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Abstract: The estimation and policy use of spatially explicit discrete choice models has yet to receive
serious attention from practitioners. In this study we aim to analyze how geographical variables
influence individuals’ sensitivity to key features of heating systems, namely investment cost and CO,
emissions. This is of particular policy interest as heating systems are strongly connected to two major
current environmental issues: emissions of pollutants and increased use of renewable resources.
We estimate a mixed logit model (MXL) to spatially characterize preference heterogeneity in the
mountainous North East of Italy. Our results show that geographical variables are significant sources
of variation of individual’s sensitivity to the investigated attributes of the system. We generate
maps to show how the willingness to pay to avoid CO, emissions varies across the region and to
validate our estimates ex-post. We discuss why this could be a promising approach to inform applied
policy decisions.

Keywords: mixed logit model; spatial variables; ambient heating systems choices; willingness to pay

1. Introduction

The European Union Renewable Energy Directive 2009/28/EC establishes a policy framework for
the production and promotion of energy from renewable sources for the half billion Europeans living
in the 28 EU member states. The directive requires that at least 20% of total energy needs in the EU be
produced using renewables by 2020, to be achieved in the aggregate by defining various state-specific
targets. Such targets are set by taking into account the respective starting points and overall potential
for renewables in each member state. The quota of renewable energy in the power mix ranges from
10% in Malta to 49% in Sweden. In Italy the target is set at 17%, starting from a base of 5.7% share
of renewable energy in 2005. To meet the EU targets, in 2010 Italy submitted the Italian Renewable
Energy Action plan to the European Commission. The plan sets a 2020 target share for renewables
across energy sectors as follows: 26.39% in the electricity sector, 17.09% in the heating/cooling sector,
and 10.14% in the transport sector. Of relevance to our study is the large potential to increase the
share of renewables in heating systems. Nearly 85% of the Italian households still use fossil fuel-based
heating systems.
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Government authorities are hence concerned about collecting information that can help them
design and implement policy instruments that may promote a switch from fossil-based to renewable
systems. Given the great diversity of territorial features across the Italian peninsula, geographical
factors are likely to determine substantial variation in the propensity to adopt renewables across the
population of residential homes. Spatial effects have been found to be significant determinants of
households” heating choices [1,2] and can be linked to several factors, such as fuel price differences,
heating traditions (e.g., mountain areas usually have strong tradition of firewood-based heating
systems), development of the gas grid (usually less developed in rural areas), availability of biomass
fuels (stronger in areas located near forests) and different energy needs according to the area (buildings
in urbanized areas are generally better insulated as compared to those in rural ones). This study aims to
systematically explore such heterogeneity of preferences by means of a geographically explicit choice
model estimated from choice experiment data. This study reports the results from a choice experiment
investigating household preferences toward different heating systems in Veneto, a region in Northeast
Italy with a substantial amount of mountainous territory. The survey data explores preferences for six
heating systems: three based on traditional fuels and three based on renewables.

Over the last few years research applications in the field of residential heating based on choice
experiments have increased in popularity amongst researchers [3-5]. This method enables analysts
to investigate preference heterogeneity for different heating systems in terms of energy savings,
environmental benefits, comfort considerations, compatibility with daily routines, personal habits and
cost. Discrete choice model estimates from the analysis of choice experiments data show how subjects
in the sample weight salient aspects in their stated choices. In the presence of a cost for alternatives the
data be used to infer the marginal rate of substitutions of attributes with income. This, in our case,
is interpreted as the willingness to pay (WTP) for the various heating characteristics described in the
experiment. Reference [3] estimated the WTP for energy-saving measures in residential buildings in
Switzerland. In [6] key parameters (discount rate, intangible costs and degree of heterogeneity) were
used to simulate various energy policies. The authors of [4] focused on microgeneration adoption
in the UK and those of [7] examined the role age plays in terms of behavioral responses towards
energy efficiency, in particular whether older individuals are less likely to adopt micro-generation
renewable energy technology. References [1,8] investigated the choice of energy retrofits in Germany.
While [8] focused on CO;-saving measures (heating systems and insulation) and WTP for CO, savings,
Michelsen et al. [1] examined driving factors of choice of residential heating systems. In [5] how
different attributes of residential heating systems affect private homeowners’ choice of heating system
following renovations was examined.

Whilst several studies have explored group decision making in choice analysis (see [9] for a
reviews of such papers), a common assumption in the stated choice literature is that survey respondents
make choices independently of preferences of others. For example, Bartels et al. [10,11] examined the
preferences of plumbers and consumers for water heater systems using discrete choice experiments,
but treated both samples as if they were independent of each other. Where interdependence between
agents has been considered, the assumption has been that the relationship exists between household
members (e.g., [12]), immediate family or close friends. There exists, however, an established literature
(e.g., [13,14]) accounting for a wider range of spatial interdependencies between individuals, which
may induce interdependence of preferences. This induces the phenomenon of socially influenced
decision-making: individuals neither act fully independently, nor reach decisions jointly, but they
decide based on a mix of social interaction factors, which might be best represented in a succinct
manner as geographical determinants.

