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Abstract: This paper proposes a new robust two-degree-of-freedom (DoF) design method for
controlling the nonlinear longitudinal speed problem of hybrid electric vehicles (HEVs). First,
the uncertain parameters of the HEV model are described by fuzzy α-cut representation, in which the
interval uncertainty and the possibility can be simultaneously indicated by the fuzzy membership
function. For the fuzzy parametric uncertain system, the maximum uncertainty interval can be
translated into the weighting matrix Q of the linear quadratic tracking problem to guarantee that
the designed feedback controller is robust. Second, the fuzzy forward compensator is incorporated
with a robust feedback controller to enhance the system tracking response. The simulation results
demonstrate that the proposed controller has higher tracking performance compared to the single-DoF
self-tuning fuzzy logic controller or conventional optimal H8 controller.

Keywords: two-degree-of-freedom (DoF) design; fuzzy parametric uncertain system; fuzzy
α-cut representation

1. Introduction

Recently, increasing concern about a cleaner environment and fuel conservation has made hybrid
electric vehicles (HEVs) an indispensable next-generation technology. HEVs coordinate both electric
machines and internal combustion engines (ICEs) to deliver propulsion power. Many previous studies
have focused on the energy management and optimal power flow of HEV dynamics [1–4]. However,
HEV speed control techniques are drastically different than those of a conventional vehicle, because
HEVs typically move in electric mode, and ICEs can be operated at higher speeds. Therefore, the drive
performance and wide-range speed control algorithm of HEVs are also key concerns [5]. The practical
application of speed control includes adaptive cruise control, intelligent collision avoidance and car
following [6–8].

In the traditional ICE propulsion system, the vehicle speed and engine power are directly
controlled by the mechanical throttle control system (MTCS). However, the hybrid powertrain request
does not go directly to the engine in HEVs; instead, the MTCS is replaced by an electronic throttle
control system (ETCS) [9–11]. The ETCS system is a complex engine mechanism that utilizes a DC
servo motor to regulate the throttle position. With ETCS, the desired torque and a wide range of
vehicle speeds can be achieved in HEVs [12]. In addition, HEV speed control must combine ETCS
with nonlinear vehicle dynamics. Because of factors such as the uncertainty parameters of nonlinear
elements and instability from environmental disturbances, designing an algorithm for HEV speed
control is challenging [13].

Longitudinal speed control belongs to a group of wide-range and cyclic operations. The goal
of HEV speed response is to track a desired speed under any operating condition. A robust and
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adaptive internal model control algorithm was used to track speed and reject road grade disturbance
in [14]. The sliding mode control, incorporated with an adaptive proportional-integral-derivative
(PID) controller, was proposed to solve the uncertain speed servo problem [15]. The speed control
performance among the state feedback controller, intelligent control techniques and adaptive controller
was compared in [16]. However, these previous studies have two limitations. First, the uncertainty
of the dynamic system model can generally be described as a bounded interval model that considers
each operational point with equal probability. Compared to the interval approach, the fuzzy α-cut
representation of uncertainties can use the fuzzy membership function to indicate the possibilities
and intervals of variations. Such a fuzzy parametric uncertain system (FPUS) can be viewed as an
extension of interval systems and has attracted considerable attention from researchers [17–19]. In [20],
the problem of designing a robust controller for FPUS was converted into an optimal linear quadratic
regulator (LQR) control approach. The optimal LQR controller, which was designed for the worst-case
condition (α “ 0q, can stabilize all systems for various values of α P r0, 1s. Second, previous studies
have addressed control schemes in one-degree-of-freedom (1-DoF) controllers, which may address
them for specific types of performance, but be compromised in others. Two-degree-of-freedom (2-DoF)
controllers can fulfill another performance requirement by adding a feed-forward controller or prefilter.
For example, combining a forward fuzzy prefilter and a feedback controller for hydraulically-actuated
robotic mechanisms was studied in [21]. Because the prefilter can compensate the effects of the
dead-zone of the electromagnetic proportional control valve, the 2-DoF controller has quite good
tracking trajectories compared to the conventional 1-DoF controller. In [22], the 2-DoF integral-P
(IP) controller for electrical drives was shown to have good reference tracking and load-torque
rejection performance. Coordinating the inner loop observer to reject disturbances and an outer
loop tracking controller to achieve control performances was successful implemented in robust yaw
stability control of electric vehicles [23]. Therefore, 2-DoF control systems can be used to enhance
wide-range operations.

