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Abstract: Electric vehicles (EVs) have received wide attention due to their higher energy efficiency and
lower emissions. However, the random charging and discharging behaviors of substantial numbers
of EVs may lead to safety risk problems in a distribution network. Reasonable price incentives can
guide EVs through orderly charging and discharging, and further provide a feasible solution to
reduce the operational risk of the distribution network. Considering three typical electricity prices,
EV charging/discharging load models are built. Then, a Probabilistic Load Flow (PLF) method
using cumulants and Gram-Charlier series is proposed to obtain the power flow of the distribution
network including massive numbers of EVs. In terms of the risk indexes of node voltage and
line flow, the operational risk of the distribution network can be estimated in detail. From the
simulations of an IEEE-33 bus system and an IEEE 69-bus system, the demonstrated results show
that reasonable charging and discharging prices are conducive to reducing the peak-valley difference,
and consequently the risks of the distribution network can be decreased to a certain extent.

Keywords: electric vehicles; charging or discharging load; vehicle to grid; time-of-use price;
probabilistic load flow; risk assessment

1. Introduction

With the increasing concern about environmental pollution and fossil energy shortage, EVs are
becoming an important alternative means of transport due to their higher energy efficiency and lower
emissions compared with conventional internal combustion engine (ICE) vehicles. In this situation,
the EV industry is booming due to the incentives of government policies and market requirements [1].
However, regarding when all those EVs are connected to the distribution network, the uncertainties of
the charging and discharging demands could lead to risks in the safety of the distribution network [2,3].
In a way, scientific and effective risk assessment is conducive to ensure the safe and stable operation of
the power system. Therefore, it is significant to study the operational risk assessment of substantial
numbers of EVs’ charging and discharging behaviors on the distribution system.

Large-scale unordered charging demand of EVs [4,5], however, is more likely to coincide with
the overall peak load, which would make the node voltage and line flow exceed the acceptable
ranges [6-8]. References [9-11] comprehensively analyze the impacts of EVs on distribution networks,
while coordinated EV scheduling methods [12,13] could reduce those adverse effects. Note that,
EV owners are able to actively adjust the charging or discharging time in accordance with variable
electricity prices. Hence, a reasonable price incentive mechanism is necessary to guide the charging
and discharging behaviors of EVs [14-16], which could shift the peak load and reduce the safety risks
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of the power grid. References [17-19] introduce an EV charging model based on the time-of-use (TOU)
price, and the EV charging load can be shifted from peak load hours to off-peak load hours. However,
few works focus on the discharging price of EV. Considering Vehicle to Grid (V2G) technology [20,21],
EVs can reverse discharge to the power system, which plays a very significant role in “cut peak and
fill valley”, and further the operational risks may be potentially reduced. Gao et al. [22] preliminarily
studied EVs’ power demands where the discharging price is selectively included, but the impact of the
EVs on the operation of power grid under different prices is not taken into account.

The uncertainties of substantial numbers EVs will result in a significant change in the power flow
distribution, and unstable operation of the distribution network may be caused. The Probabilistic Load
Flow (PLF) calculation method using cumulants and Gram-Charlier series [23,24] can quickly calculate
the probability density function (PDF) and cumulative distribution function (CDF) of state variables,
which can provide the basic data for the calculation of risk assessment. Further, the operational
risk assessment can comprehensively measure the possibility and severity of uncertainties [25].
In consideration of randomness and fuzziness, Feng et al. [26] presents a risk assessment method to
deal with the two-fold uncertainty. Deng et al. [27] introduces the conditional value-at-risk (CVaR)
to a risk-based security assessment method considering future conditions. Hu [28] proposes a risk
assessment method for distribution network integrated with wind power and EVs, but this study does
not involve the discharging characteristics of EVs.