Over the last ten years or so an increasing body of literature has dealt with the study of spatial
effects on welfare changes. Previous studies on this topic mainly focused on addressing the relevance
of spatial factors through post hoc analysis on the WTP estimated from choice models (e.g., [15-18]).
However, there remains only limited work on the inclusion of spatial variables in the utility structure
behind choice (e.g., [19,20]). This paper contributes to the filling of this gap: it proposes mixed logit
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(MXL) specifications to explore how individuals’ sensitivity to key features of heating systems varies
in the different geographical areas of the study region. We include not only variables referring to
respondents’ geographical location, but also to socio-demographic characteristics of the area in which
they live. This allows us to gain further insight on both spatial and social effects on heating systems
preferences. To explore the post hoc validity of our results, we also map the mean values of marginal
WTP estimates at the individual level within each area. Detecting if the distribution of benefits is both
spatially and socially uneven is useful as it helps policy makers to design geographically targeted
programs that are coherent with public preferences.

This is of particular interest in the Veneto region, as both national and local governments have the
mandate to design and implement policy measures to foster households’ adoption of energy-efficient
and sustainable heating systems, based on renewable resources. These measures can be categorized
into economic (e.g., capital grants, tax exemptions, price subsides) and awareness (e.g., education)
measures. The latter aim at making households aware of the benefits of energy efficiency, and they
attempt to change households’ behavior with respect to fossil fuel consumption. Although financial
measures are usually introduced at the national or regional scale, awareness measures can have a local
nature (e.g., meeting with citizens, lectures, etc.). Knowing in which areas households are generally
less prone to pay a premium to install more sustainable systems would allow policymakers to direct
more efficiently their efforts using geographical criteria. This may result in a broader awareness of the
importance of the use of renewable resources and in a support over a broader geographical area of
government intervention.

The remainder of this paper is organized in four sections: Section 2 provides an overview of
previous studies in the context of spatially explicit discrete choice models. Section 3 describes the
methodology we adopted and motivates the model specification used for the data analysis. In Section 4
we report and discuss the results. Finally, conclusions are reported in Section 5.

2. Spatially Explicit Discrete Choice Models: Empirical Applications

There is now compelling evidence that preferences for some environmental goods follow
spatial patterns. This may be due to the spatial configuration of such goods and the availability
of substitutes [21] or to residential sorting. People’s preferences for environmental goods can influence
where they choose to live, so that measures of preferences tend to be correlated with measures
of environmental quality or with distance to environmental amenities [22]. Recent developments
in Geographical Information Systems (GIS) allow researchers to investigate spatial patterns in
preferences for environmental goods. Amongst most common approaches is that of investigating
spatial distribution of WTP estimates derived from DCE studies. References [15,16] used this approach
to map WTP estimates for rural landscape features in Ireland. They found evidence of significant
global spatial clustering and spatial autocorrelation of the WTP estimates with landscape features that
were prevalent in given areas and iconic for local identity being more valued by locals. Reference [23]
investigated spatial heterogeneity in WTP for forest attributes in France. Data on forest distance
from respondent’s homes was used in [24] to capture spatial effects in WTP for enhancement of
biodiversity in forests of New Zealand. The authors found evidence of distance-decay effects, that
is, respondents living closer to the environmental good being evaluated tend to have a higher WTP
for it. The outcomes of targeting agricultural land preservation by using four different strategies for
spatial provision of environmental services in Delaware were mapped in [25]. Reference [26] used
local indicators of spatial association to explore WTP hot spots. Evidence of distance decay on WTP
estimates for forest attributes in Poland was found in [18]. Spatial effects on WTP estimates have
been also investigated including spatial variables in discrete choice models. Thus, Hanley et al. [27]
included a distance parameter in a CV study to estimate distance-decay functions for a reduction
in low flow problems on the River Mimram, England, while [28] included in discrete choice models
spatial variables aimed at investigating directional effects on distance decay of WTP values, related to
the availability of substitute sites across the region and [29] included spatial variables as covariates in
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a discrete choice model to estimate the spatial pattern of the willingness to provide ecosystem services
in agricultural landscapes.

Other studies investigated spatial effects including spatial attributes in stated preferences
scenarios. The authors of [30] examined visitors’ preferences for forest management at five adjacent
municipal recreation sites in Finland, using a spatially explicit choice experiment. They included site
specific levels of attributes to evaluate whether preferences towards management options differed
across sites. In [31] discrete choice experiments were used to examine preferences for the spatial
provision of local environmental improvements in the context of regeneration policies. They included
the spatial scope of the policy as an attribute, making the trade-off between environmental amenity
and its spatial provision explicit. Reference [32] included the distance from respondents” home as an
attribute to investigate distance decay effects on preferences towards cost management programs in
UK. In [28] WTP was evaluated for improvements in the provision of environmental services of eleven
lakes in a lake district in the Netherlands. They included the lakes as different labelled alternatives
in choice sets. Finally, spatial effects on preferences for wind power are commonly investigated
by including in the choice experiment attributes describing the distance between wind farms and
residential areas or shores to account for visual intrusion (see [33] for a review).

3. Data Collection and Survey

The data for our empirical study was collected by means of a web-based questionnaire involving a
sample of residents of the administrative provinces of Veneto that include some mountainous territory.
Those with territory only in the plains were excluded. Such selection enabled us to make a comparison
of preferences across respondents living at different altitudes. The sample covered 313 municipalities
(72.8% with less than five respondents, 18.5% between five and ten respondents, 9.9% between eleven
and fifteen respondents and 8.6% with more than fifteen respondents). We used a stratified random
sample of households, where the strata were based on the most important socio-demographics (age,
education, genre, income, place of residence). Descriptive statistics of the sample are reported in
Table 1. A total of 1557 questionnaires were collected, resulting in 1451 completed sequences of choice
tasks which were used for the analysis.

