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Abstract: In day-ahead electricity price forecasting (EPF) variable selection is a crucial issue.
Conducting an empirical study involving state-of-the-art parsimonious expert models as benchmarks,
datasets from three major power markets and five classes of automated selection and shrinkage
procedures (single-step elimination, stepwise regression, ridge regression, lasso and elastic nets),
we show that using the latter two classes can bring significant accuracy gains compared to
commonly-used EPF models. In particular, one of the elastic nets, a class that has not been considered
in EPF before, stands out as the best performing model overall.
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1. Introduction

Alongside short-term load forecasting, short-term electricity price forecasting (EPF) has become
a core process of an energy company’s operational activities [1]. The reason is quite simple.
A 1% improvement in the mean absolute percentage error (MAPE) in forecasting accuracy would result
in about 0.1%-0.35% cost reductions from short-term EPF [2]. In dollar terms, this would translate into
savings of ca. $1.5 million per year for a typical medium-size utility with a 5-GW peak load [3].

As has been noted in a number of studies, be it statistical or computational intelligence, a key point
in EPF is the appropriate choice of explanatory variables [1,4-11]. The typical approach has been to
select predictors in an ad hoc fashion, sometimes using expert knowledge, seldom based on some
formal validation procedures. Very rarely has an automated selection or shrinkage procedure been
carried out in EPF, especially for a large set of initial explanatory variables.

Early examples of formal variable selection in EPF include Karakatsani and Bunn [12] and
Misiorek [13], who used stepwise regression to eliminate statistically insignificant variables in
parsimonious autoregression (AR) and regime-switching models for individual load periods. Amjady
and Keynia [4] proposed a feature selection algorithm that utilized the mutual information technique.
(for later applications, see, e.g., [11,14,15]). In an econometric setup, Gianfreda and Grossi [5] computed
p-values of the coefficients of a regression model with autoregressive fractionally integrated moving
average disturbances (Reg-ARFIMA) and in one step eliminated all statistically-insignificant variables.
In a study concerning the profitability of battery storage, Barnes and Balda [16] utilized ridge regression
to compute forecasts of the New York Independent System Operator (NYISO) electricity prices for a
model with more than 50 regressors.

More recently, Gonzélez et al. [17] used random forests to identify important explanatory variables
among the 22 considered. Ludwig et al. [7] used both random forests and the least absolute shrinkage
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and selection operator (i.e., lasso or LASSO) as a feature selection algorithm to choose the relevant
out of the 77 available weather stations. In a recent neural network study, Keles et al. [11] combined
the k-nearest-neighbor algorithm with backward elimination to select the most appropriate input
variables out of more than 50 fundamental parameters or lagged versions of these parameters.
Finally, Ziel et al. [9,18] used the lasso to sparsify very large sets of model parameters (well over 100).
They used time-varying coefficients to capture the intra-day dependency structure, either using
B-splines and one large regression model for all hours of the day [9] or, more efficiently, using a set
of 24 regression models for the 24 h of the day [18].

However, a thorough study involving state-of-the-art parsimonious expert models as benchmarks,
data from diverse power markets and, most importantly, a set of different selection or shrinkage
procedures is still missing in the literature. In particular, to our best knowledge, elastic nets have
not been applied in the EPF context at all. It is exactly the aim of this paper to address these issues.
We perform an empirical study that involves:

e nine variants of three parsimonious autoregressive model structures with exogenous variables
(ARX): one originally proposed by Misiorek et al. [19] and later used in a number of EPF
studies [13,18,20-27], one which evolved from it during the successful participation of TEAM
POLAND in the Global Energy Forecasting Competition 2014 (GEFCom2014; see [28-30]) and an
extension of the former, which creates a stronger link with yesterday’s prices and additionally
considers a second exogenous variable (zonal load or wind power),

o three two-year long, hourly resolution test periods from three distinct power markets
(GEFCom2014, Nord Pool and the U.K.),

e nine variants of five classes of selection and shrinkage procedures: single-step elimination of
insignificant predictors (without or with constraints), stepwise regression (with forward selection
or backward elimination), ridge regression, lasso and three elastic nets (with « = 0.25, 0.5 or 0.75),

e  model validation in terms of the robust weekly-weighted mean absolute error (WMAE; see [1])
and the Diebold-Mariano (DM; see [31]) test

and draw statistically-significant conclusions of high practical value.

The remainder of the paper is structured as follows. In Section 2, we introduce the datasets.
Next, in Section 3, we first discuss the iterative calibration and forecasting scheme, then describe
the techniques considered for price forecasting: a simple naive benchmark, nine variants of three
parsimonious ARX-type model structures and five classes of selection and shrinkage procedures.
In Section 4, we summarize the empirical findings. Namely, we evaluate the quality of point forecasts
in terms of WMAE errors, run the DM tests to formally assess the significance of differences in the
forecasting performance and analyze variable selection for the best performing elastic net model.
Finally, in Section 5 wrap up the results and conclude.

2. Datasets

The datasets used in this empirical study include three spot market time series. The first one comes
from the Global Energy Forecasting Competition 2014 (GEFCom?2014), the largest energy forecasting
competition to date [28]. The dataset includes three time series at hourly resolution: locational marginal
prices, day-ahead predictions of system loads and day-ahead predictions of zonal loads and covers the
period 1 January 2011-14 December 2013; see Figure 1. The origin of the data has never been revealed
by the organizers. The full dataset is now available as supplementary material accompanying [28]
(Appendix A); however, during the competition, the information set was being extended on a weekly
basis to prevent ‘peeking’ into the future. The dataset was preprocessed by the organizers and does
not include any missing or doubled values.
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Figure 1. GEFCom?2014 hourly locational marginal prices (LMP; top) and hourly day-ahead predictions
of the system load (bottom) for the period 1 January 2011-14 December 2013. The day-ahead predictions
of the zonal load are generally indistinguishable from those of the system load at this resolution; see
Figure 8 in [28]. The vertical dashed lines mark the beginning of the 91-day period for selecting A’s
(ridge regression, lasso, elastic nets) and the beginning of the 623-day long out-of-sample test period.

The second dataset comes from one of the major European power markets: Nord Pool (NP).
It comprises hourly system prices, hourly consumption prognosis for four Nordic countries (Denmark,
Finland, Norway and Sweden) and hourly wind prognosis for Denmark and covers the period 1
January 2013-29 March 2016; see Figure 2. The time series were constructed using data published by
the Nordic power exchange Nord Pool (www.nordpoolspot.com) and preprocessed to account for
missing values and changes to/from the daylight saving time, analogously as in [20] (Section 4.3.7).
The missing data values (corresponding to the changes to the daylight saving/summer time; moreover,
eight out of 28,392 hourly consumption figures were missing for Norway) were substituted by the
arithmetic average of the neighboring values. The ‘doubled’ values (corresponding to the changes
from the daylight saving/summer time) were substituted by the arithmetic average of the two values
for the ‘doubled” hour.