Considering EVs’ charging and discharging behaviors, this paper proposes a risk assessment
method to evaluate the operational risks of distribution network, and also the assessment method’s
performance is studied under different simulation cases. The paper is organized in the following
manner: in Section 2, the EV charging/discharging demand models corresponding to different
electricity prices are built. Section 3 conducts a dynamic PLF method using cumulants and
Gram-Charlier. In Section 4, a calculation method of risk assessment on distribution network is
proposed. In Section 5, numerical simulations are carried out in an IEEE 33-bus system and an IEEE
69-bus system, respectively. In Section 6, conclusions are summarized and next steps are suggested.

2. The EV Charging/Discharging Load Models under Different Electricity Prices

A reasonable price incentive is conducive to managing the charging and discharging power loads
of EVs. In this section, the slow charging household EVs are studied, and herein three load models for
EV charging/discharging are established based on typical electricity prices, including the constant
electricity price, the ordinary TOU price and the improved TOU price, respectively.

2.1. The Unordered Charging Load Model under Constant Price

It is assumed that EVs have similar driving characteristics as conventional ICE vehicles.
According to the National Household Travel Survey (NHTS) conducted by the US Department of
Transportation [29], the probability density functions of the home arrival time and the daily driving
distance can be respectively obtained by use of the normalization and maximum likelihood parameter
estimation method.

(1) Home arrival time

It is assumed that most users will charge their EVs once they return home from work without
relevant regulations and price stimulus. The probability density function of the start time of
charging [29], which is considered to be normally distributed, is denoted as follows.
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where x is the start time of charging, s = 17.6 and o5 = 3.4.
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(2) Daily driving distance

Daily driving distance represents the electricity consumption of an EV in a single day. The
probability density function of the daily driving distance [29], which is considered to be log-normally

distributed, is expressed as:
1 —(Inx—pp)?
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where x is the daily driving distance, up = 3.2 and op = 0.88.
The duration time of charging for a certain EV can be obtained by:

fo(x) =

_ DWygo
Te= 100P. ®)

where D is the daily traveling distance. Wygg represents the energy consumption per 100 kilometers.
The term P, is the charging power of EVs, and herein it is supposed to be unchangeable.
The probability density function of the charging time is denoted as:

1 — (Inx + InP; — InWygp — ud)z
= 4
fr. () = e [ o @

(38) The distribution model of EVs’ charging power
When the total number of EVs in the system is N, the amount of EVs which begin to charge from

time i to time i + 1can be expressed as:

N?_fHN-fS(x)dx, (i=1,2...24) 5)

To simplify the analysis, the start time of EV charging is taken as the nearest smaller integer in
this paper.

Most EVs can be fully charged in 16 h [5]. Therefore, the number of EVs which start charging at
time i and lasting for k hours can be expressed as:

k
Ngczf N?- fr.(x)dx, (k=1,2...16) (6)
k—1

2.2. The Charging Load Model under the Ordinary TOU Price

In general, the out-of-order charging of EVs may lead to serious overloading. The ordinary TOU
price mechanism can be used to guide the EV owners’ charging behavior to optimize the EV loads.

(1) The model of TOU price

According to the daily load curve, the ordinary TOU price divides the 24-h of a day into different
periods. The electricity price at time ¢ is denoted as:

Pp, tgn SE<tp
fp (t) = Por bl St <t (7)
Pr others

where Pps Pos Py denote the price in peak, valley and flat time, respectively. [tdl, tdz], [tc,, tc,] represent
the peak and valley load period, respectively.

(2) The response model of EVs considering the ordinary TOU price
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The charging demand is directly affected by the electricity price. The price’s elasticity coefficient
which reflects the demand response to price is expressed as:
~ Ad/dy
Ap/po

®)

where djy and pg represent the basic demand and price, respectively. Ad and Ap refer to the changes in
demand and price, respectively.