The Choice Experiment and the Experimental Design

The choice experiment was conducted by presenting respondents with a series of hypothetical
choice tasks, each of which presented three alternative types of heating systems. The available systems
in the area are: (1) fire wood; (2) chip wood; (3) wood pellet; (4) methane; (5) liquefied petroleum
(LP) gas; and (6) oil. Each heating system varied in terms of attributes’ levels. The attributes are:
(1) investment cost; (2) investment duration; (3) annual operating cost; (4) CO, emissions; (5) fine
particle emissions; and (6) required own work. The respective levels are reported in Table 2, and a
description of each provided in the text below.

Investment cost is the cost for the purchase and installation of the heating system. Possible public
subsidies from the state or the region are ignored. Investment duration refers to the working lifespan
of the heating system, from installation to dismantling. Operating costs include fuel price, maintenance
and repair costs as well as costs of the system’s electricity consumption. Energy cost depends on the
unit cost of fuel and the operating efficiency. CO, emissions refers to the quantity of CO, released by
the fuel combustion processes, and the same goes for fine particles emissions. Finally, required own
work refers to the time required to ensure the faultless operation of the heating system (e.g., cleaning
and handling fuel loads). The choice of attributes and their levels was based on earlier studies [5,34,35]
and on feedback from experts. The annual operating cost and CO; and fine particle emissions were
calculated based on the energy consumption of an average detached house (120 m?), the efficiency
of each heating system and unit price/emission of a fuel. Respondents were asked to select within
each choice set their preferred option if they had to renovate their system. An example of choice set is
provided in Table 3.
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Table 1. Descriptive statistics of respondents.

Sociodemographic Percentage
Gender
Man 35.9
Woman 64.1
Age (years)
<20 1.2
20-39 52.3
40-59 43.1
>60 3.4
Education
Primary school 0.3
Secondary school 9.9
High school 62
Degree 234
Postgraduate 43
Annual net income (€)
<15,000 10
15,001-25,000 24.5
25,001-35,000 19
35,001-45,000 23.8
45,001-55,000 4.2
>55,000 2.4
No answer 16.1
Place of residence per province
Belluno 59
Padova 29.6
Treviso 22.9
Verona 24.4
Vicenza 17.2

Table 2. Attributes and levels of the Choice Experiment.

50f19

Attributes Firewood Wood Chip Wood Pellet Methane 0Oil LP Gas
Investment cost (@ 9900 11000, 11,500, 13,000, 13,000,15,000, 4000, 4800, 4500, 5500, 4000, 5000,
v 12,500 14,500 17,000 5600 6500 6000

Investment 15,17, 19 17, 20,23 16,19, 22 16,18, 20 16,18, 20 14,17, 20
duration (years)
Operating 1200, 2000, 2000, 2800, 2500, 3750, 4000,5500,  6000,8000, 9000, 12,500,
cost (€/year) 2800 3600 5000 7000 10,000 16,000
Co, 3000,3750,  3900,4575, 35254125,
Emissions (kg/year) 120225300 300,375,450 375,450,525 2500 5750 P
Fine particle 4500, 6000, 2250, 3750,
emissions (glyear) 7500 S50 750,1500,2250  15,30,45 150,450,750  15,30,45
Required own 5,10, 15 1,2,3 1,2,3 - 05,1,1.5 05,1,1.5

work (h/month)
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Table 3. Example of choice set.

Attributes Wood Pellet LP Gas Firewood
Investment Duration (years) 19 20 19
Fine particles emissions (g/year) 2250 15 7500
CO, emission (kg/year) 375 3525 150
Required own work (hours/month) 1 1 15
Investment cost (€) 17,000 5000 12,500
Operative cost (€) 3750 9000 1,200
Your choice O O (@)

In order to investigate the effect of the (un)availability of certain alternatives in the choice set and
to investigate the effect of choice set composition, only three alternatives were shown in each choice
task, despite the total number of labeled alternatives being six. The use of choice experiments with
variable choice set size was common in the 1980s. For example, in [36] two experiments were reported,
one with fixed choice set size and the other with variable choice set sizes. References [37,38] proposed
models to estimate the availability effects of alternatives. The theory was further developed by [39,40],
who studied the availability effects of alternatives and allowed to generate designs capable to estimate
both availability and attribute cross effects. Despite evidence provided by this literature, the issue of
availability design was at least in part ignored within the last decades. More recently, Rose et al. [41]
focused on availability designs by incorporating such aspects in an efficient design framework. Their
study allowed for both variable choice set sizes and fixed choice set sizes with differential alternative
representations. Following [42], a variant of an efficient availability design was used it this paper: fixed
choice set sizes, but different alternatives presented in each choice task. The availability design can be
thought of as comprising two sequential experimental designs, one embedded in the other. The two
designs are, respectively, a master or availability design, and a sub design. The master or availability
design is a fractional factorial design that determines the subsets of alternatives that are present or
absent in any given choice task. Each column of the master design represents an alternative and each
row is a different choice task. The levels of the design take binary values where a one indicates that
an alternative is present in a choice task and a zero indicates that it is not. Given that an alternative
is present in a choice task, as determined by the master design, the sub design dictates the specific
combination of attributes’ levels that describe each alternative.

