BP FE-GA-BP FE-PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.18% 4.89% 3.25% 5.63% 4.44% 3.24% 5.37% 4.76% 3.41% 5.22% 4.65% 3.64%
MAE (m/s) 1.226 0.941 0.651 1.287 0.809 0.543 1.449 0.978 0.503 1.287 0.835 0.498

MSE (104 m/s2) 0.612 0.513 0.376 0.582 0.453 0.374 0.605 0.583 0.426 0.557 0.429 0.351
FVD 0.841 0.866 0.872 0.837 0.859 0.894 0.826 0.861 0.902 0.837 0.865 0.888

Index
FE-ACA-BP FE-SA-BP

Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.48% 4.71% 3.30% 5.35% 4.73% 3.26%
MAE (m/s) 1.183 0.844 0.527 1.319 1.003 0.628

MSE (104 m/s2) 0.623 0.476 0.395 0.606 0.504 0.359
FVD 0.831 0.863 0.898 0.822 0.854 0.897

Conventional
algorithms

ARIMA FAC SAC GM

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.66% 4.59% 3.49% 5.59% 4.72% 3.57% 5.48% 4.63% 3.50% 5.31% 4.70% 3.37%
MAE (m/s) 1.738 0.696 0.421 1.824 1.548 1.039 1.626 1.117 0.945 1.593 1.215 0.786

MSE (104 m/s2) 0.683 0.626 0.519 0.662 0.594 0.417 0.602 0.517 0.385 0.599 0.452 0.378
FVD 0.802 0.812 0.845 0.826 0.844 0.876 0.845 0.855 0.883 0.826 0.858 0.880

Index
BP ENN

Three-step Two-step One-step Three-step Two-step One-step

MAPE 5.62% 4.71% 3.54% 5.49% 4.55% 3.36%
MAE (m/s) 1.446 1.217 0.863 1.349 0.827 0.663

MSE (104 m/s2) 0.617 0.489 0.367 0.588 0.429 0.377
FVD 0.841 0.868 0.885 0.829 0.847 0.881
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4.6. Experiment III

Experiment III was designed to verify the effectiveness of the proposed hybrid models using the
electricity price time series. If the hybrid models are applicable and suitable, it can be concluded that
the proposed hybrid models are effective in forecasting the electric power system, which is because
the electricity price is the most irregular one compared to the above two time series. Table 5 shows the
comparison results.

(a) For the electricity price time series, SMAPSO has the lowest MAPE and the highest FVD. The MAPE
values for GAPSO are similar to the values for SMAPSO, which means that the combined PSO
algorithm is more effective in forecasting the electricity price. In one-step forecasting, SMAPSO
increases the forecasting accuracy by 0.66%.

(b) When comparing different types of algorithms, the MAPE value of FE-SA-BP is the best, with
5.29% for one-step forecasting, the MAPE of FE-AFSA-BP achieves the best value of 5.68% for
two-step forecasting, and FE-PSO-BP has the best MAPE at 6.17%. BP optimized by NPSOs
outperforms the other algorithms, including AFSA, CA, GA, PSO, ACA and SA. Therefore, the
combination of algorithms can adopt the advantages of the single ones. Both the ability to search
for the global optimum and the convergence rate are enhanced.

(c) Finally, consistent with the results of the electrical load and wind speed time series data, the
machine-learning-based algorithms have better forecasting performance than the conventional
algorithms, such as ARIMA, FAC and SAC, because the indexes of MAE, MSE and FVD are all
better as well.

Remark 13. Based on this comparison, it could be summarized that the hybrid models optimized by the improved
particle swarm optimization algorithms perform better than the other types of optimization algorithms, further
proving the effectiveness of the model. Moreover, the difference between one-step and three-step forecasting
is small and is on an acceptable scale. Therefore, the proposed hybrid models are concluded to be suitable for
multi-step forecasting. The forecasting accuracy for the electricity price is approximately 5%.