The demand at a certain time is not only affected by the price of the current time but also by
the prices of other time. Thus, the self-elasticity coefficient and the cross-elasticity coefficient can be
written as:

e — Ad;/dy
7 Api/pg
e = Ad;/dy ©
7 Apj/eo

where Ad; represents the demand change at time i. Ap; and Ap; represent the price changes at time i
and j, respectively.
The cost of charging for an EV which starts charging at time 7 and lasting for k hours is given by:

i+ T
Qik= > Pepy (10)

n=i

where p,, represents the price at time 1, and Tj represents the duration of charging.

Under the ordinary TOU price, some EV owners will change the start time for charging from time
ito time j. As a result, the EV loads will be shifted. The amount of EVs which starts charging at time i
and lasts for k hours after the execution of ordinary TOU price can be calculated as:

Q]k) 24 (Q]k sz)

N = Z G ( Z &ji n ~—o5 Ni (11)

Qik

2.3. The Charging Load Model Cosidering V2G under the Improved TOU Price

On the basis of the V2G technology, EVs can be used as green renewable distributed energy
sources to provide electrical power for the power system during their idle time. In this section, an
improved TOU price [30], considering the discharging price in peak hours is appreciatively adopted to
study the charging/discharging loads of EVs.

Considering the reasonable use of battery, EV owners will stop discharging when the battery
margin is less than 20% [5]. The maximum duration of discharging is calculated by:

D max Wl 00

T =
1007,

x 80% (12)
where Dpax represents the maximum daily traveling distance, and P; represents the discharging power.

EVs will only discharge when the discharging price is applied in the period (1, t2, ... , ty). The
duration of discharging is denoted as:

T:}l{ischarge — min (T — Ty, tf +1— 1‘) (13)

The cost for an EV which participates in V2G can be expressed as:

discharge ] discharge _1

n=tp+Ty+Ty n=i+Ty
QY26 — Z P.p, — Z Pypy, i€ (ty, by ... tf) (14)

n=tg n=i



Energies 2016, 9, 560 5 0f 20

The number of EVs applying the TOU price and the discharging price is:

(Qik - QXCZG) — Xbpattery

Qik

where Xpgy1r, represents the battery’s life loss cost for each discharging.

NY2© = ¢ N9, (15)

3. The PLF Method Based on Cumulants and Gram-Charlier Series for the Distribution Network
Including EVs

Owing to the spatial and temporal distribution uncertainties of EVs and basic loads, the traditional
deterministic load flow (DLF) methods cannot be used to calculate the power flow of the distribution
network including EVs. In this paper, a PLF method based on cumulants and Gram-Charlier series is
proposed to obtain the PDF and CDF of the node voltage and line flow in the distribution network
including massive EVs.

3.1. The Linear Probabilistic Load Flow Models

The equations of the power injections and power flows in matrix form are denoted as:

5=f(X)

16
Z=g(X) (16)

where X is the state vector being composed of node voltages and angles. S is the input vector of the
active and reactive power injections. Z is the output vector of line flows. f and g are the node power
and line flow functions, respectively.

Using Taylor series and omitting the higher order terms, Equation (16) can be expanded as:

S:SO+AS:f(Xo+AX):f(Xo)-l-]oAX-l- ......

17
Z=Z0+AZ=g(X0+AX)=g(X0)+GOAX+ ...... (17)

where AX is the random response corresponding to the random perturbation AS. ] is the last iteration
of the Jacobian matrix. Gy can be expressed as: Gy = 0Z / 0X | X=Xg-
Hence, the output random variables of node voltages and line flows can be presented as:

AX =]y 'AS as)
AZ = GoAX = GoJy 'AS = ToAS

where [ s the sensitivity matrix. Tp = GoJ, L

3.2. The Procedure of PLF Calculation

As shown in Figure 1, the calculation procedure of the PLF using cumulants and Gram-Charlier
series is described as follows.

(1) Initialize the network parameters, the active and reactive power injections and other necessary
data at time ¢y.

(2) Based on the DLF calculation method, the expected values of nodal voltages X and line flows Z
can be obtained. Meanwhile, the matrices ]y, Go and ], ! can be achieved.