In our study a fixed master design was used, that produced a design with 20 choice tasks.
The design was repeated three times (for a total of 60 choice tasks) to ensure that the attribute levels of
the sub designs could be balanced, appearing 20 times for each attribute. The combination of levels
that appeared in each choice task was defined according to three different sub designs, namely near
orthogonal, D-efficient [43-45], and sequentially improved (or “serial”) design [46]. For the serial
design, an orthogonal design was used for the first respondent. After completion of the choice set by
this first respondent, the parameters were estimated by the purpose design software in the background
by a multinomial logit model based on his or her observed choices. Statistically significant parameters
were then used as priors in determining the next design whilst parameters that were not statistically
significant were assumed to be zero. Based on these new priors, a new efficient design was generated
and given to the next respondent. The data from each additional respondent was then pooled with the
data from previously surveyed respondents and new models were estimated, in order to generate a
new design. The new design was then given to the next respondent. The design generated a total of
60 choice tasks that were blocked into six groups, so that each respondent faced 10 choice tasks. The
sample was split so as to have the same number of respondents assigned to choice tasks produced
with the different sub designs.



Energies 2016, 9, 407 7 of 19

4. The Model

Within the choice experiment approach each respondent’s choice is modelled as a function of the
attributes using Random Utility Theory [47,48]. According to the theory, for and individual # facing a
set of | alternatives, denoted by j =1, ... , | the utility of choosing the alternative i is a function of the K
attributes used to describe alternative j. The utility function has a systematic part V,;; (indirect utility)
and a random part ¢,;, for all unobserved variables, such that:

Um- = Vni + €y Vi il’lj (1)

The systematic part of the utility function of individual n associated with the selected alternative
is modeled as a linear function of the vector of the attributes x; and associated parameters f;,. If the
unobserved error term ¢,; is assumed to be independently identically distributed (i.i.d.) extreme value
type I, the probability of individual n choosing alternative i out of | alternatives can be defined by the
conditional logit (CL) model:

exp (Vi)

Pr (Uy; > Uy, V]) = ——
ni nj Z}:l exp (Vn]‘)

)

A property of the CL model is the independence of irrelevant alternatives (IIA), which is most
often undesirable as it implies constant share elasticities. The mixed logit (MXL) model [49,50] allows
for a relaxation of the IIA assumption, whilst continuing to assume the residual error term is i.i.d.
extreme value type I distributed. The MXL model allows for unattributable heterogeneous preferences
(i.e., unlike interaction effects, preferences are assumed to be randomly distributed over the population).
Different interpretations have been given to the MXL in various empirical work, the two most common
interpretations being the random parameter logit (RPL) and error component logit (ECL) models.
Whilst mathematical equivalent [51], the respective behavioural interpretations of the two models
are motivated by distinct analytical interests [52]. More specifically, RPL appeals to the analysis of
taste variation, whilst the ECL interpretation is more amenable to the analysis of complex substitution
patterns and variance-covariance structure. Behaviourally sound models often mix the RPL and ECL
features to achieve flexible specifications that are suitable for the problem at hand. In this spirit we
use two separate sources of randomness, one linked to diversity across respondents, the other shared
across respondents from the same geographical area.

The utility structure is specified as:

Vi = ,B/xm' + ,unlzm' 3)

where x,,; and z,; are vectors of observed variables relating to alternative 7,  is a vector of fixed
coefficients, y, is a vector of random terms with mean y and stochastic components that, along with
¢,,; define the stochastic portion of utility as well as the manner in which utility is correlated across
respondents via the unobserved portion of utility.

What makes this model explicit in its geographical variables is that y,, has a stochastic component
€n with standard deviation that is in part constant and in part shifted by &}, zy, linked to the i place of
residence via the indicator vector zj,. The parameter «aj;, expands or shrinks the total standard deviation
tailoring it to the place of residence indicated by z;. In essence:

Pnh = W+ €y = P+ (0 + ayzp) 1y where 17, ~ N (0, 1) 4)

The aim of the study is to investigate how the variance of the random parameters changes
according to different areas of the region. In particular, we focus on the variance shift of key random
taste parameters: the coefficient for the cost of heating system and that for the CO; emission. The
first relates to the marginal utility of income, the second to the marginal utility of emission abatement.
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Importantly for a geographical tailoring of the subsidy policies, geographical differences in the random
cost parameter allow us to better investigate how the marginal WTP estimates vary across the region.

Under this basic specification each person has her own parameter j,,;,, which deviates from the
population mean p by €,,,. The idiosyncratic random term €, is normally distributed and has standard
deviation ¢ + ay, z;, with mean 0. Variance reducing sites will have &), < 0, while variance increasing
ones «aj > 0.

To define the geographical areas affecting the variance of €,;, we used three different criteria
to capture both spatial and social effects. We grouped the municipalities of the region according
to three criteria: (1) altitude, i.e., being located in low land (plain or valley), hilly or mountainous
area; (2) average income in the municipality; (3) population size. Accordingly, we estimated three
MXL models. The first criterion produced three different areas, the second and the third ten areas
each. Average income was divided in ten classes of €1,000 width, ranging from €15,000 to €25,000.
The population size classes are move in steps of 5000 people, with boundary classes being less than
5000 and over 40,000.

Model identification was ensured by keeping as baseline hilly areas for the first criterion,
the lowest average income segment (less than €15,000) and the lowest population size (less than
5000 people).

4.1. Expected Results and Rationale

We now turn to our expected results for selected features of the investigation and the rationale
behind each expectation. From the altitude-related model we expect individuals living in mountainous
areas to be relatively more homogenous in their views on cost of heating system. The motivation would
be that populations in these areas are traditionally quite careful with resource use and management
because of their harsh living conditions and close-nit societies who often openly disapprove of
profligacy. We did not have a clear expectation with respect to residents in hills and plains, although
we suspected that there would be a gradient of heterogeneity with the largest being associated with
lower altitude. With respect to preference variation of CO, emissions, we expected that people in
the plains be more homogeneous since they are more exposed to air pollution than people in the
hills or mountains, especially during the periodical winter fogs that impede speed of transport, often
dramatically. Even though fogs are not directly caused by CO, emissions, smog (smoke + fog) is
strongly correlated with CO,.