Figure 5 compares the results of the hybrid models. The bar chart represents the MAPE, and the
line chart represents the FVD. The figure shows that for the electrical load time series, FE-LNCPSO-BP
has the lowest MAPE and highest FVD. For the wind speed time series, FE-GAPSO-BP achieves the best
MAPE and FVD. For the electricity price time series, FE-SMAPSO-BP has the lowest MAPE and the
best FVD. The figure clearly shows the performance of each forecasting model. Furthermore, the table
presents the forecasting MAPE for the three steps. We find that the MAPE differences between one-step
and three-step forecasting for the three time series data are 0.73%, 1.83% and 1.22%, respectively, which
is acceptable.
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Table 5. Comparison of hybrid models with different optimization algorithms and conventional models for electricity price time series.

Different
Improved PSO

FE-LDWPSO-BP FE-SAPSO-BP FE-RWPSO-BP FE-CPSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.26% 5.75% 5.12% 6.33% 5.79% 5.26% 6.27% 5.66% 5.08% 6.21% 5.77% 5.08%
MAE (m/s) 4.217 3.624 2.995 4.033 3.719 2.464 3.965 3.421 2.467 3.421 3.056 2.429

MSE (104 m/s2) 47.628 39.175 20.006 25.498 23.127 16.514 39.672 24.194 19.554 32.177 22.316 20.007
FVD 0.794 0.829 0.856 0.787 0.825 0.851 0.786 0.833 0.858 0.762 0.815 0.843

Index
FE-LNCPSO-BP FE-SMAPSO-BP FE-GAPSO-BP PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.39% 5.50% 5.11% 6.14% 5.48% 4.92% 6.23% 5.50% 4.97% 7.18% 6.14% 5.58%
MAE (m/s) 4.116 3.547 2.469 3.858 3.129 2.318 3.964 3.252 2.179 4.665 4.193 3.217

MSE (104 m/s2) 41.759 30.625 22.479 35.175 21.428 18.176 30.987 23.165 18.550 56.423 44.229 30.706
FVD 0.782 0.831 0.855 0.801 0.845 0.873 0.775 0.824 0.856 0.742 0.808 0.812

Optimization
algorithms

FE-AFSA-BP FE-CA-BP FE-GA-BP FE-PSO-BP

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.31% 5.68% 5.33% 6.46% 5.92% 5.48% 6.44% 5.71% 5.23% 6.17% 5.81% 5.40%
MAE (m/s) 4.331 3.902 2.886 4.174 3.628 2.596 4.333 3.714 2.467 4.195 3.812 2.759

MSE (104 m/s2) 44.138 33.965 23.004 44.239 33.547 22.695 43.996 35.368 22.510 37.474 26.615 18.691
FVD 0.774 0.815 0.832 0.789 0.830 0.837 0.762 0.829 0.836 0.760 0.824 0.852

Index
FE-ACA-BP FE-SA-BP

Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.25% 5.94% 5.33% 6.45% 5.70% 5.29%
MAE (m/s) 4.118 3.956 2.741 4.208 3.595 2.617

MSE (104 m/s2) 31.098 28.667 21.094 42.065 36.172 23.108
FVD 0.790 0.816 0.842 0.741 0.825 0.847

Conventional
algorithms

ARIMA FAC SAC GM

Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.57% 5.92% 5.67% 6.62% 6.08% 5.41% 6.31% 5.94% 5.35% 6.41% 5.68% 5.47%
MAE (m/s) 4.083 3.172 2.338 4.125 3.519 2.443 4.098 3.252 2.419 4.396 3.772 2.983

MSE (104 m/s2) 49.176 44.155 36.128 46.008 24.019 18.662 49.216 39.205 23.178 42.074 35.102 20.316
FVD 0.753 0.792 0.831 0.730 0.768 0.802 0.765 0.815 0.822 0.783 0.824 0.849

Index
BP ENN

Three-step Two-step One-step Three-step Two-step One-step

MAPE 6.33% 5.96% 5.60% 6.25% 5.84% 5.21%
MAE (m/s) 4.275 3.628 2.416 4.226 3.823 2.796

MSE (104 m/s2) 38.429 24.108 19.337 39.219 25.441 23.053
FVD 0.761 0.829 0.854 0.786 0.825 0.839
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5. Discussion

This section aims to present a deeper discussion of the experimental results, including statistical
models, artificial intelligence neural networks, each part in the hybrid model, forecasting steps and
running time.