(3) The k-th order cumulants of EV charging/discharging power Aséﬁ? can be calculated by the
Monte Carlo simulation method (MCS). According to the additivity of cumulants, the k-th order

cumulants of the injection power AS®) at each bus are denoted as:

AS® = As) 1 as (19)
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(4) Compute the cumulants of the state random variables (node voltage AX (k) and line flow AZ(k))
by the matrices ], Land Ty:
AX®) = [~ AgK)

AZ® = T As®) 20

(5) Estimate the PDF and CDF of the output random variables (AX and AZ) obtained in step 4 by
Gram-Charlier expansion series.

(6) According to the probabilistic distribution of AX and AZ as well as the expected values of Xy and
Zy, the probabilistic distribution of X and Z can be obtained.

(7) Repeat the steps 1-6, the PDF and CDF of X and Z at the next moment will be calculated.
The process will be completed 24 times in a full day.

Input the basic data at time 7, %7

Calculate the cumulants of input Run the DLF calculation
random variable by MCS method by the Newton-Raphson
’The k-th order cumulants AS (k)‘ ’ The matrices Jy , Gyand Ty
[ |
L 2

’The cumulants of AY®) Az®)

l !

Estimate the PDF and CDF of AX and AZ The expected
by Gram-Charlier series expansion values X, and Z,

v

The PDF and CDF of X and
VA

Output the results 11

End

Figure 1. The flowchart of PLF based on cumulants and Gram-Charlier series.

4. The Risk Assessment for Distribution Network

In this paper, the risk indexes of node voltage and line flow are used to evaluate the risk of the
distribution network with large-scale EVs. The definition of operational risk of distribution network is:

Risk (Yt) = Py (Yt) - Sev (Yt) (21)

where P; (Y;) and Sev(Y}) refer to the probability and severity under the specific operational status Y,
respectively. In addition, the load loss quantity is used to represent the severity of the operational risk.

4.1. The Risk Index of Node Voltage
(1) The probability of node voltage off-limit

When the EVs are connected to the distribution network as charging or discharging loads, the
node voltage may exceed the acceptable range. The probability of node voltage off-limit is denoted as:

Py (V;) = Pr (Vi > Vinax) = 1 = F (Vinax) (22)
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Py (Kz) =P (Vl < Vmin) =F (Vmin) (23)

where V; is the voltage amplitude of bus i. Vinin, Vimax refer to the acceptable minimal and maximal
voltage limit, respectively. F(i) is the CDF of the voltage over node i.

(2) The severity of node voltage off-limit

The upper limit H (V;) and lower limit H (V_;) of node off-voltage are respectively defined as:

7.\ — Vi — Vmax

H (V) - 1—F(V;) = 0.001% & V; > Vinax (24)
IHZQ:E%;jQF@ﬁ:OUH%&ZﬁﬂQm (25)
min

According to the References [28,31], the mathematical relationship between the node voltage
off-limit and the load losses is shown in Figure 2.

Sloadv (%) Sloadv (%}
100 |- —=-----> ‘ 100 [--------~ ‘
: s B()®) 0 s H(E)(%)
(a) (b)

Figure 2. (a) Mathematical relationship between the load losses and the voltage over upper limit;
(b) Mathematical relationship between the load losses and the voltage below lower limit.

(8) The risk index of node voltage off-limit Ry can be expressed as:

Ry = Pp (Vi) *Sload (Vz) )
RZ = Pr(V;) - S1oaa (V) (26)

4.2. The Risk Index of Line Flow
(1) The probability of line flow off-limit:

P, (gz]) =P (Sz] > Sij max) =1-F (51] max) (27)

where S;; is the line flow of branch ij. Sjimax refers to the upper limit of line flow in the system. F(S;;) is
the CDF of the line flow of branch ij.