We now turn our attention to the effect of segregating sites on the basis of average income. For the
heterogeneity of cost coefficient, we expect that as income increases the variation of taste intensity for
income should also increase as income has been found to be a typical source of heteroscedasticity in
economic datasets. The cost coefficient in linear utility specifications is equivalent to the (negative of)
marginal utility of income. Relatively poorer residents have little choice in the way they value their
last unit of income, while those relatively better off can choose from a wider range of behaviors. A rich
person can behave as a miser, but a poor person has no choice. Turning to heterogeneity for the CO,
coefficient we hold much weaker expectations. It can be argued that in richer sites there might be more
disposable income and in as much as fewer emissions and a cleaner environment are a luxury good (as
the literature on the environmental Kuznets curve suggests) a higher consensus in favor of renewables
should be found in richer locations.

The population gradient criterion should suggest that for both coefficients there should be a higher
heterogeneity the higher the population, if anything because population size correlates with diversity.
Extreme views on utility of income and CO; emissions ought to be more common in larger size
locations. However, it might also be that higher density induces more homogeneity of views against
higher levels of pollution. In any case, we do not hold strong expectations along this segregation
criterion and which feature will prevail remains an empirical question the outcome of which has weak
theoretical basis.
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4.2. Ex-Post Validation

The sequence of choices made by each respondent contains additional information that may help
improve the accuracy of estimates derived from the latent utility, such as individual specific marginal
WTP estimates. These can be used to assess the theoretical validity of the stated choice method by
exploring how mWTP estimates correlate with theoretically meaningful independent variables, as
suggested in the early literature of validation of hypothetical choice statements [53,54]. In practice
one can use visual inspection and regression analysis, we opt for both and use geographical mapping
and kernels densities. The technical details are as follows. We simulated the population distributions
of individual specific estimates of mWTP, by generating 10,000 pseudo-random draws from the
unconditional distribution of the estimated parameters and we calculated individual-specific estimates
for each draw as explained in the seminal literature of panel choice models [50,55,56]. The formula
employed [57] is:

___ RYY, Wi,/ Honp L(pin,r|datay)
WTP, = ®)
1/R 25:1 L(pn,r|datay)

where R is the number of replications (i.e., draws of i), yi7, , is the 1" draw for the CO; attribute, data,
is the observed sequence of choice data by respondent n, L(p,, r|datay) is likelihood of an individual’s
sequence of choices computed at draw y;, » and y,, , is the " draw for the investment cost attribute,
that is the payment vehicle used to compute the mWTPs.

The individual value estimates are averaged by geographical polygon of each municipality,

colour-coded and mapped with ArcGIS to obtain the geographic distribution of the estimates. Kernel
density distributions of mWTP from the best performing model are obtained conditional on income
levels, altitudes of place of residence and population size of the place of residence.

5. Results

All MXL estimates were obtained by simulated maximum likelihood using the Pythonbiogeme
software [58]. The choice probabilities are simulated in the sample log-likelihood with 1000
pseudo-random draws. We estimated three specifications, one for each criterion by using different
«y, zj, in the standard deviation for the random parameters for cost and CO, emissions.

In the first MXL model, which relates to altitude of place of residence of the respondent, &1 denotes
the coefficient for mountain areas associated with z;, while &, is the analogue for low land. So, the
baseline standard deviation is for intermediate altitude areas (hilly). The second (average income) and
third (population size) models have 10 ordinal groupings each, so nine &, z;, are used. In all models
error components 7, are assumed to have a standard normal distribution. As the aim of the study is to
investigate the heterogeneity of sensitivities for the investment cost and the CO, emissions, we kept
all other coefficients fixed. All models include six alternative specific constants (ASCs) for all heating
systems except for LP gas, which is the baseline.

Table 4 shows the estimates for the MNL and the three MXL models. Each of the three MXL
models substantially improves the fit to the data. Across the three MXL models, the specification based
on population size seems to perform best, according to all criteria. In all the models, the investment and
operating cost coefficients are significant and negative, as expected. The other significant determinants
of preferences towards heating systems are the emission of CO; and required own work. The negative
sign for emissions coefficient (FP and CO,) are as expected, but that for FP is never significant, while
the one for CO, always is, suggesting a different sensitivity to the type of pollutant caused by heating
systems and a preference for technologies that target CO, emissions. The coefficient for required own
work is also negative, suggesting an expected preference for low maintenance systems.
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Table 4. Estimated parameters of the models.