5.1. Statistical Model

As is well known, traditional statistical models include AR, ARMA, ARIMA, FAC and SAC.
ARIMA is the next-generation form of ARMA and has a higher forecasting accuracy. In this paper,
we only apply ARIMA to conduct the forecasting. For the short-term wind speed time series and the
electrical load time series, it has higher forecasting accuracy than BP. For the electricity price time series,
its forecasting performance is worse. The basic form of ARIMA is ARIMA (p, q, d). The models could
be fitted by least squares regressions to find the values of the parameters, which could minimize the
error term after p and q are set. Akaike information criterion (AICs) are applied to judge whether p
and q are the best [55]. In our experiments, the form of ARIMA for both short-term wind speed and
electricity price is ARIMA (3,2,1). For the electrical load time series, the form of ARIMA is ARIMA
(3,3,1). The other two models are FAC and SAC. The aim of FAC is to correct the coefficient values
constantly based on changes in data for the best forecasting results. SAC is an improvement based
on FAC. The experiments above reveal that their forecasting accuracy is worse than that of ARIMA.
Although traditional statistical models are used widely in electrical system forecasting, they are more
applicable in forecasting linear trends: in other words, it is required that the original data should be
smooth without high fluctuation.

5.2. Artificial Intelligence Neural Network

As a comparison, the artificial intelligence neural networks are suitable for forecasting non-linear
data trends, and this paper contrasts the hybrid models with GM, ENN and BPNN. In the three
experiments, the hybrid models proposed all achieve the best forecasting accuracy. The forecasting
performance of GM for the electrical load time series is better than the other models, with MAPE
values of 2.34%, 2.79% and 2.96%, respectively. However, the forecasting results of BPNN are worse
than for the traditional statistical models, such as ARIMA, FAC and SAC, because the network
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of BPNN is not stable. Therefore, to improve the stability of the network of BPNN and thus the
forecasting accuracy, this paper introduces improved PSO to optimize the weight and threshold of
BPNN. The experiments above show that the optimized BPNN combines the advantages of each single
model, and the forecasting accuracy is improved. As is well known, the three data sequences in the
electrical system all have irregular distributions with high fluctuation and substantial noise. Thus,
NNs are more applicable when forecasting the indicators in the electrical system due to the training
and testing mechanism and the high error tolerance. We also explore the influence of the training
and verification ratio on the forecasting results. In addition to 15:1 and 5:1 ratios of training and
verification, we also set the value to 3:1, 6:1 10:1 and 12:1. The final results demonstrate that there
is no close relationship between the training and verification ratio and the forecasting accuracy. To
summarize, although NNs still have some limitations, they are the fittest models for forecasting the
indicators in the electrical system after the parameters in the network are optimized and the original
data are preprocessed.

5.3. Significance of Forecasting Results

In this part, the significance of the forecasting performance of the proposed models is tested
by using the DM test. The pairwise comparisons of the forecasting models are summarized in
Table 6. The null hypothesis is that there are no observed differences between the performances of
two forecasting models, while the alternative hypothesis is that the observed differences between
the performances of two forecasting models are significant. For the electrical load time series data, the
most suitable model is FE-LNCPSO-BP, so it is compared with the other models. The results show
that the differences between FE-LNCPSO-BP and FE-SAPSO-BP, FE-SMAPSO-BP, FE-AFSA-BP, and
FE-CA-BP are not significant, which indicates that both combined and modified PSO can forecast
the electrical load time series accurately. There is a significant difference between FE-LNCPSO-BP
and the other compared models. For the wind speed time series data, FE-GAPSO-BP is the most
suitable model, and the results of the DM test show that the differences between FE-GAPSO-BP and
FE-LDWPSO-BP, FE-RWPSO-BP, FE-CPSO-BP, FE-SMAPSO-BP, FE-AFSA-BP, and FE-SA-BP are not
significant. Therefore, the proposed hybrid models are more effective than the other models. Finally,
for electricity price forecasting, FE-GAPSO-BP is the only model with no significant difference from
FE-SMAPSO-BP. The other models all exhibit significant differences from FE-SMAPSO-BP. Thus, based
on these results, we know that the combined models are more suitable for less regular time series data
than the modified models.