(2) The severity of the line flow off-limit

The line flow off-limit is defined as:

- Sij — Sijmax

H (51]) = ,1—F (gz]) = 0.001% &gl] > Sijmax (28)

Sijmax

Similarly, the mathematical relationship between the line flow off-limit and the load losses [22,25]
is shown in Figure 3.
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SloadS (%)

100 |~~~

0 13.6 H(S,)(%)
Figure 3. Mathematical relationship between the line flow off-limit and the load losses.
(3)  The risk index of line flow off-limit Rs:
Rs = Pr (Sij) - Sioad (Sij) (29)

5. Case Studies

In this section, an IEEE 33-bus distribution network [32] and an IEEE 69-bus distribution
network [33] are respectively selected for the case studies. The acceptable voltage magnitude of
the distribution networks is in the range of (0.95, 1.05) p.u. It is assumed that each branch has the same
transmission power limit, and the upper limit of power flow is set as 1.2 times of the maximum value
of daily load curve. Since the efficiency of EV charging and discharging has little effect on the risk
assessment, it is ignored in the case studies.

To analyze the charging and discharging behaviors of EVs under different price incentives, four
cases are enumerated and investigated. The consumer-price elasticity matrix is referring to [34].
The price profiles of charging or discharging in different time are shown in Figure 4.

Case 1: There are no EVs in the distribution network. As the uncertainty of regular load, the basic
load at each bus follows a normal distribution, and the standard deviation is 10% of the
mean values.

Case 2: There are a total of 1000 EVs charging in five EV-stations with a daily constant price which
is shown in Figure 4 (profile a). The basic load is same to that in Case 1.

Case 3: There are 1000 EVs charging in five EV-stations with the TOU price, and the price profile
of charging in this case is shown in Figure 4 (profile b). The basic load is same to that in
Case 1.

Case 4: There are totally 1000 EVs charging or discharging in five EV-stations. The TOU price of
charging is same as Case 3. The discharging price is shown in Figure 4 (profile c). The
basic load is same to that in Case 1.

0.16

0.14 S
2012 a o1
E 0.1 [ 0—0—0—0—0—0—0—0—0 0 0 0 0 >—0-
& 0.08
};{O 06 0 -0 0 0 0 0 00 ’ ‘ oo
Too0s | D 0068 . | |

0.02 ’ \

0 ﬁ—a—a—a—a—a—a—a—a—a—a—a—a—a—a—i—L—a—a—&

2 4 6 8 10 12 14 16 18 20 22 24
Time(h)
—&— Constant price o—TOU price == Discharging price

Figure 4. Three different electricity price profiles.
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5.1. The Charging or Discharging Load of EV's under Different Electricity Prices

During the simulations, the battery capacity of each EV is supposed to be 15 kW- h for a cruise
duration of 100 km, and the charging power P, and discharging power P; are both 2.5 kW [5]. Figure 5
shows the probability distribution of charging or discharging load of 1000 EVs within 24 h in case
2—4 calculated by MCS. As shown in Figure 5a, the peak load of the EVs charging occurs between
17:00 p.m. and 21:00 p.m. in Case 2, which is similar to the basic peak load. In Figure 5b, the ordinary
TOU price is taken into account, and some EV users are guided to charge in off-peak time. It is
found that the fluctuation of charging load decreases compared with Case 2. As shown in Figure 5c,
when the discharging price at peak load is applied in Case 4, some EV users are guided to discharge in
the peak hours and charge in valley period because of economic benefits.

1400

1200 —

—&=— Power expectation
—=  Upper limit of power
1000{— —=  Lower limit of power

@

3

S}
T

EVs charging power(kw)

IS
S
]

200

1200

1000 — —=— Power expectation I
—=  Upper limit of power
—  Lower limit of power

@
3
3
T
|

EVs charging power(kw)

200 — -

| |
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

(b)

Figure 5. Cont.
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Figure 5. The charging/ discharging load profiles of 1000 EVs. (a) Case 2; (b) Case 3; (c) Case 4.