This paper investigates the nonlinear longitudinal speed control model of HEVs with fuzzy
parametric uncertain systems and proposes a new robust 2-DoF design method of speed control
systems for HEVs. The design procedure consists of two steps. In the first step, the different loads of
HEV components are described according to a fuzzy α-cut number, and the maximum uncertainty
interval of the system is translated into the weighting matrix Q of the linear quadratic tracking
(LQT) servo problem, to guarantee that the designed feedback optimal controller is robust under the
worst-case condition. In the second step, a fuzzy forward compensator is incorporated with a robust
feedback controller to enhance the system response. The robust property of the proposed controller
can track a desired speed at a wide range of vehicle speeds with varying road grades. In addition, the
fast dynamic response has significant effects on engine performance, fuel consumption and pollution
emission, especially in the transition mode of the hybrid operating system of HEVs. The effectiveness
of this longitudinal speed controller has been demonstrated in simulation studies.

The remainder of this paper is organized as follows. Section 2 details the fuzzy parametric
uncertain system for HEV speed control. In Section 3, the methodology for the synthesis of the 2-DoF
fuzzy controller and the stability analysis of the proposed controller are presented. The simulation
implementation of the proposed controller, with other controllers, such as the H8 and 1-DoF self-tuning
fuzzy PID controllers, are described in Section 4. Finally, Section 5 presents the conclusions of this study.

2. Problem Formulation and Longitudinal Speed Control Modeling

This paper focuses on the speed control of a small HEV with an uncertain parameter of ETCS and
a nonlinear vehicle dynamic model, the control scheme for which is shown in Figure 1. The uncertainty
component parameters are listed in Table 1 [12].
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and a nonlinear vehicle dynamic system. 
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Gear ratio 𝑁 4 [2,6] 

Motor torque constant 𝐾𝑡 0.1 N m/A [0.08,0.12] 

Throttle spring constant 𝐾𝑠𝑝 0.4 N ms/rad [0.3,0.5] 

Equivalent inertia 𝐽 0.021 kgm2 [0.009,0.0502] 

Damping constant 𝐵 0.482 N ms/rad [0.082,1.443] 

Vehicle Dynamic Model 
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Drag coefficient 𝛼 0.48 N/(m/s)2 [0.4,0.56] 

Engine force coefficient γ 12500 N [10000,15000] 
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Bearing damping coefficient 𝑏𝑤 0.035 N ms/rad [0.03,0.04] 

Radius of tire 𝑟𝑡𝑖𝑟𝑒 70 mm [50,90] 

Friction coefficient 𝜇 0.011 [0.01,0.012] 

Road slope/grade 𝛽 Variable [±2°, ±30°] 

2.1. The Architecture of the HEV Model 

The speed control architecture of the HEV includes an engine with ETCS and a nonlinear 

vehicle longitudinal motion model. The ETCS uses a DC servo motor to adjust the throttle, as 

expressed in the governing differential Equations (1)–(3) [9]. 
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Figure 1. The speed control scheme of the HEV with an electronic throttle control system (ETCS) and a
nonlinear vehicle dynamic system.

Table 1. The nominal values and uncertainty parameters of the HEV.

ETCS

Descriptions Symbol Nominal Value (SI unit) Uncertainty Bounds

Armature resistance Ra 2 Ω [1.5,2.5]
Armature inductance La 0.003 H [0.002,0.004]

Back electromotive force (EMF) constant Kb 0.11 Vs/rad [0.07,0.15]
Gear ratio N 4 [2,6]

Motor torque constant Kt 0.1 N m/A [0.08,0.12]
Throttle spring constant Ksp 0.4 N ms/rad [0.3,0.5]

Equivalent inertia J 0.021 kgm2 [0.009,0.0502]
Damping constant B 0.482 N ms/rad [0.082,1.443]

Vehicle Dynamic Model

Descriptions Symbol Nominal Value (SI unit) Uncertainty Bounds

Vehicle mass m 1000 kg [750,1250]
Drag coefficient α 0.48 N/pm{sq2 [0.4,0.56]

Engine force coefficient γ 12500 N [10000,15000]
Engine idle force Fi 6400 N [5500,7300]

Engine time constancy τe 0.5 s [0.2,0.8]
Bearing damping coefficient bw 0.035 N ms/rad [0.03,0.04]