Table 6. Summary of DM test (values of DM are absolute values).

Model
Electrical Load Wind Speed Electricity Price

DM p-Value DM p-Value DM p-Value

FE-LDWPSO-BP 3.657 0.0134 0.8984 0.8661 2.146 0.0142
FE-SAPSO-BP 0.264 0.7581 2.154 0.0000 2.135 0.0112
FE-RWPSO-BP 3.448 0.0065 1.356 0.6849 2.031 0.0234
FE-CPSO-BP 3.998 0.0000 1.559 0.6594 1.983 0.0252

FE-SMAPSO-BP 0.0842 0.9283 2.185 0.0000 2.066 0.0168
FE-GAPSO-BP 3.469 0.0082 0.128 0.9164 1.359 0.7426

PSO-BP 4.375 0.0000 2.965 0.0000 2.836 0.0000
FE-AFSA-BP 0.255 0.7076 0.731 0.8642 2.328 0.0000

FE-CA-BP 0.237 0.6438 0.545 0.8776 2.736 0.0000
FE-GA-BP 3.718 0.0000 2.139 0.0000 2.174 0.0155
FE-PSO-BP 4.092 0.0000 2.772 0.0000 2.669 0.0000
FE-ACA-BP 3.613 0.0000 2.063 0.0000 2.396 0.0000
FE-SA-BP 3.658 0.0000 1.242 0.7015 2.223 0.0000
ARIMA 3.826 0.0000 2.356 0.0000 2.979 0.0000

FAC 3.987 0.0000 2.246 0.0000 2.647 0.0000
SAC 3.472 0.0000 2.385 0.0000 2.528 0.0000
GM 3.566 0.0000 2.246 0.0000 2.699 0.0000
BP 3.885 0.0000 2.417 0.0000 2.874 0.0000

ENN 3.779 0.0000 2.209 0.0000 2.008 0.0197
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5.4. Discussion of the Effectiveness of Fast Ensemble Empirical Mode Decomposition

The data in the electrical system are irregular and include high fluctuation with noise, so it is
very important to denoise the original data sequences before conducting the forecasting. In this paper,
FEEMD is applied to denoise the original time series data. By comparing the forecasting results of
PSO-BP with the results of FE-PSO-BP, we can testify to the effectiveness of FEEMD, which was found
to increase the forecasting accuracy greatly: FEEMD increases the MAPE by 0.96%, 0.11% and 0.18% for
the electrical load time series, short-term wind speed time series, and electricity price time series, respectively.
In addition to the improvement of the MAPE, the FVD also increases substantially, to 0.038, 0.039 and
0.040, respectively. Therefore, FEEMD not only contributes to the forecasting accuracy but also can
help increase the FVD. Furthermore, this paper removes the first two IMFs, and the rest are utilized in
the forecasting. To deeply explore the effectiveness of FEEMD, we also implement experiments that
remove the first three, four and five IMFs and judge whether the forecasting results are affected. The
results demonstrate that when the first two columns are removed, the forecasting accuracy is the best,
as in our experiment.