—5— Power expectation
—=  Upper limit of power
— Lower limit of power

24

10 of 20

Figure 6 shows the load curves of the distribution network with different prices, and Figure 7
shows the active power loss curves. The difference in the peak-valley and the increase of the active
power losses can be observed in Case 2, and it is because of the overlap between the basic peak load
and the unordered EV charging power. Under the incentive of the TOU price in Case 3, the peak load
and the power loss are both smaller than that in Case 2, but the peak-valley difference is greater than
that in Case 1. When the improved TOU price is applied in Case 4, the peak-valley difference and the
network power losses decrease significantly compared to the ordinary TOU price.

Figure 7. Active power loss curves of power distribution network in different cases.

Power load(MW)
O R N W b U1 O

= M—\ ~
L . — ~
— i
—4—Case ] =—=case 2 case 3 case 4

1 3 5 7 9 11 13 15 17 19 21 23

Time(h)

Figure 6. Load curves of distribution network in different cases.

o
o0

o

[N}
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o EN
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1234567 89101112131415161718192021222324
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5.2. Risk Assessment of IEEE 33-Bus Distribution Network with EV's under Different Electricity Prices
The schematic diagram of an IEEE 33-bus distribution network is shown in Figure 8. Stop 1-Stop

5 represent five EV-stations in the system, and the number of EVs in each station is shown in Table 1.

Stop3
18 19 204 21

22 23 24

Figure 8. An IEEE 33-bus distribution network.

Table 1. The number of EVs in each EV-station.

EV-Station Stop 1 Stop 2 Stop 3 Stop 4 Stop 5
Node 8 15 20 24 32
Number 200 100 200 200 300

(1) The risk assessment of node voltage in a day

The probability distribution of voltage will fluctuate with the EV charging or discharging power
and basic load, so that the node voltage may exceed the acceptable limit. As the bus 17 is located in the
end of the distribution network, its node voltage is generally the lowest. Figure 9 shows the voltage
distribution of the bus 17 under different cases. For Case 1, the voltage distribution of the bus 17 is
maintained at an acceptable range. For Case 2, the voltage distribution of the bus 17 will be below
the lower limit, especially when the system is justly in the peak load period (18:00 p.m.—21:00 p.m.).
In addition, the fluctuation of the node voltage increases with the decrease of the expected value of
the node voltage. Regarding that Case 3 is applied, the voltage being out of limits can be alleviated
in contrast to Case 2, and it still exists in 18:00 p.m.—21:00 p.m. In Case 4, the voltage of the bus 17 is
maintained at a reasonable level because of the voltage support caused by the discharging price of EVs.

Due to that the voltage distribution of the bus 17 in Case 1 and Case 4 can meet the requirements,
the risks can be ignored in the system. Table 2 shows the risk assessment results of the bus 17 in Case 2
and Case 3. The risk index of node voltage in Case 3 is much smaller than that in Case 2 at the same
time. The results demonstrate that the reasonable electricity pricing mechanism of EVs can keep the
node voltage in the acceptable range and reduce the operational risk of the distribution network.

For that branch 0-1 belongs to the beginning end of the 33-bus distribution network, the maximum
line flow can be obtained. Figure 10 shows the probabilistic distribution of line flow in branch 0-1
under different cases. In Case 1 and Case 4, the line flow distribution will be under the transmission
power limit, and the risks are ignored. Table 3 shows the risk assessment results of branch 0-1 in
Case 2 and Case 3.
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(b)

Voltage amplitude

(©)

Figure 9. Cont.
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Voltage amplitude

(d)

Figure 9. The voltage probabilistic distribution of the bus 17 under different cases. (a) Case 1; (b) Case 2;

(c) Case 3; (d) Case 4.
Table 2. The risk assessment results of the bus 17.
Case 2 Case 3
. Off-Limit Risk Index . Off-Limit Risk Index
Time ) ppability (W) Time ) p bability (W)