Radius of tire rtire 70 mm [50,90]
Friction coefficient µ 0.011 [0.01,0.012]
Road slope/grade β Variable [˘2

˝

,˘30
˝

]

2.1. The Architecture of the HEV Model

The speed control architecture of the HEV includes an engine with ETCS and a nonlinear vehicle
longitudinal motion model. The ETCS uses a DC servo motor to adjust the throttle, as expressed in the
governing differential Equations (1)–(3) [9].

dia

dt
“

1
La

ˆ

´Raia ´ Kb
dθm

dt
` Ea

˙

(1)
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d2θm

dt2 “
1
Jm

ˆ

´Bm
dθm

dt
´ TL ` Tm

˙

(2)

d2θ

dt2 “
1
Jg

ˆ

´Tsp ´ Bt
dθ

dt
´ Ta ` Tg

˙

(3)

where ia is armature current (A), Tsp is the spring torque and θm and θ are the angular position (rad)
of the armature and throttle plate, respectively. Ra and La represent the armature resistance and
inductance, respectively. The back electromotive force constant is Kb. The parameters Bm and Bt are
defined as the motor shaft and throttle viscous damping coefficients, respectively. Ta is the torque due
to airflow. Motor inertia and throttle inertia are defined as Jm and Jg, respectively. Assume the gear
ratio N and the motor torque Tm can be expanded as:

N “
θm

θ
“

Tg

TL
(4)

Tm “ Ktia (5)

where Tg is the torque transmitted from gears, TL is the load torque and Kt is motor torque constant.
Equations (1) and (2) can be expressed in terms of throttle plate angular rotation as:

dia

dt
“

1
La

ˆ

´Raia ´ KbN
dθ

dt
` Ea

˙

(6)

d2θ

dt2 “
1

N2 Jm ` Jg

´

´Tsp ´ pN2Bm ` Bt

¯ dθ

dt
´ Ta ` NTmq (7)

For simplicity, let spring torque Tsp “ 2Ksp ˆ θ, equivalent inertia J “ N2 Jm ` Jg and damping
constant B “ N2Bm ` Bt. Taking the Laplace transform of Equations (6) and (7) into the s-domain,
we obtain:

θ psq
Ea psq

“
NKt{La J

s3 `
Ra J`BLa

La J s2 `
RaB`N2KtKb`2Ksp La

La J s` 2KspRa
La J

(8)

From Table 1, the nominal transfer function of ETCS is given as:

θ psq
Ea pSq

“
6349

s3 ` 689.7s2 ` 1.82ˆ 104s` 2.54ˆ 104 (9)

The dynamics of the nonlinear HEVs is given as [12,16]:

m
dV
dt
“ Fi ` γ

?
θ ´ τe

dFe pθq

dt
´ µmg pcosβq ´ αV2 ´

bωV
rtire

´mg psinβq (10)

where Fi and Fe are the engine idle force and engine force. γ, µ, α and bω are the coefficients of
engine force, friction, drag and bearing damping, respectively. τe is the engine time constant. β is the
road slope.

The Simulink model of the nonlinear vehicle dynamic Equation (10) is depicted in Figure 1.
The procedure of linearization of the nominal model [12] is as follows: First, β = 10

˝
is considered.

Then, by using the MATLAB linearization command “linmod”, the numerical transfer function of the
vehicle which is linearized around the nominal value of Table 1 is given as:

V psq
θ pSq

“
7906

s2 ` 2s` 0.001
(11)
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Combining Equations (9) and (11) and referring to Table 1, the nominal transfer function and the
lowest and top-most bounds of the overall speed control system are given as:

Vpsq
EapSq

“ GN psq “ 5ˆ107

s5`691.7s4`1.95ˆ104s3`6.17ˆ104s2`5.08ˆ104s`25.4

GL psq “ 1.87ˆ108

s5`764s4`1.19ˆ104s3`9.1ˆ104s2`2.5ˆ105s`200

GU psq “ 1.7ˆ107

s5`655s4`2.2ˆ104s3`3.9ˆ104s2`1.56ˆ104s`5.5

(12)

The transfer function of the system under parametric uncertainty can be described as the plant
with six uncertain interval parameters, rp0, rq0, rq1, rq2, rq3 and rq4.