5.5. Comparison of Different Types of Particle Swarm Optimization Algorithms

The improved particle swarm optimization algorithm could be divided into two parts. One part
is to introduce the advanced theory into the particle swarm optimization algorithm, and the other is to
combine the particle swarm optimization algorithm with other intelligent optimization algorithms.
First, in the discussion above, the initial method of modifying the particle swarm optimization
algorithm is to adjust its inertia weight. The linearly decreasing inertia weight particle swarm
optimization algorithm contributes to obtaining the best solution; however, it still has three drawbacks.
The first drawback is that the linearly decreasing inertia weight reduces the convergence rate of the
algorithm. The second drawback is that the algorithm is prone to falling into a local optimum because
the local search ability of the algorithm is weak at the beginning, and the global search capacity is
weak at the end. The final drawback is that it is difficult to forecast the maximum number of iterations,
which affects the regulatory function of the algorithm.

Thus, to balance the searching ability of the local and global optimums, the adjustment of
non-linear inertia weights is incorporated, including the self-adaptive inertia weight particle swarm
optimization and random weight particle swarm optimization. In the former technique, the inertia
weight changes along with the value of the fitness. For the latter technique, choosing the inertia weight
randomly could overcome the disadvantages of the linearly decreasing method mentioned above. In
addition to the inertia weight, the learning factor also plays a significant role in improving the efficiency
of the particle swarm optimization algorithm. The learning factor would affect the flying velocity of
each particle, and, thus, the introduction of the constriction factor is beneficial for controlling the flying
velocity and enhancing the local searching ability of the particles compared to the adjustment of the
inertia weight.

The second method is to combine other algorithms with the particle swarm optimization algorithm
to overcome the disadvantages of a single algorithm. The combination with simulated annealing is
simple to conduct and improves the ability to seek the global optimum, simultaneously enhancing the
rate of convergence and the accuracy of the algorithm. The combination of GA and particle swarm
optimization also strengthens the convergence rate and improves the convergence accuracy.

The experimental results demonstrate that the combination of particle swarm optimization with
other algorithms is more effective when the forecasting accuracy is approximately 4%. However, for
high forecasting accuracy, such as for the electrical load time series, there is no great difference between
the different types of algorithms.
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5.6. Selection of the Hidden and Input Layers for Back Propagation

This paper applies BPNN, the most common and effective artificial intelligence neural network
in practical application, for forecasting in the electrical system. However, BPNN possesses some
drawbacks: for example, its output results are unstable due to the instability of learning and memory,
and its convergence rate is slow. Therefore, two key parameters, the weight and threshold values, are
optimized by the optimization algorithms in this paper to obtain a more valid hybrid model. Moreover,
the selection of hidden layers is a highly complicated problem that requires more experience and
several experiments, as there is no ideal analysis formula to calculate the hidden layers. The number of
input layers and hidden layers of the BP neural network has a direct relationship with the forecasting
accuracy. When the number is too small, there is not enough information for the network to learn;
similarly, when the number is too large, it not only increases the training time but also leads to too
much time for learning. Under that condition, the error may not be optimal. Furthermore, the large
number of input layers and hidden layers would also lead to low fault tolerance, making it difficult for
the neural network to identify the samples that are not trained. Furthermore, the overfitting problem
cannot be ignored: the increasing error results in the decreasing generalization ability. Therefore, it is
crucial to select an appropriate number of hidden layers. In our experiments, the listing technique is
applied to choose the input layers and hidden layers. Table 7 shows that when the number of input
layers is four and the number of hidden layers is six, BPNN has the best forecasting accuracy for the
short-term wind speed time series. When the number of input layers is three and the number of hidden
layers is nine, BPNN achieves higher forecasting accuracy for the electrical load time series. When
the numbers of input layers and hidden layers are three and six, respectively, the forecasting error of
BPNN for electricity price is the smallest.

Table 7. Selection of input layers and hidden layers of BP neural network (MAPE).