Model MNL MXL-Altitude MXL-Income MXL-Population
Variable Coefficient |tl Coefficient Itl Coefficient |tl Coefficient Itl
ASC Firewood 0.495 2.8 0.734 19 0.822 2.0 0.601 19
ASC Chip wood 0.201 1.0 0.512 0.6 0.469 0.7 0.333 0.6
ASC Wood pellet 0.711 4.7 0.888 2.1 0.934 2.0 0.812 2.1
ASC Methane 0.944 9.8 1.023 7.7 1.026 8.6 1.001 6.0
ASC QOil —-0.311 6.0 —0.398 6.5 —-0411 6.7 —0.402 6.5
Investment duration 0.07 1.3 0.021 1.1 0.014 1.2 0.021 1.3
CO, emissions —0.207 1.0 —0.101 2.5 —0.121 2.4 —0.146 2.5
FP emission —0.012 0.9 —0.002 0.5 —0.003 0.5 —0.003 0.5
Required own work -0.133 0.6 —0.144 2.0 —0.101 1.9 —0.109 2.0
Investment cost —0.321 3.6 —0.525 8.0 —0.567 7.0 —0.531 7.9
Operating cost —0.059 8.0 —0.068 4.6 —0.099 4.6 —0.061 4.6
Tcos - - 0.371 3.2 0.421 4.2 0.391 3.8
Neo2 - - 0.053 2.1 0.091 4.0 0.088 4.7
ol cos - - —0.019 2.4 0.006 2.8 —0.031 0.6
o2c0s - - 0.025 2.1 0.009 2.8 —0.012 0.8
3cos - - - - 0.016 0.6 0.009 19
o4 cos - - - - 0.013 1.9 —0.015 1.0
Dcos - - - - 0.024 2.9 0.013 15
*6cos - - - - 0.025 1.8 0.013 0.3
&7 cos - - - - 0.031 24 0.023 3.2
o8cos - - - - 0.044 2.6 0.025 2.1
09cos - - - - 0.056 3.2 0.039 3.1
oleon - - 0.033 2.6 0.051 1.7 —0.001 1.8
o2c02 - - —0.025 -2.8 —0.002 1.9 0.009 15
3c02 - - - - 0.091 0.9 —0.011 2.0
oAeon - - - - —0.015 1.1 -0.012 2.6
&5c02 - - - - —0.004 2.6 -0.017 1.8
x6c02 - - - - 0.014 0.2 -0.019 2.9
o702 - - - - —0.006 24 —0.019 3.1
802 - - - - 0.041 2.2 —0.029 2.8
o902 - - - - —0.009 3.3 —0.036 2.2

In(L) —15,544 —13,606 —-13,412 —13,399

AIC 31,107 27,874 26,790 26,731
BIC 31,233 27,953 26,700 26,549

The alternative specific constants (ASCs) reflect the average system-specific impacts of unobserved
factors associated with each system and measured with respect to LPG. These estimates are always
statistically significant except for chip wood. The signs of the ASCs for firewood, wood pellet, and
methane are positive, thus suggesting that those heating systems are preferred to the LPG fueled ones.
Only the ASC for the oil based systems is negative, suggesting that it is the least preferred heating
system. The standard deviations of random components are significant in each of the three models,
thus suggesting heterogeneity of cost sensitivity in the sample for both investment cost and CO,
emissions. The estimated values for a; show the sensitivity of the variance of the random coefficients
for investment cost and CO; emissions across the geographical indicators of interest, which we now
examine in turn.

In the “altitude” model all estimates for «j, are significant, suggesting that density of coefficient
values differs across the three altitude categories. a1, is associated with the variance of investment
cost for respondents in mountain areas (—0.019) and ay,; is its analogue for the plains (0.025). The
alternate sign suggests a monotonic relationship between preference heterogeneity and altitude: the
lower the latter the higher the former. In other words, these value estimates are consistent with a lower
variance among respondents living in mountainous areas compared to those living in the low land,
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with those in the hills having an intermediate degree of heterogeneity thus confirming our expectation:
preferences for marginal utility of money are more homogeneous in high altitude areas than elsewhere.

The pattern reverses for heterogeneity of taste for emissions, which displays a positive, rather
than negative, monotonic relationship with altitude. People living in mountainous areas are more
diverse in preference (0.033) compared to those living in the hills and plains. The latter show a higher
homogeneity (—0.025) of taste in their view on CO, emissions. This differences in spread of taste
parameters may be explained by considering that Veneto mountainous areas are less urbanized and
populated (and therefore with more diffuse pollution), as compared to the hills and plains. So, extreme
views are more prevalent in mountain areas where you might have a wider diversity of perceptions on
the emission problem, whereas residents in the plains display higher converge in opinion. This may
induce respondents living in the mountains to consider heating systems” emissions with a broader
difference of opinion, thereby requiring a higher policy effort from the viewpoint of education and
generally adopt more sustainable heating systems. The seventh to eighth columns of Table 4 show
coefficient estimates for the “average income” model. The lowest segment of income (less than €15,000)
was defined as the baseline; eight out of nine investment cost coefficients and five out of nine CO,
emissions coefficients show significant estimates. All « coefficients associated with investment cost
are positive, and their relative values confirm the theoretical expectation of a gradual increase in
heterogeneity with respect to marginal utility of money as average income increases. We take this
result as a strong endorsement of theoretical validity of this stated preference data.

Finally, turning to the “population size” estimates (columns 10-12), four of the nine investment
cost coefficients are significant and these show a monotonic set of relative values with respect to
population size. A similar pattern, albeit with inverse correlation, is found for the eight coefficients
with good significance for CO, emissions. The values of heterogeneity coefficients decrease as we
move from less to more populated areas, thereby suggesting that in bigger cities people are more
heterogeneous in their preferences towards CO, emissions. As expected, more populated cities are
usually more urbanized and therefore more polluted. This may explain why individuals living in
those areas are more sensitive to the issue of CO, emissions, even those produced by heating systems.