The third dataset comes from N2EX, the U.K. day-ahead power market operated by Nord Pool.
It comprises hourly system prices for the period 1 January 2013-29 March 2016; see Figure 3. The time
series was constructed using data published by Nord Pool (www.nordpoolspot.com) and, like the
second dataset, preprocessed to account for changes to/from the daylight saving time. Note that the
U.K. dataset includes only prices, as no day-ahead forecasts of fundamental variables were available
to us. Hence, models calibrated to the U.K. data are ‘pure price’ models. To better see the effect of
excluding fundamentals from forecasting models, we use the GEFCom2014 dataset twice, once with
fundamentals (system and zonal load forecasts; to compare with the results for Nord Pool) and once
without them.
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Figure 2. Nord Pool hourly system prices (top), hourly consumption prognosis (middle) and hourly
wind power prognosis for Denmark (bottom) for the period 1 January 2013-29 March 2016. The vertical
dashed lines mark the beginning of the 91-day period for selecting A’s (ridge regression, lasso, elastic
net) and the beginning of the 728-day long out-of-sample test period.
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Figure 3. U.K. power market hourly system prices (Nord Pool’s N2EX market) for the period 1 January
2013-29 March 2016. The vertical dashed lines mark the beginning of the 91-day period for selecting
A’s (ridge regression, lasso, elastic net) and the beginning of the 728-day long out-of-sample test period.

3. Methodology

It should be noted that although we use here the terms short-term, spot and day-ahead
interchangeably, the former two do not necessarily refer to the day-ahead market. Short-term EPF
generally involves predicting 24 hourly (or 48 half-hourly) prices in the day-ahead market, cleared
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typically at noon on the day before delivery, i.e., 12-36 h before delivery, the adjustment markets,
cleared a few hours before delivery, and the balancing or real-time markets, cleared minutes before
delivery [32]. The spot market, especially in the literature on European electricity markets, is often used
as a synonym of the day-ahead market. However, in the U.S., the spot market is another name for the
real-time market, while the day-ahead market is called the forward market [20,33]. Furthermore, some
markets in Europe nowadays admit continuous trading for individual load periods up to a few hours
before delivery. With the shifting of volume from the day-ahead to intra-day markets, also in Europe,
the term spot is more and more often being used to refer to the real-time markets [1].

Throughout this article, we denote by P;, the electricity price in the day-ahead market for day d
and hour k. Like many studies in the EPF literature [1], we use the logarithmic transform to make the
price series more symmetric (see Figure 4) and compare with the top panels in Figures 1-3. We can do
this since all considered datasets are positive-valued. However, this is not a very restrictive property.
If datasets with zero or negative values were considered, we could work with non-transformed
prices. Furthermore, we center the log-prices by subtracting their in-sample mean prior to parameter
estimation. We do this independently for each hour h =1, ..., 24:

T

1
pan = log(Pyy) — T Y 1og(Py), 1
t=1

where T is the number of days in the calibration window; hence, the missing intercept (8 o = 0) in our
autoregressive models; for model parameterizations, see Sections 3.2-3.4.

For all three markets, the day-ahead forecasts of the hourly electricity price are determined
within a rolling window scheme, using a 365-day calibration window. First, all considered models
are calibrated to data from the initial calibration period (i.e., 1 January 2011-31 December 2011 for
GEFCom?2014 and 1 January 2013-31 December 2013 for Nord Pool and the U.K.), and forecasts for
all 24 h of the next day (1 January) are determined. Then, the window is rolled forward by one day;
the models are re-estimated, and forecasts for all 24 h of 2 January are computed. This procedure
is repeated until the predictions for the 24 h of the last day in the sample (14 December 2013 for
GEFCom2014 and 29 March 2016 for Nord Pool and the U.K.) are made.

For models requiring calibration of the regularization parameter (i.e., A), we use a setup commonly
considered in the machine learning literature. Namely, we divide our datasets into estimation
(365 days), validation (91 days or 13 full weeks) and test periods (623 days for GEFCom2014, 728 days
for Nord Pool and the U.K; respectively 89 and 104 full weeks). For each of the five models—ridge
regression, lasso and elastic nets with & = 0.25, 0.50 and 0.75—34 different ‘sub-models” with 34 values
of A spanning the regularization parameter space (see Sections 3.4.3 and 3.4.4 for details) are estimated
in the 91-day validation period directly following the last day of the initial calibration period; see
Figures 1-3. For all hours of the day, only one value of A is chosen for each of the five models: the one
that yields the smallest WMAE error during this 91-day period; for error definitions, see Section 4.1.
This value of A is later used for computing day-ahead price forecasts in the whole out-of-sample
test period. To ensure that all models are evaluated using the same data, predictions of all models
are compared only in the out-of-sample test periods: 1 April 2012-14 December 2013 (623 days) for
GEFCom2014 and 2 April 2014-29 March 2016 (728 days) for Nord Pool and the U.K. Obviously, such
a simple procedure for the selection of the regularization parameter may not be optimal. Generally,
better performance is to be expected from shrinkage models when A is recalibrated at every time step.
Such an approach has been recently taken by Ziel [18], who used the Bayesian information criterion to
select one out of 50 values of A for every day and every hour in the 969-day-long out-of-sample test
period. The downside of such an approach is, however, the increased computational time.
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Figure 4. Global Energy Forecasting Competition 2014 (GEFCom2014) (top), Nord Pool (middle) and
N2EX (U.K.; bottom) hourly log prices. As expected, the logarithmic transform makes the price series
more symmetric. The vertical dashed lines mark the beginning of the 91-day period for selecting A’s
(ridge regression, lasso, elastic nets) and the beginning of the out-of-sample test periods. Each day,
the 365-day-long calibration window is rolled forward by 24 h; the models are re-estimated; and price
forecasts for the 24 h of the next day are computed.

Our choice of the model classes is guided by the existing literature on short-term EPF.
Like in [12,18,25-27,30], the modeling is implemented separately across the hours, leading to 24 sets of
parameters for each day the forecasting exercise is performed. As Ziel [18] notes, when we compare
the forecasting performance of relatively simple models implemented separately across the hours and
jointly for all hours (like in [9,34-36]), the latter generally performs better for the first half of the day,
whereas the former are better in the second half of the day. At the same time, models implemented
separately across the hours offer more flexibility by allowing for time-varying cross-hour dependency
in a straightforward manner. Hence, our choice of the modeling framework.

In the remainder of this section, we first define the benchmarks: a simple similar-day technique
and a collection of parsimonious autoregressive models. Since the latter are usually built on some prior
knowledge of experts, like in [18], we refer to them as expert models. Then, we move on to describe
the selection and shrinkage procedures used in this study.