Hidden
Layer

Input Layer

3 4 5 6 3 4 5 6

Electrical load time series

5 2.95% 2.86% 2.72% 2.88% 11 2.98% 2.82% 3.07% 2.94%
6 2.88% 2.83% 2.75% 2.71% 12 2.76% 2.75% 3.11% 2.93%
7 2.76% 2.68% 2.79% 2.88% 13 2.69% 2.81% 3.15% 3.01%
8 2.82% 2.71% 2.84% 2.92% 14 2.74% 2.92% 2.94% 2.85%
9 2.67% 2.81% 2.72% 3.06% 15 2.88% 2.95% 2.83% 2.89%

10 2.92% 2.90% 2.89% 3.09% 16 2.92% 2.74% 2.70% 2.94%

Short-term wind speed time series

5 5.10% 4.99% 4.98% 5.08% 11 5.12% 5.14% 5.21% 5.24%
6 5.12% 4.93% 5.35% 5.00% 12 4.99% 5.24% 5.31% 5.11%
7 5.04% 5.00% 5.42% 5.09% 13 5.05% 5.19% 5.16% 4.99%
8 5.22% 5.21% 5.17% 5.15% 14 5.17% 5.03% 5.08% 5.32%
9 4.98% 5.15% 5.03% 5.23% 15 5.21% 5.06% 4.99% 5.20%

10 5.17% 5.14% 5.16% 5.14% 16 5.05% 5.18% 5.31% 5.39%

Electricity price time series

5 5.92% 5.91% 5.90% 5.77% 11 5.79% 5.81% 6.11% 5.85%
6 5.71% 5.84% 5.87% 5.88% 12 5.84% 5.94% 6.03% 5.80%
7 6.11% 6.06% 5.89% 6.09% 13 5.84% 5.96% 5.92% 5.81%
8 6.02% 6.18% 5.91% 5.99% 14 5.86% 5.85% 5.84% 5.96%
9 5.85% 5.84% 5.92% 5.90% 15 6.07% 6.08% 6.18% 5.97%

10 5.78% 5.81% 6.12% 5.83% 16 5.99% 6.14% 6.23% 5.91%
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5.7. Steps of Forecasting

To verify the effectiveness of the proposed hybrid model, this paper conducts multi-step
forecasting, including one-step, two-step and three-step forecasting, for the three indicators in the
electrical system. Table 8 compares the multi-step forecasting accuracy. For the electrical load time series,
the forecasting accuracy of one-step forecasting increases by 0.56% and 0.73% compared with three-step
forecasting and two-step forecasting. For the wind speed time series, the difference between one-step
forecasting and two-step and three-step forecasting is 1.08% and 1.83%, respectively. For the electricity
price time series, the forecasting accuracy improves by 0.56% and 1.22%, respectively. In other words,
the difference between one-step and three-step forecasting is within 2%, which is on an acceptable
scale. Furthermore, it is proven that the hybrid model proposed is suitable for multi-step forecasting.
The optimization of the parameters in BPNN allows the forecasting model to obtain more accurate
results, using its advantages to compensate for the shortcomings of the other component models,
which demonstrates the superiority of the proposed hybrid models [61].

Table 8. Comparison of multi-step forecasting accuracy.

One-Step Two-Step Improvement Three-Step Improvement

Electrical load time series

MAPE 2.08% 2.64% 0.56% 2.81% 0.73%
MAE (m/s) 85.468 92.473 7.005 96.698 11.230

MSE (104 m/s2) 1.338 1.583 0.245 2.176 0.838
FVD 0.926 0.915 0.011 0.896 0.03

Short-term wind speed time series

MAPE 3.18% 4.26% 1.08% 5.01% 1.83%
MAE (m/s) 0.417 0.718 0.301 1.154 0.737
MSE (m/s2) 0.331 0.429 0.098 0.578 0.247

FVD 0.905 0.873 0.032 0.852 0.053

Electricity price time series

MAPE 4.92% 5.48% 0.56% 6.14% 1.22%
MAE (m/s) 2.318 3.129 0.811 3.858 1.540
MSE (m/s2) 18.176 21.428 3.252 35.175 16.999

FVD 0.873 0.845 0.028 0.801 0.072

5.8. Running Time

Table 9 compares the results of the performance time for the experiments using different
algorithms on all of the data sets, implemented on Windows 8.1 with a 2.5 GHz Intel Core i5-4200U, 64
bit with 4GB RAM. FE-RWPSO-BP has the shortest running time, at 71.33 s. FE-CA-BP has the longest
running time, at 161.49 s. In comparison, the running time of the FE-NPSO-BP models is within two
minutes, which also testifies to the good forecasting performance of the hybrid models. They are
applicable for forecasting short-term wind speed with a 10 min interval and electrical load and electricity
price with a 30 min interval.