5.1. Individual WTP Estimates

Figures 1-3 describe the sample distributions of individual-specific mWTDP, retrieved from the
best MXL specification: the one with heterogeneity by population size. The individual level estimates
were computed by using the software tool developed by [59]. The reported kernel densities uncover
differences between the distributions of mWTP values to avoid the emission of 1 kg/year of CO, for
respondents from the mountains, hills and plains (Figure 1). Note that because mWTP is computed as
a function of both random coefficients, the relatively higher homogeneity of preferences for residents
in the mountain for the random cost coefficient is offset by the relatively lower homogeneity of the
random coefficient for CO, emissions. As such, we cannot expect the distribution of these values to
display the pattern of kurtosis previously revealed in the values of estimates for &j,. By inspecting the
figure it is apparent that residents in the plains and the hills have higher frequencies for lower mWTP
values for emission reduction, while residents of the mountains have higher frequency in the higher
range (in absolute terms) of mWTP values. This suggests that in the mountains there is preference
for being able to emit less. Residents of the plains have lower modal values of mWTP with higher
frequency around the mode.

Figure 2 shows the kernel distributions for those respondents characterized by different income
levels. We aggregate respondents in three segments: low yearly income (less than €18,000), intermediate
income (€18,000—€21,000) and high income (more than €21,000). The distributions show very similar
modal values. However, the skewness varies and so does the kurtosis and the presence of local modal
values. It is interesting to note that the only income group with higher density of positive values
(i.e., in favor of emission increase) is the one with highest income, which also displays the highest
variance and bi-modality. They are the only group with high density for WTP to avoid emission higher
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than €8. The distribution with stronger positive skewness is that of lowest income, which also displays
highest homogeneity of preference (low variance and range) with none being willing to pay more than
€6. The intermediate income group displays features in between the other two.

Probability density distribution

=
o

0.3

0.2

01

00

Individual-specific marginal WTP estimates for CO2 emissions in Euro/kglyear

Figure 1. Density distributions of individual-specific mWTP estimates for CO, by altitude levels

(estimates from the “population size” model).

=
o

0.3

FProbability density distribution
0.1 02

0.0

Intermediate income

Low income

Individual-specific marginal WTP estimates for CO2 emissions in Euro/kg/year

Figure 2. Density distributions of individual-specific mWTP estimates for CO2 by income levels

(estimates from the “population size” model).
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Figure 3. Density distribution of individual-specific mWTP estimates for CO, by population size levels
(estimates from the “population size” model).

Figure 3 shows the kernel distributions for town residents separated by population size, with
towns with small (less than 10,000), intermediate (between 10,000 and 25,000) or large (more than
25,000) populations. Interestingly, this plot shows a higher degree of heterogeneity, as compared to the
previous ones. Small town residents have no frequency in positive values, which implies no propensity
to increase emissions. They also display largest variation and bimodality, with a modal value strongly
shifted to the left of the modes of the other two town size, which overlap. This implies a much higher
mWTP for emission reduction. The largest population size towns show highest homogeneity.

5.2. Validation and Calibration of mWTP Estimates

Estimates of individual specific mWTD, to avoid CO; emissions should be meaningfully related
to those variables that are—at least in theory—determining WTP. In order to establish if this is so in
our case we report the results of an OLS regression of mWTP, on a selected sub-set of socio-economic
covariates, which include also indicators for altitude and population size. Instead of average income
of the location of residence we prefer to include personal income of the respondent, and because of
missing data on this variable, the sample is somewhat smaller (223 fewer respondents) than that used
for estimation of the choice models. Table 5 reports the OLS estimates, whose signs support the validity
of the mWTDP, estimates. Increased education attainment is progressively related to higher values
of MWTD,, as is personal income and being resident in the plains and in larger towns. Being a male
respondent or of different age has no significant effect on mWTP, while being from the mountains,
everything else being equal, shows a significantly lower mWTD,. This seems in contrast with the
unconditional distribution displayed in Figure 1, but the marginal effect of altitude, obtained while
controlling for other variables, is obviously different from its unconditional effect.
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Table 5. OLS regression estimates for mmn.

Variable Estimate Standard Error t-Value Pr(>1tl)
Intercept 0.995 0.802 1.24 0.215
Middle School —0.108 0.377 —0.29 0.775
High School 0.584 0.164 3.57 <0.001
Graduate 1.010 0.186 5.43 <0.001
Post-graduate 1.848 0.300 6.16 <0.001
Man —0.043 0.101 —0.43 0.667
In(age) —0.153 0.174 —0.88 0.378
income 0.017 0.004 4.50 <0.001
Plains 0.329 0.120 2.74 0.006
Mountains —0.576 0.110 —5.25 <0.001
In(population) 0.174 0.048 3.64 <0.001

Adjusted R-squared: 0.1232
Multiple R-squared: 0.1304
F-statistic: 18.24 on 10 and 1217 DF
p-value: <0.001

Descriptive Stats of mWTP (dependent variable)

Mean Standard deviation Median 25 quartile 75 quartile
3.045 1.741 2.974 1.796 4.229

In order to use estimates obtained by hypothetical statements for policy analysis it is necessary to
calibrate them in order to reduce hypothetical bias. WTP estimates from hypothetical statements are
typically larger than equivalent estimates obtained from revealed preference data. Several studies have
investigated the regularity of such discrepancy and derived calibration factors [60,61]. In the context
of environmental goods, with which respondents seldom have familiarity, calibration is obviously
particularly important. A comprehensive meta-analysis study of environmental nonmarket estimates is
that of [60], in which they find “a median ratio of hypothetical to actual value of only 1.35, and the distribution
has severe positive skewness”. So, in our calibration, the median value serves as the anchoring point
which is deflated so that the hypothetical estimate is 1.35 times the calibrated estimate. We then impose
a positive skewness on the calibrated values. Hypothetical value estimates falling in percentiles above
the median are deflated in increments of 7% every steps of five percentile points, while values below
the median are deflated in decrements of 5% for the same percentile steps.