3.1. The Naive Benchmark

The first benchmark, most likely introduced to the EPF literature in [34] and dubbed the
naive method, belongs to the class of similar-day techniques (for a taxonomy of EPF approaches,
see, e.g., [1]). It proceeds as follows: the electricity price forecast for hour & on Monday is set equal to
the price for the same hour on Monday of the previous week, and the same rule applies for Saturdays
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and Sundays; the electricity price forecast for hour /1 on Tuesday is set equal to the price for the same
hour on Monday, and the same rule applies for Wednesdays, Thursdays and Fridays. As was argued
in [34,35], forecasting procedures that are not calibrated carefully fail to outperform the naive method
surprisingly often. We denote this benchmark by Naive.

3.2. Autoregressive Expert Benchmarks

The second benchmark is a parsimonious autoregressive structure originally proposed by
Misiorek et al. [19] and later used in a number of EPF studies [18,20,21,23-27]. Within this model,
the centered log-price on day d and hour £, i.e., p;, is given by the following formula:

Pan = BraPa—1n + BuoPa—on + BuaPa—7n + Buabi™ + Buszan
+ Bi6Dsat + Br,zDsun + BngDmon + €d s

where the lagged log-prices py_1p, pa—onand pg_7), account for the autoregressive effects
of the previous days (the same hour yesterday, two days ago and one week ago),

while p;"i”l =min,_q,_24{ps_1,} is the minimum of the previous day’s 24 hourly log-prices.

@

The exogenous variable z; ;, refers to the logarithm of hourly system load or Nordic consumption
for day d and hour & (actually, to forecasts made a day before, see Section 2). The three dummy
variables—Dgg;, Dg,,, and D pgp,—account for the weekly seasonality. Finally, the g, ,’s are assumed to
be independent and identically distributed (i.i.d.) normal variables. We denote this autoregressive
benchmark by ARX1 to reflect the fact that the load (or consumption) forecast is used as the
exogenous variable in Equation (2). The corresponding model with B;, 5 = 0, i.e., with no exogenous
variable, is denoted by AR1. The ARX1 and AR1 models, as well as all autoregressive structures
considered in Sections 3.2 and 3.3, are estimated in this study with least squares (LS), using MATLAB’s
regress.m function.
In what follows, we also consider two variants of Equation (2) that treat holidays as special days:

Pan = BuaPa—1n + BuaPa—on + BuaPa—7n + Buabi™ + Buszan
+ Bn6Dsat + Br7Dsun + Br,gDmon + BroDHot + €ans

and that additionally utilize the fact that prices for early morning hours depend more on the previous
day’s price at midnight, i.e., p;_1 74, than on the price for the same hour, as recently noted in [18,29]:

®)

Pan = BuiPa—1n + Bu2Pa—2 + BuaPa—7 + Brabli™y + Pnszan
+ Bi6Dsat + BnyDsun + BrgDmon + BroDror + BrioPd—1,24 + €d -
We denote Models (3) and (4) by ARX1h and ARX1hm, respectively. Similarly, corresponding models
with Bj, 5 = 0 are denoted by AR1h and ARThm. Note, that when forecasting the electricity price for

the last load period of the day, i.e., p; 24, models with suffix hm reduce to models with suffix h (this is
true for all models considered in Section 3.2).

4)

In Equations (3) and (4), Dy, is a dummy variable for holidays. The holidays were identified
using the Time and Date AS (www.timeanddate.com/holidays) web page: U.S. federal holidays (for
GEFCom?2014), national holidays in Norway (for Nord Pool) and public holidays, bank holidays and
major observances in the U.K. (option ‘Holidays and some observances’).

The third benchmark is an extension of the ARX1 model, which takes into account the experience
gained during the GEFCom2014 competition that it may be beneficial to use different model structures
for different days of the week, not only different parameter sets [29]. Hence, the multi-day ARX model
(denoted later in the text by mARX1) is given by the following formula:

Pap = (Z .Bh,l,z'Di) Pa—1p + BroPa—2n + BnaPa—7n + Brabl™y + BuszZan

iel

(5)
+ BneDsat + Br7Dsun + BrsDmon + Bn11DMonPd—3 4 + €dhs
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where I = {0, Sat, Sun, Mon}, Dy = 1 and the term D, p4—3 ), accounts for the autoregressive effect
of Friday’s prices on the prices for the same hour on Monday. Note that to some extent, this structure
resembles periodic autoregressive moving average (PARMA) models, which have seen limited use in
EPF [37,38]. Like for the ARX1 model, also for mARX1, we consider two variants:

e  mARX1h, which treats holidays as special days, i.e., with the B, 9Dy, term in Equation (5),
o and mARX1hm, which additionally implements the dependence on the previous day’s price at
midnight, i.e., with the B, 9Dy, and By, 10p4—1,24 terms in Equation (5).

The corresponding price only models, i.e., with B, 5 = 0, are denoted by mAR1, mAR1h and mAR1hm.

Misiorek et al. [19] noted that the minimum of the previous day’s 24 hourly prices was the best link
between today’s prices and those from the entire previous day. Their analysis, however, was limited
to one small dataset (California CalPXprices, 3-9 April 2000) and only one simple function at a time
(maximum, minimum, mean or median of the previous day’s prices). To check if using more than one
function leads to a better forecasting performance, we introduce a benchmark, which is an extension
of the ARX1 model that takes into account not only the minimum ( p;”iq), but also the maximum
(pi“7) and the mean (pnggl) of the previous day’s 24 hourly prices. Additionally, we include a second
exogenous variable (y, ), which is taken as either the logarithm of the day-ahead zonal load forecast
(GEFCom?2014) or of the Danish wind power prognosis. The resulting ARX2 model is given by the
following formula:

Paj = BuaPa—1h + Bu2Pa—2n + BuaPa—7 + BraPiy + Buszan
+ BneDsat + Bn,7Dsun + Bn,sDmon (6)
+ Bu 1Pl + Bra2ba S + BuasYan + €
Like for the ARX1 and mARX1 models, also for ARX2, we consider two variants:

ARX2h with the B, 9 Dy, term in Equation (6),
and ARX2hm with the B, 9Dg,; and B, 19p4—1,24 terms in Equation (6).

The corresponding price only models, i.e., with Bj5, 8,13 = 0, are denoted by AR2, AR2h
and AR2hm.