Table 9. Comparison of performance times for hybrid models.

Model Time (s) Model Time (s)

FE-LDWPSO-BP 84.28 FE-SMAPSO-BP 118.73
FE-SAPSO-BP 114.52 FE-AFSA-BP 138.74
FE-RWPSO-BP 71.33 FE-CA-BP 161.49
FE-CPSO-BP 93.10 FE-GA-BP 92.18

FE-LNCPSO-BP 85.21 FE-ACA-BP 107.22
FE-SA-BP 112.55
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6. Conclusions

Electrical power systems always play an important part in the planning of national and regional
economic development. The following three key indicators in the electrical power system are forecasted
here: the short-term wind speed, electrical load and electricity price. All of these indicators contain a large
amount of information related to the generation, distribution and trade of electricity. However, it is
difficult to implement accurate forecasting due to the high fluctuation and noise in the original data
sequences. This paper proposes a series of hybrid models called FE-NPSO-BP to explore how to attain
better forecasting performance. The electrical load time series is the most regular; therefore, it is easier
to achieve a higher forecasting accuracy of approximately 2%. In comparison, the electricity price is
the most irregular; thus, its forecasting accuracy is lower, with an approximate value over 4%. The
wind speed time series data are intermediate compared to the other two. In our experiments, we found
that combined PSO algorithms are more effective for irregular time series data than modified PSO
algorithms. However, when the time series data tend to be regular, both combined and modified PSO
algorithms are suitable for forecasting. In one-step forecasting, GAPSO, LNCPSO and SMAPSO are
the most suitable models for the short-term wind speed, electrical load and electricity price time series.
Moreover, the presented models are designed to be easily parallelizable, and, thus, they can perform
the learning process over a large data set in a limited amount of time. Both the forecasting accuracy
and running time of the hybrid models demonstrate their effectiveness in time series forecasting for
electrical power systems.
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ARMA Auto regressive moving model
ENN Elman neural network
ARIMA Autoregressive integrated moving average model
VAR Vector auto-regressive model
RMSE Root mean square error
ANN Artificial neural networks
GARCH Generalized autoregressive conditional heteroskedasticity
MAPE Mean absolute percentage error
CMI Conditional mutual information
MAE Mean absolute error
MSE Mean square error
EEMD Ensemble empirical model decomposition
AFS Axiomatic fuzzy set
FVD Forecasting validity degree
DWT Discrete wavelet transform
FEEMD Fast ensemble empirical model decomposition
NWP Numerical weather prediction
ABC Artificial bee colony
AFS Axiomatic fuzzy set
MEA Mind evolutionary algorithm
STMP Swarm-based translation-invariant morphological precision
MLP Multi layer perceptron
ASA Ant swarm algorithm
CA Cuckoo algorithm
MMNN Modular morphological neural network
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Appendix A

Pseudo code of EEMD algorithm

Input:
xs

(0) = (x(0)(1), x(0)(2), x(0)(3)..., x(0)(l))—a sequence of sample data
Output:
x̂(0)p = (x̂(0)(l + 1), x̂(0)(l + 2), x̂(0)(l + 3)..., x̂(0)(l + n))—a sequence of forecasting data
Parameters:

M—the number of ensemble for EEMD algorithm.
k—the amplitude of the added white noise in EEMD algorithm.
Nstd—ratio of the standard deviation of the added noise and that of xs

(0)

itermax—the iterations of the total loop of EEMD algorithm.
TNM—the number of intrinsic mode function components.