16 8.47 x 107° 2.63 x 107° / / /
17 0.3434 0.912609 17 0.000121 459 x 107°
18 0.6417 2.134106 18 0.0024 223 x 1073
19 0.9965 5.621712 19 0.5288 1.68114
20 0.9745 4.829508 20 0.2475 0.64845
21 0.2528 0.620154 21 0.000221 1.03 x 1074
22 5.76 x 107° 143 x 107° / / /

For Case 1, the line flow in branch 0-1 is smaller than the transmission power limit. For Case 2,
the line flow exceeds the upper limit in the evening peak load period. In addition, the fluctuation of
the power flow increases with the rise of the expected value of the power flow. For Case 3, the line flow
being out of limits can be mitigated compared with Case 2. For Case 4, the line flow is well controlled
with the improved TOU price, and according to Figure 11 where the flow in branch 31-32 is studies,
the flow direction will reverse due to the discharging behavior of EVs in peak time.

(2) The risk assessment of node voltage at 19:00 p.m.

Based on the aforementioned simulation results, the node voltage being out of limits will be the
most obvious at 19:00 p.m. In Case 1 and Case 4, all of the node voltages at 19:00 p.m. will not exceed
the limit, and the safe operation of the network is ensured. For Case 2 and Case 3, Figure 12 shows the
dangerous nodes whose voltages are smaller than the lower limit at 19:00 p.m., and the related off-limit
probability and risk index are shown in Table 4. It is found that, the voltage over the end-terminal node
is prone to exceed the limitation in the radial distribution network. Comparing to the node voltage
with the ordinary TOU price, the node voltage with the constant price is more likely to exceed the limit.
For a certain node, the risk index of the node voltage in Case 3 is much smaller than that in Case 2.
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(b)

Line flow (MW)

(c)

Figure 10. Cont.
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Line flow (MW)

(d)

Figure 10. Line flow probabilistic distribution of branch 0-1. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Table 3. Risk assessment results of branch 0-1.

Case 2 Case 3
. Off-Limit Risk Index . Off-Limit Risk Index
Time (h) Probability (kW) Time (h) Probability (kW)
17 0.0349 106.9331 / / /
18 0.134 556.7524 18 0.0024 0.29366
19 0.7119 3984.643 19 0.0193 52.6212
20 0.4824 2704.036 20 0.0041 8.03353
21 0.0205 55.52134 / / /

Line flow (MW)

Figure 11. Line flow probabilistic distribution of branch 31-32 in Case 4.
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The note over limit

The node over limit

Voltage amplitude

(b)

Figure 12. The node over limit at 19:00 p.m. (a) Case 2; (b) Case 3.

Table 4. Risk assessment results of distribution network at 19:00 p.m.

16 of 20

Case 2 Case 3
Node Off-Limit Risk Index Node Off-Limit Risk Index
Probability (kW) Probability (kW)

12 0.1911 1.71371 12 3.12 x 107° 1.74 x 1075
13 0.6113 15.41382 13 0.0036 0.025439
14 0.8445 12.60708 14 0.0297 0.163057
15 0.957 42.05221 15 0.1324 1.76685
16 0.9935 20.0628 16 0.4236 4.204446
17 0.9965 31.45754 17 0.5288 8.487008
28 0.0017 0.013999 / / /
29 0.1337 4.711244 29 2.72 x 1074 0.002066
30 0.8217 38.53576 30 0.0757 1.618413
31 0.9165 66.60967 31 0.1617 5.726648
32 0.9508 116.3876 32 0.2209 8.052128

5.3. Risk Assessment of IEEE 69-Bus Distribution Network with EV's under Different Electricity Prices

As shown in Figure 13, an IEEE 69-bus distribution network is further introduced to verify the
method applicability. The number of EVs in each station is shown in Table 5.
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Figure 13. An IEEE 69-bus distribution network.
Table 5. The number of EVs in each EV-station.
EV-Station Stop 1 Stop 2 Stop 3 Stop 4 Stop 5
Node 14 24 31 43 60
Number 200 300 100 200 200

The voltage distribution of the terminal bus 26 is shown in Figure 14. For Case 1 and Case 4, all of
the node voltages can be maintained in an acceptable range.