3.3. Full Autoregressive Model

Finally, we define a much richer autoregressive model that includes as special cases all expert
models discussed in Section 3.2 and call it the full ARX or fARX model. We consider all regressors
that, in our opinion, posses a non-negligible predictive power. The fARX model is similar in spirit to
the general autoregressive model defined by Equation (2) in [18]. However, there are some important
differences between them. On one hand, fARX includes exogenous variables and a much richer
seasonal structure. On the other, it does not look that far into the past and concentrates only on days
d—1,d—-2,d—3and d —7. The fARX model is given by the following formula:

24
Pap =Y (BniPa-1, + Pnit2aPd—2i + Bui+asPd—3i) + BnzaPa—7n

i=1
> i avg
min max
+) (,Bh,j+73pd7]‘ + Buj+76Pa—; + ﬁh,j+79pd,j>
=1

+ Bngazan + Bngazi—1,n + Bngsza—7,n + BngeYn
7 7

@)

7
BisokDik + Y Bnos+kDizan + Y, Bnaoo-skDipPa—11 + €
pa k=1 k=1

+

where Dy = Dgyt, Dy = Dsyy, ..., D7 = Dp,; are dummies for the seven days of the week (we treat
holidays as the eighth day of the week, hence D; = ... = Dy = 0 for holidays). The price only variant,
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fAR, is obtained by setting to zero all coefficients of the terms involving exogenous variables, i.e.,
Bni =0, fori=83,..,86,94,...,100.

Although we fit the fARX model to power market data and evaluate its forecasting performance,
the main reason for including it in this study is to use it as the baseline model for the selection and
shrinkage procedures discussed in Section 3.4. For this purpose, let us write the fARX model in a more
compact form:

n
Pap =Y BuiXani+ Edn (8)
i=1

where X1, ;’s are the n = 107 regressors in Equation (7) and f, ;’s are their coefficients.

3.4. Selection and Shrinkage Procedures

All autoregressive models considered in Sections 3.2 and 3.3 are estimated in this study with
least squares (LS). However, there are many alternatives to using LS in multi-parameter models,
in particular [39]:

e  variable or subset selection, which involves identifying a subset of predictors that we believe to

be influential, then fitting a model using LS on the reduced set of variables,
e  shrinkage (also known as regularization), which fits the full model with all predictors using an

algorithm that shrinks the estimated coefficients towards zero, which can significantly reduce
their variance.

Depending on what type of shrinkage is performed, some of the coefficients may be shrunk to
zero itself. As such, some shrinkage methods, like the lasso, de facto perform variable selection. It
should be noted, however, that variable selection (or model sparsity) is beneficial for interpretability
and faster simulation of model trajectories; for reducing the forecasting errors, only the shrinkage
property is required.

3.4.1. Single-Step Elimination of Insignificant Predictors

This subset selection procedure is a simple alternative to stepwise regression discussed in
Section 3.4.2 and has been used, for instance, in [5]. The idea is to fit the full regression model,
in our case fARX, then in a single step, set to zero all statistically insignificant coefficients. We use
MATLAB’s regress.m function with the commonly-used 5% significance level. Setting to zero all
coefficients in Equation (7) whose 95% confidence intervals (CI) include zero yields the ssARX model
for a particular day and hour (the ssAR model is obtained analogously from fAR; see Section 3.3).
This procedure can be conducted by imposing some additional constraints, for instance, leaving in
the model all coefficients of the basic ARX1 (or AR1) benchmark. This yields the ssARX1 and ssAR1
models. Of course, the most commonly-used significance level of 5% may not be optimal. We have
additionally checked the performance of 90% and 97.5% CI. It turns out that the overall ranking of
the ssAR-type models does not change much. However, ssARX and ssAR perform slightly better for
the 90% CI, while ssARX1 and ssAR1 either for the 95% or the 97.5% CI.

3.4.2. Stepwise Regression

Although very fast, the single-step elimination may remove too many explanatory variables at
once and lead to a poorly-performing subset of predictors. On the other hand, selecting the best subset
from among all 2" subsets of the n predictors is not computationally feasible for large n. Even if doable,
it may lead to overfitting. For these reasons, stepwise methods, which explore a far more restricted set
of models, are attractive alternatives to best subset selection [39]. In the context of EPF, they have been
used, for instance, in [12,13,40].

There are two basic procedures: forward selection and backward elimination. Forward stepwise
selection begins with a model containing no predictors and then iteratively adds variables to the model.
At each step, the variable that gives the greatest additional improvement to the fit is added to the
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model, and the procedure continues until all important predictors are in the model. We use MATLAB’s
stepwisefit.m function, which computes the p-value of an F-statistic at each time step to test models
with and without a potential term. If a variable is not currently in the model, the null hypothesis is
that it would have a zero coefficient if added to the model. If there is sufficient evidence to reject the
null hypothesis, that variable may be added to the model (we use stepwisefit’s default 5% significance
level for adding variables; naturally, this could be further fine tuned as for the single-step elimination
procedures). In a given step, the function adds the variable with the smallest p-value. We denote the
resulting models by fSARX and fsAR.

Backward stepwise elimination (or selection) begins with the full model containing all n variables,
i.e., fARX or fAR, and then iteratively removes the least useful predictor, one at a time. MATLAB's
stepwisefit.m function computes the null hypothesis that a given variable has a zero coefficient. If there
is insufficient evidence to reject the null hypothesis, the variable may be removed from the model
(we use stepwisefit’s default 10% significance level for removing variables). In a given step, the function
removes the variable with the largest p-value. We denote the resulting models by bsARX and bsAR.

3.4.3. Ridge Regression

Ridge regression is a regularization method introduced in statistics by Hoerl and Kennard [41].
To our best knowledge, apart from a limited study of Barnes and Balda [16] in the context of evaluating
the profitability of battery storage, the method has not been used for EPF. Ridge regression is very
similar to least squares, except that the 8;’s in (8) are not estimated by minimizing the residual sum of
squares (RSS), but by RSS penalized by a quadratic shrinkage factor:

i=1

2
wrid . n . n n
ﬁm ge _ argmin {RSS +A 2 ‘B%”} = argmin 2 (Pd,h — 2 ,Bh,iXd,h,i> + A 2 ,B%” , 9
j i=1

Bn,i i=1 Bn,i dheT

where T represents the calibration period and A > 0 is a tuning or regularization parameter, to be
determined separately. Note that for A = 0, we get the standard LS estimator; for A — oo, all B, ;’s
tend to zero; while for intermediate values of A, we are balancing two ideas: minimizing the RSS and
shrinking the coefficients towards zero (and each other).

Ridge regression produces a different set of coefficient estimates for each value of A;
hence, selecting a good value for A is critical. Cross-validation provides a simple way to tackle
this problem [39]. We choose a grid of A values (here: 34 equally-spaced values spanning the
range from 1-100; if A € {94,97,100} was selected, we additionally checked another set of 34
equally-spaced values spanning the range from 101-200) and using MATLAB’s ridge.m function
(we scale the regressors) compute the prediction errors for each value of the tuning parameter in
the 91-day validation period; see Section 2. We then select A for which the WMAE error (for the
definition, see Section 4.1) is the smallest and use it for computing day-ahead price forecasts in the
whole out-of-sample test period. The resulting model is denoted in the text by RidgeX or Ridge when
the baseline model is fAR.