1: /* Read data, find out standard deviation, divide all data by standard deviation */
2: Evaluate TNM = fix(log2(xsize))− 1as total IMF number and assign 0 to TNM2;
3: FOR EACH kk=1:1:TNM2 DO
4: Allmode (ii, kk)=0.0 where ii=1:1:xsize;
5: END FOR
6: Do EEMD, EEMD loop start;
7: /* Add white noise to the original data xs

(0) = (x(0)(1), x(0)(2), x(0)(3)..., x(0)(l)) */
8: FOR EACH i=1: xsize DO
9: Temp=randn (1,1) * Nstd;
10: END FOR
11: /* Assign original data xs

(0) = (x(0)(1), x(0)(2), x(0)(3)..., x(0)(l)) to the first column */
12: WHILE nmode <= TNM DO
13: Xstart=xtend; /*last loop value assign to new iteration loop */
14: END WHILE
15: /* Sift 10 times to get IMF__Sift loop start */
16: WHILE iter <= 10 DO
17: upper = spline (spmax (:, 1), spmax (:, 2), dd); */ upper spline bound of this sift */
18: lower = spline (spmin (:, 1), spmin (:, 2), dd); */ lower spline bound of this sift */
19: Iter = Iter + 1;
20: END WHILE
21: /* After getting all IMFs, the residual is over and put them in the last column */

22: Decompose xm(t) according to EMD and Calculate the mean: cj(t) = 1
N

N
∑

i=1
cij(t);

23: Return x̂(0)p = (x̂(0)(l + 1), x̂(0)(l + 2), x̂(0)(l + 3)x..., x̂(0)(l + n))

Appendix B

Pseudo-code of standard PSO algorithm

Input:
xs

(0) = (x(0)(1), x(0)(2), x(0)(3)..., x(0)(q))—a sequence of sample data
x̂(0)p = (x̂(0)(q + 1), x̂(0)(q + 2), x̂(0)(q + 3)..., x̂(0)(q + a))—a sequence of testing data
Output:
gbest___this value can satisfy the best fitness after the global particle searching.
Parameters:
q__the number of sample data used to construct the network of BPNN model.
d__the number of data to be used to perform the forecasting in fitness function.
Pop size__the number of populations for the particle swarm.
c1,c2__the cognitive and social weight of PSO algorithm. Typically, c1 = c2 = 2.
Itermax__the maximum number of iterations.
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Pseudo-code of standard PSO algorithm

1: /* Initialize pop size with the values between 0 and 1 */
2: FOR EACH i : 1 ≤ i ≤ popsize DO
3: α1

i = rand();
4: END FOR
5: /* Initialize the velocity and position of each particle in the population */
6: vi,j = rand() /* Initialize the velocity of the particle */
7: xi,j = rand() /* Initialize the position of the particle */
8: /* Find the best value of αrepeatedly until the maximum iterations are reached */
9: WHILE iter ≤ itermax DO
10: /* Find the best fitness value for each particle in the population */
11: FOR EACH αiter

i ∈ p DO
12: Build BPNN by applying xs

(0)with the αiter
i value;

13: Calculate x̂(0)p = (x̂(0)(q + 1), x̂(0)(q + 2), x̂(0)(q + 3)..., x̂(0)(q + a)) by BPNN;
14: /* Choose the best fitness value of the ith particle in history */
15: IF gBest > pBesti THEN
16: gBest = pBesti;
17: αbest = αiter

i ;
18: END IF
19: END FOR
20: /* Update the values of all the particles by using PSO’s evolution equations */
21: FOR EACH αiter

i ∈ p DO
22: viter

i.j (t + 1) = w ∗ viter
i.j (t) + c1 ∗ rand() ∗ [pBesti − xiter

i.j (t)] + c2 ∗ rand() ∗ [gBest− xiter
i.j (t)]

23: xiter
i.j (t + 1) = xiter

i.j (t) + viter
i.j (t + 1), j = 1, ..., d

24: END FOR
25: iter = iter + 1; /* Until iter arrives at the value of itermax */
26: END WHILE
27: Return gbest: the best fitness after the global particle searching
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