Time(h)

Time(h)

Voltage amplitude

(b)

Figure 14. The voltage probabilistic distribution of bus 26. (a) Case 2; (b) Case 3.
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For Case 2 and Case 3, Tables 6 and 7 respectively indicate the risk assessment results of the bus
26 and branch 0-1. Meanwhile, considering the discharging behavior of EVs in Case 4, Figure 15 shows
that the power flow in some branches will reverse.

Stop 3
30 31 32 33 34

291

47 48 49 .
28 o —o Stop 1 Stop2
50 51 67 68 VP
27] 46 — — — — —
0 1 2 3] 4 5 6 7 8 9 10 11 12 13 llﬂ 15 16 17 18 19 20 21 22 23 24 25 2
35 50 65 66 Stop 5

53 54 55 56 57 58 59 60ﬂ 61 62 63 64

36 . . .
— — FﬂSlOM

37

38 39 40 41 42 43 44 45

Figure 15. The reverse flow of case 4 at 18:00 p.m.

Table 6. The risk assessment results of bus 26.

Case 2 Case 3
. Off-Limit Risk Index . Off-Limit Risk Index
Time (h) Probability (kW) Time (h) Probability (kW)
17 0.0398 0.322845 / / /
18 0.2564 3.460025 / / /
19 0.6751 12.48483 19 0.0018 423 x 107°
20 0.41 6.01849 20 1.64 x 1074 1.85 x 10~°
21 0.0119 0.071663 / / /
Table 7. Risk assessment results of branch 0-1.
Case 2 Case 3
. Off-Limit Risk Index . Off-Limit Risk Index
Time®)  ppability W) Time®@ b obability W)
17 0.0059 16.80197 / / /
18 0.0239 93.79097 / / /
19 0.2782 1586.746 19 0.0052 1.829538
20 0.1419 810.6977 20 0.0013 0.252245
21 0.0036 9.285573 / / /

The aforementioned simulations show that the IEEE 69-bus distribution network could obtain the
consistent results with the IEEE 33-bus distribution network, and the availability and suitability of the
proposed method can be confirmed.

6. Conclusions

Concerning that a large number of EVs can be connected to the distribution network for
charging or discharging, it is critical to ensure safe and stable operation. This paper proposes a
risk assessment method to evaluate the operational risk of the distribution network, and herein EVs’
charging/discharging behaviors and reasonable price incentive are taken into account. In terms of the
constant price, ordinary TOU and an improved TOU price, three charging/discharging power models
are constructed. A cumulants and Gram-Charlier series-based PLF calculation method is applied to
calculate the power flow. The risk indexes of node voltage and line flow are given to analyze the safety
risks. From the simulations of an IEEE-33 bus system and an IEEE 69-bus system, the availability and
suitability of the proposed method are confirmed, and some conclusions are summarized as follows:
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(1) Inview of the charging and discharging behaviors of EVs, the voltage over the end-terminal node
of the distribution network is more likely to exceed the acceptable range, and the line flow in the
beginning of the branch is easy to exceed the transmission power limit.

(2) Different price mechanisms will affect the safety risks of the distribution network. When the
uncoordinated charging with constant price is used, higher peak-valley difference, larger power
losses and increase of the safety risks will be achieved.

(8) Compared to the ordinary TOU price, using the improved TOU price can contribute to show better
preference on reducing the peak-valley difference, and the safety of the distribution network can
be enhanced.

(4) The change of the distribution network’s structure will not affect the proposed method’s
effectiveness, and the IEEE 69-bus distribution network could obtain the consistent results
with the IEEE 33-bus distribution network.

In the near future, the optimal strategy for charging/discharging price of EVs will be performed,
and the results will be reported in later articles.
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