3.4.4. Lasso and Elastic Nets

Ridge regression has one unwanted feature when it comes to interpretation and model
identification. Unlike stepwise regression, which will generally select models that involve just a subset
of the variables, ridge regression will include all n predictors in the final model [39]. The quadratic
shrinkage factor in Equation (9) will shrink all B, ;'s towards zero, but it will not set any of them exactly
to zero. In 1996, Tibshirani [42] proposed the least absolute shrinkage and selection operator (i.e., lasso
or LASSO) that overcomes this disadvantage. It is the only shrinkage procedure that has been applied
in EPF to a larger extent, however only in the last two years [7,9,18,25,43].



Energies 2016, 9, 621 11 of 22

The lasso is a shrinkage method just like ridge regression. However, it uses a linear penalty factor
instead of a quadratic one:

n
Blasso = argmin {RSS +A Y 1Bl } . (10)
B i=1

This subtle change makes the solutions nonlinear in p, 5, and there is no closed form expression
as in the case of ridge regression. Because of the nature of the shrinkage factor in Equation (10),
making A sufficiently large will cause some of the coefficients to be exactly zero [44]. Thus, the lasso
de facto performs variable selection, just like the methods discussed in Sections 3.4.1 and 3.4.2. As in
ridge regression, selecting a good value of A for the lasso is critical. Here, we use MATLAB's lasso.m
function and a grid of exponentially-decreasing A’s (the largest just sufficient to produce all 8; = 0;
the function also automatically scales the regressors). We then select A for which the WMAE error
(for the definition, see Section 4.1) in the 91-day validation period is the smallest. The resulting model
is denoted in the text by LassoX, or Lasso when the baseline model is fAR.

The lasso does not handle highly-correlated variables very well. The coefficient paths tend to
be erratic and can sometimes show wild behavior [44]. This is not a critical issue for forecasting, but
for interpretation and model identification, this has more serious consequences. In 2005, Zou and
Hastie [45] proposed the elastic net, a new regularization and variable selection method that can be
seen as an extension of ridge regression and the lasso. It often outperforms the lasso, while exhibiting a
similar sparsity of representation. The elastic net uses a mixture of linear and quadratic penalty factors:

~EN . 1—a & 2 1
B~ = argmin< RSS+ A — Y Brita) Bl ¢, (11)
Bh,i i=1 i=1

where & € [0,1]. When a = 1, the elastic net reduces to the lasso, and with a = 0, it becomes ridge
regression. The % in the quadratic part of the elastic net penalty in Equation (11) leads to a more
efficient and intuitive soft-thresholding operator in the optimization; the original formulation in [45]
did not include the % scaling. Note also that every elastic net problem can be rewritten as a lasso
problem on augmented data. Hence, for fixed A and &, the computational difficulty of the elastic net
solution is similar to the lasso problem [44].

Compared to the lasso and ridge regression, the elastic net has an additional mixing parameter
that has to be determined. It can be set on subjective grounds, as we do here, or optimized within a
cross-validation scheme. We use MATLAB's lasso.m function (with a grid of exponentially-decreasing
M’s; the function also automatically scales the regressors) and three values of the mixing parameter,
« = 0.25,0.50 and 0.75. This yields six elastic net models:

° EN25X, EN50X and EN75X when the baseline model is fARX,
° and EN25, EN50 and EN75 when the baseline model is fAR,

that span the space between ridge regression (RidgeX, Ridge) and lasso models (LassoX, Lasso).

4. Empirical Results

We now present day-ahead forecasting results for the three considered datasets: GEFCom2014
hourly locational marginal prices, Nord Pool hourly system prices and U.K. hourly system prices.
We use long, two-year out-of-sample test periods to make sure the obtained results are reliable (for the
GEFCom2014 dataset, the test period is shorter: 623 days; see Figure 1). Recall from Section 2 that the
models are re-estimated on a daily basis. Price forecasts pd+1,1/ ey pd+1,24 for all 24 h of the next day
are determined at the same point in time, and the 365-day calibration window is rolled forward by
one day.
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4.1. Performance Evaluation in Terms of WMAE

Following [21,24,30,35], we compare the models in terms of the weekly-weighted mean absolute
error (WMAE) loss function, which is a robust measure similar to MAPE, but with the absolute
error normalized by the mean weekly price to avoid the adverse effect of negative and close to zero
electricity spot prices. We evaluate the forecasting performance using weekly time intervals, each with
24 x 7 = 168 hourly observations. For each week w = 1, ..., w4y in the out-of-sample test period,
we calculate the error for each model as:

WMAE, = 5 S S LT (12)
MAEp = — MAEp = — Py — Pyl 12
Y Pies U168 Pres y STt '

where P, is the actual price for hour / (not the centered log-price p; 1), Isd,h is the model predicted
price for that hour, Pgg = 11@ Zgi’}\m 2%4:1 Py 1, is the mean price for a given week and w;;x = 89 for
GEFCom2014 and 104 for Nord Pool and the U.K. Next, we aggregate these errors into one mean value

over all weeks in the out-of-sample test period:

Wimax

Y WMAE,, (13)

Winax 45—

WMAE =

Note that we also analyzed the forecasts using the weekly root mean square error (see [1]
(Section 3.3)), but the results were qualitatively the same and are omitted here due to space limitations.

In Table 1, we report WMAE errors for the three considered datasets and the 20 model types.
We use the GEFCom2014 dataset twice: once we fit ARX-type models to the complete dataset with
exogenous variables (system and zonal load; left part of the table) and once we fit AR-type models to
the dataset without them (right part of the table). This allows us to compute the decrease in WMAE
when exogenous variables are added to the model (the last column in Table 1). Several important
conclusions can be drawn:

e  All models beat the Naive benchmark and, except for the fAR model and the U.K. data, by a
large margin. In particular, the improvement from using elastic nets can be as much as 5%!
This indicates that they all are highly efficient forecasting tools.

o  When we exclude single-step elimination without constraints (ssAR/X) and backward selection
(bsAR/X) models, the selection and shrinkage methods generally outperform the expert
benchmarks. In particular, the elastic net model with « = 0.75 (i.e., closer in terms of « to
the lasso than to ridge regression) beats every expert model, except mAR1hm for the U.K. data,
where it is second best.

o  The latter comment leads us to the next conclusion that adding the price for the last load period
of the day, ps_1 24, to the expert models improves their performance greatly. This fact has been
recognized in the EPF literature only very recently [18,25,29] and apparently requires more
attention. To see this, compare the models with suffix m to those without it. In particular,
mAR1Thm is the overall best performing model for the U.K. dataset and ARX2hm is the third best
model for the Nord Pool dataset.

e  Somewhat surprisingly, the full ARX model performs poorly. For the U.K. dataset, it is nearly as
bad as the Naive benchmark. In all four cases (three datasets + GEFCom2014 without exogenous
variables), it is worse than the overall best model and the best performing elastic net (EN75/X) by
at least 1.4%. Given that a 1% improvement in MAPE translates into savings of ca. $1.5 million per
year for a typical medium-size utility [2,3], this observation is of high practical value. Yet, from a
statistical perspective, this finding is not that surprising. The fARX model has 107 parameters,
which have to be calibrated to only 365 observations. Increasing the length of the calibration
window should lead to a better performance of the full model.
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Table 1. Mean values of the weekly-weighted mean absolute errors, i.e., WMAE defined by Equation
(13), over all 89 weeks of the GEFCom2014 or all 104 weeks of the Nord Pool and U.K. out-of-sample
test periods. WMAE errors are reported in percent, with standard deviation in parentheses. A heat map

is used to indicate better (— green) and worse (— red) performing models. WMAE errors for the best
performing model for each dataset are emphasized in bold. The last column presents the decrease in
WMAE when exogenous variables are added to the model (AR — ARX; for the GEFCom2014 dataset).
The bottom rows compare the performance across model classes.