5.3. Geographical Distributions of WTP for CO, Emissions

In this section we explore the geographical distribution of benefits that would derive if all
respondents changed to more sustainable (lower CO; emitting) heating systems. The assumption is
that respondents move from the current heating system—the data for which were collected in during
the interviews—to the nearest system with lower emissions. So, for example, a respondent who
reported to be currently using an oil-based system emitting 4575 kg of CO,/year would move to a
more sustainable system within the oil-based group emitting only 3900 kg/year. Someone else that
was already at the lowest range of emission within a category (i.e., methane with 3000 kg/year) would
lower emissions by switching to the worse emitter in the more sustainable system in the renewable
category (i.e., a pellet based system emitting 525 kg/year of CO;). In this manner we can approximate
linearly the monetary change by using the individual specific estimates of marginal WTP obtained from
the best performing mode, after suitable calibration for reducing hypothetical bias. The computation
of the mWTP per kg of CO, used the following formula:

mpn =g (m/mn) Ay 6)
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where g (.) Is the calibration function (a coefficient consistent with the median value and skewness
from [60]) that adequately deflates the estimate, and A, is the marginal reduction in CO,, conditional on
the heating system currently employed by the respondent (in kg of CO,/year). These were developed
by assuming that the length of time respondents signalled to be away from the next adoption decision
was an indication of pollution emission levels, with longer times indicating more sustainable current
systems (with lower emissions).

To explore the geographical distribution of the benefits from such hypothetical emission reduction
we mapped the values across the territory of the target population (Figure 4). The map describes the
municipality boundaries and the colouring reflects the averaged values from respondents within each
boundary. It is apparent that the highest benefits from emission reduction occur in the low land in the
south part of the map, and it is especially high in the large municipalities, such as the city of Verona
and Padua. The lowest benefits, instead, occur in the mountainous north and along the hilly regions
along the foot of the mountains. This might be counter-intuitive if compared with the distributions
reported in Figures 1 and 2 but it is mostly due to higher deflation values of g (.) that apply to higher
mWTP,, which are more prevalent at higher altitudes.

Marginal WTP to switch fo
a heating system with lower
CO:2 emissions (€)

- Less than 0
[ o0-490

[ ] s00-999
[ ] 1000 - 1499
I 1500 - 1999
- 2000 or more
I_' No data

Figure 4. Distribution of WTP for marginally reducing CO, emissions from heating systems at
municipality level.
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6. Conclusions

Emissions from heating systems are large contributors to the level of stock pollutants of the
greenhouse gas type. Climate change is responsible for severe damage in high altitude areas, in the
form of faster landslides, change in the snowfall patterns and topsoil erosion. However, in the plains
air pollution is often more visible for the prevalence of winter fogs and low altitude haze. Respiratory
problems are also more common in the lowlands. These factors, along with different patterns of
population structure across these areas make geographical factors important in effective policy design.
Stated preference methods are increasingly common in exploring nonmarket benefits associated with
environmental policies. In this study we collect data on choice of heating systems across the population
of Veneto in North-Eastern Italy. This densely populated region covers a wide range of altitudes, from
the Alps to the lowlands of the rivers. Such diversity of microclimates induces a differentiated demand
in terms of heating systems. As such it lends itself to studying the geographical distribution of policy
actions aimed at a more sustainable pattern of adoption of heating systems and its nonmarket benefits.

We developed a choice experiment survey to explicitly address the geographical dimension
of taste heterogeneity across residents for the existing heating systems and potential adoptions of
more sustainable ones. This required a complex experimental design, which nevertheless provided
the identification of the parameters for all attributes and heating systems. In particular, from the
methodological viewpoint, we proposed an MXL model specification to account for the role of spatial
and socio-demographical factors in respondents” heterogeneity of preferences towards key features of
heating systems. Although our model cannot be considered a proper spatial model, it represents a way
to inform discrete choice models with variables related to geographical features. This is important as
the existence of spatial effect on welfare changes is well established in literature, but poorly explored
in empirical studies. The estimation of spatial discrete choice models has still received little attention
in literature, and our paper is an explorative work in such direction.

The hypothesis that justified our work is that spatial variables such altitude, average income and
population size of the municipality are sources of heterogeneity of preferences towards key features of
heating systems.

Our results show that the variables we consider are in fact a source of variation in the spread
of sensitivity to cost and CO; emissions. In particular, we found that respondents living at higher
altitudes display a wider range of preferences than those in the lowlands. We validated our structural
model as well as its ex-post values at the individual level by developing theoretical expectation with
regards to key variables, such as income and education, which are confirmed by the results. We hence
argued that the model and data are theoretically valid.

From a policy viewpoint, our results are of particular interest considering that both local and
national governments are providing financial incentives to encourage the installation of energy-efficient
and more sustainable heating systems. Being able to account for spatial differences in the perception
of the benefits of such measures is useful to design programs that are coherent with public preferences.
Furthermore, as some of these measures have a strong local connotation, our results can be useful
to help policy maker in addressing their action locally. In particular, our findings suggest that
geographical features matter for the adoption of sustainable heating systems and that government
intervention should be developed taking this into serious account.
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