ARX-type AR-type AR - ARX
GEFCom Nord Pool GEFCom N2EX (UK) GEFCom
Naive 0.000
(0.975) (0.778) (0.975) (0.310)
Expert benchmarks
ARX1 11.069 9.739 AR1 11.183 8.384 0.114
(0.639) (0.614) (0.701) (0.253)
ARX1h 11.072 9.693 AR1h 11.181 8.389 0.109
(0.639) (0.616) (0.704) (0.253)
ARX1hm 10.976 8.673 AR1hm 11.062 8.229 0.086
(0.617) (0.516) (0.657) (0.247)
MARX1 11.102 9.482 mAR1 11.320 8.258 0.218
(0.621) (0.601) (0.696) (0.253)
mARX1h 11.105 9.461 mAR1h 11.322 8.270 0.218
(0.622) (0.602) (0.699) (0.254)
mARX1hm 10.974 8.461 mARThm 11.168 _ 0.195
(0.598) (0.518) (0.644) (0.246)
ARX2 10.742 8.878 AR2 11.331 8.290 0.589
(0.575) (0.546) (0.700) (0.253)
ARX2h 10.739 8.826 ARZh 11.333 8.288 0.594
(0.575) (0.546) (0.704) (0.253)
ARX2hm 10.625 8.206 ARZhm 11.070 8.237 0.444
(0.565) (0.485) (0.656) (0.249)
Full ARX model
£ARX 10.911 10.131 fAR 12.279 1.368
(0.507) (0.708) (0.602) (0.334)
Selection and shrinkage methods
ssARX 10.669 8.861 ssAR 12.061 9.344 1.393
(0.577) (0.537) (0.644) (0.270)
ssARX1 9.894 8.409 ssAR1 11.343 8.395 1.449
(0.548) (0.507) (0.641) (0.261)
£sARX 9.876 £sAR 11.193 8.563 1.317
(0.502) (0.502) (0.592) (0.272)
bSARX 10.449 9.421 bSAR 11.968 9.252 1.519
(0.502) (0.599) (0.582) (0.301)
RidgeX 9.777 8.972 Ridge 10.775 8.237 0.998
(0.544) (0.479) (0.653) (0.260)
LassoX 8419 |} .ss0 ‘ 5 1.246
(0.503)
EN75X EN75 1.233
(0.489)
EN50X 8.287 EN50 1.215
(0.496)
EN25X 8529 | Enos | 8113 | 1176
(0.522) (0.503) (0.613) (0.253)
Comparisons
Expert - Best 1.152 0.150 | Expert - Best 0.412 0.000
fARX - Best 1.438 2.075 |fAR - Best 1.629 1.626
Naive - Best 5.235 3.086 | Naive - Best 4.058 1.670
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e Among the selection and shrinkage methods, the lasso and elastic nets tend to outperform
single-step elimination (ssAR/X/1), stepwise regression (fsAR/X, bsAR/X) and even ridge
regression (Ridge/X). Only for the Nord Pool dataset, the fsSARX forward selection model is
better than the lasso and two elastic nets.

4.2. Diebold—Mariano Tests

In order to formally investigate the advantages from using selection and shrinkage methods,
we apply the Diebold—Mariano (DM; see [31]) test for significant differences in the forecasting
performance. Since predictions for all 24 h of the next day are made at the same time using the
same information set, forecast errors for a particular day will typically exhibit high serial correlation.
Therefore, like [24,30,46], we conduct the DM tests for each of the 24 load periods separately,
using absolute error losses of the model forecast:

L(er) = les| = | Py — Py

. (14)

For each pair of models and for each hour independently, we calculate the loss differential series:
dy = L)) — L], (15)

We perform two one-sided DM tests at the 5% significance level: (i) a test with the null hypothesis
Hy:E(d:) < 0, i.e., the outperformance of the forecasts of modely by those of modely; and (ii) the
complementary test with the reverse null H(I){:E(dt) > 0, i.e., the outperformance of the forecasts of
modelx by those of modely. Note that, like in [24,30,46], we assume here forecasts for consecutive days,
hence loss differentials are not serially correlated. For the better performing models, this is a generally
valid assumption.

In Figures 5 and 6, we summarize the DM results for all test cases (three datasets + GEFCom?2014
without exogenous variables). Namely, we sum the number of significant differences in forecasting
performance across the 24 h and use a heat map to indicate the number of hours for which the forecasts
of a model on the X-axis are significantly better than those of a model on the Y-axis. Two extreme
cases—(i) the forecasts of a model on the X-axis are significantly better for all 24 h of the day and (ii) the
forecasts of a model on the X-axis are not significantly better for any hour—are indicated by white
and black squares, respectively. Naturally, the diagonal (white crosses on black squares) should be
ignored, as it concerns the same model on both axes. Columns with many non-black squares (the more
green or white the better) indicate that the forecasts of a model on the X-axis are significantly better
than the forecasts of many of its competitors. Conversely, rows with many non-black squares mean
that the forecasts of a model on the Y-axis are significantly worse than the forecasts of many of its
competitors. For instance, for the GEFCom2014 dataset and ARX-type models displayed in the left
panel of Figure 5, the white row for the Naive benchmark indicates that the forecasts of this simple
model are significantly worse than the forecasts of all of its competitors for all 24 h, while the black
column for the Naive benchmark means that not a single competitor produces significantly worse
forecasts than Naive, even for a single hour of the day.

The obtained DM-test results support our observations from Section 4.1 on WMAE errors. Again,
we can conclude that applying the lasso or one of the elastic nets improves forecasting accuracy.
Especially for the GEFCom?2014 dataset (both for ARX- and AR-type models), these variable selection
schemes lead to models that yield significantly better forecasts than those of the expert models
(see the white columns for Lasso/X, EN75/X, EN50/X and EN25/X in the left panels of Figures 5 and 6),
while their predictions are never outperformed by any of the competitors (see the black rows for these
four models). For the Nord Pool and U.K. datasets, the results are not that clear cut, but still there
are many more green or white squares in the columns than in the rows corresponding to these four
selection schemes.
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Again, EN75/X stands out as the best performing model overall. For the GEFCom2014 test cases,
it always leads to significantly better forecasts than any of the expert benchmarks. For the Nord Pool
dataset, its forecasts are significantly better for 10-23 h of the day and significantly worse for at most
2 h (only for models with suffix m: mARX1hm and ARX2hm, 2 h, and ARX1hm, 1 h). Finally, for the
U.K. dataset, the results are the least convincing. EN75/X yields significantly better forecasts for 4-12 h
of the day and significantly worse for at most 2 h (only for mAR-type models: mAR1 and mAR1h,
2 h, and mAR1hm, 1 h).

Now, let us look in detail at the performance for each hour of the day. In Figure 7, we
provide a graphical representation of the DM test statistic for four models and all considered
datasets. The models include: the best overall EN75/X model and three benchmarks (Naive,
mMARX1hm/mAR1hm and fAR/X). For the GEFCom2014 dataset, EN75/X clearly beats all benchmarks
across all hours. The situation for the remaining two datasets would be nearly the same if it was not
for the early morning hours (Hours 6 and 7 for Nord Pool and Hour 8 for the U.K.), when the expert
benchmarks yield significantly better predictions. This is somewhat surprising, since the morning peak
comes a bit later in both markets. Perhaps looking at variables selected by the elastic net algorithm
will provide more insight.

Nord Pool
Naive P g 2 Naive P T .‘ 2
ARX1 1 ARX1 1
ARX1h 1 ARX1h 1
ARX1hm 11 129 ARX1hm a1 B
mARX1 mARX1
mARX1h mARX1h
mARX1hm | 16 MARX1hm || 16
ARX2 ARX2 ||
ARX2h ARX2h <l
ARX2hm |,, ARX2hm . 2
fARX fARX :

sSARX sSARX B

sSARX1 sSARX1 B

fSARX 18 fSARX 18

bsARX bsARX ||

RidgeX RidgeX ||

LassoX 4 LassoX . . . 4

EN75X EN75X X

EN50X EN50X .

EN25X x o  EN25X N R LD o
O - < - < N o X X o X X X X X X X Q= < N N < X X o X X X X XXX
SEEEEEIEIEIEEIIRILE SEEEEEIERFLEEIERREEE

<z e<ct < o= o SWWw <xreg<ctc < o p= o Swiw
< £ ?;: < @ < £ E < @

Figure 5. Results for conducted one-sided Diebold-Mariano tests at the 5% level for autoregressive
model structures with exogenous variables (ARX)-type models and two datasets: GEFCom2014
(left panel) and Nord Pool (right panel). We sum the number of significant differences in forecasting
performance across the 24 h and use a heat map to indicate the number of hours for which the forecasts
of a model on the X-axis are significantly better than those of a model on the Y-axis. A white square
indicates that forecasts of a model on the X-axis are better for all 24 h, while a black square that they
are not better for a single hour.
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Figure 6. Results for conducted one-sided Diebold-Mariano tests at the 5% level for AR-type models
and two datasets: GEFCom2014 (left panel) and N2EX (U.K.; right panel). We sum the number of
significant differences in forecasting performance across the 24 h and use a heat map to indicate the
number of hours for which the forecasts of a model on the X-axis are significantly better than those of a
model on the Y-axis. A white square indicates that forecasts of a model on the X-axis are better for all
24 h, while a black square that they are not better for a single hour.
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Figure 7. Results for the conducted one-sided Diebold-Mariano tests at the 5% significance level for
selected ARX-type models and the GEFCom2014 and Nord Pool datasets (top panels) and selected
AR-type models and the GEFCom?2014 and N2EX (U.K.) datasets (bottom panels). The tests were
conducted separately for each of the 24 h. The figures report the value of the test statistic for each
test, as well as two thresholds (dashed lines in the plots). The lower one refers to null hypothesis
Hy:E(d;) < 0, i.e., the outperformance of the forecasts of EN75/X by those of a given benchmark
(Naive, mARX1hm/mAR1hm, fAR/X). The upper threshold refers to the complementary test with the
reverse null, i.e., Hy:E(d¢) > 0 or the outperformance of the forecasts of a given benchmark by those of
EN75/X. Only points lying below (or above) the dashed threshold lines are significant at the 5% level.
See also Figures 5 and 6.
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4.3. Variable Selection

In Tables 2 and 3, we provide the number of days in the out-of-sample test period for which a

given B, ; was selected for the best performing elastic net model, i.e., EN75/X. The maximum number
of days is 623 (= 7 x 89 weeks) for GEFCom2014 and 728 (= 7 x 104 weeks) for Nord Pool and N2EX
(UK.). A heat map is used to indicate more (— green) and less (— red) commonly-selected g}, ;’s.
The Bj,;’s are numbered as in Equation (7). Note that B}, g3, ..., B,86, Bn,94, -+ Br,100 = 0 in the EN75
model; see Table 3. Several interesting conclusions can be drawn:

There is no single variable that is always used, regardless of the dataset, hour of the day or the
day in the out-of-sample test period. The closest to “perfection’ is the day-ahead load forecast
for the predicted hour, i.e., z;) (see Row 83 in Table 2). Surprisingly, this dependence on the
load forecast is stronger than the autoregressive effect (see the next bullet point). This may be
a hint that the load-price relationship should be given more attention and that functionals of
load-related (or other fundamental) variables should be included in EPF models, like in [10].

As expected, the price 24 h ago, i.e., pj_1 j,, is an influential variable; see the diagonals in Rows
1-24 in both Tables. However, it is not only the same hour a day earlier, but also the neighboring
hours. The diagonal is less visible around mid-day, and for Nord Pool, it almost disappears except
for the late night hours. The latter may be to some extent due to the importance of wind in this
market and the explanatory power of the day-ahead wind prognosis for the predicted hour.

As recently observed in [18,29], the price for Hour 24, i.e., pj_1 24, is an influential variable.
Somewhat surprisingly, sometime between 7-9 a.m. and 9-11 p.m., Hour 22, i.e., p;_1 22, becomes
more important. What is more surprising, these late night hours are generally more often selected
than the same hour a day ago, i.e., pj_1 ;. These observations require more thorough studies.
Nevertheless, our limited results suggest that these late hour variables should be taken into
account when constructing expert models.

Clearly, the least important variables for all markets are the daily average prices over the last three
days, i.e., pgv_g] for j = 1,2, 3, which are almost never selected. There are some exceptions, though,
for the GEFCom2014 dataset and the EN75 model; see Table 3. Of the two other aggregated
variables, p;”f;? is slightly more influential than p;l”i’]’., which contradicts the observations of
Misiorek et al. [19] and may suggest its use in expert models instead of the minimum.

If prices from days (d — 2) or (d — 3) are ever selected, it is only for hours around midnight the
day before (i.e., pg_223, Pa—224, Pa—3,) or similar hours (i.e., the diagonals in Rows 25-48 and
49-72). On the other hand, the same hour one week ago, i.e., ps_7, has a high explanatory power
(see Row 73 for all datasets), which justifies its use in expert models [18-23,30].

Finally, the weekly dummies (Rows 87-93), the dummy-linked load forecasts (Rows 94-100 in
Table 2 only) and the dummy-linked last day’s prices (Rows 101-107) are generally selected for the
EN75/X model. This may be an indication that the weekly seasonality requires better modeling
than offered by typically-used expert models.
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Table 2. The number of days in the out-of-sample test period for which a given B, ; (see Equation (7))
was selected for the EN75X model. The maximum number of days is 623 (= 7 x 89 weeks) for
GEFCom2014 and 728 (= 7 x 104 weeks) for Nord Pool. A heat map is used to indicate more (— green)

and less (— red) commonly-selected By, ;’s.

GEFCom2014

Nord Pool

Hour

Hour

314 116 126 6 2 4 297 411 343 312
112 133

205 158 329 197
164 205 233 275 4

261 112 100 170
242

106
131 244 132 139 198
340 328 234 216 88

81 131 144 239 111 11

125 153 166 218 224 271 297 337 1

249 259 206
26 195

06

135 182 186

194 0
170 178 188
51 199 301 258
102 179 211 340

98 149 141 196 279 254 114 199
220 333 432 4 ) 200 229 104

422,
115 94 194 203 138 1350, 120
105 183
) 283 228 212 72 81 .

2 436

[
ﬁml 2 3 4 5 6 7 8 9101112131415161718192021222324

[g,.]
ﬂ""l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 393 338 284 355 146 295 420 385 358 346 351 354 304 451 392 321 388 397 362 407 348 381

153 115
190363384348313366 103 125 41238285223
T

282 273 270 272 256 350 301 229 335 342 380 386 243 116 131 19032 162

2 171 239 245
ﬁm 171 298 179 124 175 247 173 100 308 381 423 381 395 252
¢ 141 121161 144 226 220 259 244 329 333 212 194 158 154 173
41
163 158 15
143
157 185 171 15

306 370 174 240 459 431 443 436 414 419 365 161 142 189 183 90 216 440
42 471 404 489 429 415 436 414 422 411 411 275 199 238 307

1466 337 300 272 155 229/ 77 209 134 107 121 235 236 229 222 200 119
183/79 267 393 490 441 361 412 318 304

183 293
118 135 273 240 228 194 209 237

357 250 310 352 306 246 220 123 350

378 1695 262 393 448 438
5 419 509 499 451 408 451

305 302 252

31s 398 442 436 476

421 323 136 229
470 267 350 212 408 259

516 394 -
) 424 464 456 266 536 393

4494,5339637
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Table 3. The number of days in the out-of-sample test period for which a given B, ; (see Equation (7))
was selected for the EN75 model. The maximum number of days is 623 (=7 x 89 weeks) for
GEFCom2014 and 728 (=7 x 104 weeks) for N2EX (U.K.). A heat map is used to indicate more (— green)

and less (— red) commonly-selected Bj,;’s. Note that By g3, ..., B186, B4 - Brjoo = 0 in the
EN75 model.
GEFCom2014 | N2EX (UK)
s [ Hour | 3 [ Hour
3 9 10 11 12 24 1 2 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

142 272]
372 353 295 198 104 135
131 100 NN 121
85 248 92 86 105 148
323 214
186 194 142
136 380 80 68 81
110

153 112 221 195 177 183

109 157 256 286

221 295 114 360 214
427 289 131 215 98

28
78 105 140 97 99
61

147 191 208 59 149

116 118 205 211 181 45 228 271
85 145 139 86 36

122 155 171
256 334 339 236 44 233 186 296 61 47 170 88

173 16317 46 70 5 1 288 258 250 255 221 354 232 165 299 222 260 279 299,
204 233 305 308 250 67 180 35 51 214 123 176 153 253 169 23500 20 125 90 47
306 182 92 225 62 125

152 182 111 252 355
39 51 55 75 66 85 55

197 239 271 190 178 201 45

123 119 113 231 93 160 79 39 38 30
6429 147 78 - 54 301 109 92 29
65 319
66
67 141 205
68
69 | 59 | 52 | 68 62 128 16'
70

115 1 482 492 108 53 276 252 274 1301
70 269 317 349 454 379 300 153 108 81 178 207 219 181 231 329 119
440 509 396 464

53 89 175 257 156 125 55 80 43
00 68 36 13

82 169 285 139 72 162

337 162 309 1 213 140 44
267 248 219 344 98 3 2 69 336
4 436
235 77 342121 33 74 101 120 162 164 237 238 108 284 320 263 1 495
228 Ln 218 117 128 290

63 151 257 253 364 258

293 343 353 156 277 312 302 377
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5. Conclusions

A key point in electricity price forecasting (EPF) is the appropriate choice of explanatory variables.
The typical approach has been to select predictors in an ad hoc fashion, sometimes using expert
knowledge, but very rarely based on formal selection or shrinkage procedures. However, is this the
right approach? Can the application of automated selection and shrinkage procedures to large sets of
explanatory variables lead to better forecasts than those of the commonly-used expert models?

Conducting an empirical study involving state-of-the-art parsimonious autoregressive structures
as benchmarks, datasets from three major power markets and five classes of automated selection and
shrinkage procedures (single-step elimination, stepwise regression, ridge regression, lasso and elastic
nets), we have addressed these important questions. To this end, we have compared the predictive
performance of 20 types of models over three two-year-long out-of-sample test periods in terms of
the robust weekly-weighted mean absolute error (WMAE) and tested the statistical significance of the
results using the Diebold-Mariano [31] test.

We have shown that two classes of selection and shrinkage procedures—the lasso and elastic
nets—lead to on average better performance than any of the considered expert benchmarks. On the
other hand, single-step elimination, stepwise regression and ridge regression are not recommended
for EPF as they do not yield significant accuracy gains compared to well-structured parsimonious
autoregressive models. The lasso has been recently shown to perform well in EPF [9,18], but it is the
more flexible elastic net that stands out as the best performing model overall. Given that both are
automated procedures that do not require advanced expert knowledge or supervision, our results may
have far reaching consequences for the practice of electricity price forecasting.

We have also looked at variables selected by the elastic net algorithm to gain insights for
constructing efficient parsimonious models. In particular, we have confirmed the high explanatory
power of the load forecasts for the target hour, of last day’s prices for the same or neighboring hours
and of the price for the same hour a week earlier. Somewhat surprisingly, we have found that not only
the last available data point (price for Hour 24), but also prices for Hours 21-23 of the previous day
should be considered when building expert models.
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