G ps, rp, rqq “
rp0

s5 ` rq4s4 ` rq3s3 ` rq2s2 ` rq1s` rq0
(13)

2.2. Fuzzy Parametric α-Cut Representation of the Uncertain HEV Model

The interval uncertainty representation assumes all of the parameters have the same probability.
However, this is not true in practical applications. In this study, the uncertain parameters are
represented by a fuzzy number rqi with membership function α “ µ prqiq P r0, 1s. The membership
function µ prqiq can be any nonsymmetrical membership function, but decreases to the interval endpoint.
The fuzzy parametric uncertainty α-cut is defined as:

qi pαiq “
“

q´i pαiq , q`i pαiq
‰

(14)

where q´i p.q is an increasing function and q`i p.q is a decreasing function. Let αi be the membership
level of qi, as shown in Figure 2; we obtain:

q´i p0q “ q´i , q`i p0q “ q`i , q´i p1q “ q`i p1q “ q0
i (15)
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Figure 2. Fuzzy α-cut representation of the uncertain parameter.

Consider the uncertain interval model Equation (13). Assume that the only information
available for the values of the uncertain parameters rp0, rq0, rq1, rq2, rq3 and rq4, is the
linguistic information “around the nominal value of Table 1”, by using interval arithmetic
(affine linearization) [17,19,20]; the linguistic information can be represented as a fuzzy set
with triangular membership functions, where rp0 “ tri

`

1.7ˆ 107, 5ˆ 107, 1.87ˆ 108˘, rq0 “

tri p5.5, 25.4, 200q, rq1 “ tri
`

1.56ˆ 104, 5.08ˆ 104, 2.5ˆ 105˘, rq2 “ tri
`

3.9ˆ 104, 6.17ˆ 104, 9.1ˆ 104˘,
rq3 “ tri

`

1.19ˆ 104, 1.95ˆ 104, 2.2ˆ 104˘ and rq4 “ tri p655, 691.7, 764q (Figure 3). For α-cut = 1, we
obtain a nominal condition; for α-cut = 0, we obtain maximum uncertainty. The fuzzy numbers
correspond to their own confidence level α-cut and can be interpreted as possibility distributions.
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Finally, the nonlinear HEV system can translate into a fuzzy parametric uncertain system with a degree
of confidence of α P r0, 1s.

GN ps, qi pα “ 1qq “ 5ˆ107

s5`691.7s4`1.95ˆ104s3`6.17ˆ104s2`5.08ˆ104s`25.4

GL ps, qi pα “ 0qq “ 1.87ˆ108

s5`764s4`1.19ˆ104s3`9.1ˆ104s2`2.5ˆ105s`200

GU ps, qi pα “ 0qq “ 1.7ˆ107

s5`655s4`2.2ˆ104s3`3.9ˆ104s2`1.56ˆ104s`5.5

(16)
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This paper focuses on the problem of longitudinal speed control for HEV systems. The designed
controller must not only stabilize the fuzzy parametric uncertain system, but also satisfy the
performance requirements.

3. Controller Design

3.1. Optimal-Based Robust Feedback Controller Design

Nonlinear dynamic equations can be represented as linear models at specific operating points.
When a nonlinear system can be stabilized at different operating points, it is equivalent to stabilizing
the parametric uncertain linear model. Consider an uncertain system represented as a system with
fuzzy parametric uncertainty, as described by the following transfer function:

G ps, rp pαq , rq pαqq “
rpn´1 pαq sn´1 ` ¨ ¨ ¨ ` rp1 pαq s` rp0 pαq

sn ` rqn´1 pαq sn´1 ` ¨ ¨ ¨ ` rq1 pαq s` rq0 pαq
(17)

where rpi pαq, rqi pαq represents the fuzzy interval number. The α-cut confidence is given as α P r0, 1s .
Furthermore, the fuzzy parametric uncertain system is realized in state-space representation by a

controllable canonical form:

.
x “

»

—

—

—

—

–

0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

´rq0 pαq ´rq1 pαq ¨ ¨ ¨ rqn´1 pαq

fi

ffi

ffi

ffi

ffi

fl

x`

»

—

—

—

—

–

0
...
0
1

fi

ffi

ffi

ffi

ffi

fl

u

y “
”

rp0 pαq rp1 pαq ¨ ¨ ¨ rpn´1 pαq
ı

x

(18)

The compact representation of Equation (18) is:
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.
x “ A prq pαqq x` Bu

y “ C prp pαqq x
(19)

Assume that there exists a nominal value qnom P rq pαq, such that pApqnomq, Bq is stable; there exists
a matrix φprq pαq). The uncertainty in A is represented as:

A prq pαqq x´ Apqnomqx “ Bφ prq pαqq (20)

The fuzzy parametric uncertain system can then be rewritten as:

.
x “ Apqnomqx` Bφ prq pαqq ` Bu (21)

The problem of designing a robust controller for a system with fuzzy parametric uncertainty lies
in finding a feedback control law u “ ´ kx such that the closed loop system:

.
x “ Apqnomqx` Bφ prq pαqq ´ Bkx (22)

is stable for all α P r0, 1s. For the system with fuzzy parametric uncertainty in Equation (19), let the
cost function be designed as:

J “
ż 8

0

´

xT Fx` xTx` uT Ru
¯

dt (23)

where F is an upper bound on the uncertainty. Now, the aforementioned robust control problem can
be translated into an optimal control problem by using an LQR approach. Generally, the weighting
matrices Q and R are often determined arbitrarily or based on trial and error. In this study, we assume
the uncertain system φprq pαq) is bounded; the upper bound on F can be written as:

φ prq pαqqT φ prq pαqq ď F (24)

When Q “ rF` Is, the cost function is rewritten as:

J “
ż 8

0

´

xTQx` uT Ru
¯

dt (25)

The LQR optimal control problem involves finding the optimal feedback gain u “ ´ kx that
minimizes the cost function. When there exists a feedback control law u “ ´kx, such that Equation (22)
is stable for all rq pαq , α P r0, 1s, the design of a robust controller is completed. For a system with
fuzzy parametric uncertainty, the solution to the LQR problem is the solution to the robust control
problem. The following proposition demonstrates how to determine the weighting matrix Q in the
LQR problem.

For α “ 0, consider the maximum uncertainty described by qi P
“

q´i , q`i
‰

. For α P r0, 1s, the
uncertainty

“

q´i pαiq , q`i pαiq
‰

can be written as any value in
“

q´i , q`i
‰

. For the sake of demonstration,

assume that the nominal value is qnom “

”

q´0 q´1 ¨ ¨ ¨ q´n´1

ı

. In Equation (21), the uncertain
system Bφ prqq can be written as:

»

—

—

—

—

–

0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1
´rq0 ´rq1 ¨ ¨ ¨ ´rqn´1

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1
´q´0 ´q´1 ¨ ¨ ¨ ´q´n´1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0
...
0
1

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

q´0 ´ rq0

q´1 ´ rq1
...

q´n´1 ´ rqn´1

fi

ffi

ffi

ffi

ffi

fl

T

(26)

The maximum uncertainty φ prqq is bounded by:
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F “ φTφ “

»

—

—

—

–

“

q`0 ´ q´0
‰ “

q`0 ´ q´0
‰

¨ ¨ ¨
“

q`0 ´ q´0
‰

”

q`n´1 ´ q´n´1

ı

...
...

...
”

q`n´1 ´ q´n´1

ı

“

q`0 ´ q´0
‰

¨ ¨ ¨

”

q`n´1 ´ q´n´1

ı ”

q`n´1 ´ q´n´1

ı

fi

ffi

ffi

ffi

fl

(27)

Let Q “ rF` Is, and designate Q as the cost function for the LQR optimal control problem. With
the feedback control law u “ ´ kx, the characteristic equation of the closed loop system in Equation (22)
can be written as:

sn ` rkn ` rqn´1s sn´1 ` ¨ ¨ ¨ ` rk2 ` rq1s s` rk1 ` rq0s “ 0 (28)

Kharitonov’s theorem can be used to determine whether the interval polynomial is stable. If and
only if all four Kharitonov extreme characteristic polynomials have roots in the left-half plane (LHP),
the optimal feedback controller design is a solution to stabilize all of the systems for various values of
α P r0, 1s.

For the linear quadratic tracking (LQT) problem, we cannot use the aforementioned algorithm
directly. We must augment another system state. Define the augment system state

.
xI ptq “ e ptq “

r ptq ´ y ptq, and augment Equation (18) as:

« .
x
.
xI

ff

“

«

A 0
´C 0

ff«

x ptq
xI ptq

ff

`

«

Bu

0

ff

u ptq `

«

0
I

ff

r ptq

X “

« .
x
.
xI

ff

(29)

Then, the cost function in Equation (25) will be rewritten as:

J “
ż 8

0

´

XTQX` uT Ru
¯

dt (30)

The tracking problem can be transformed into a stabilization problem. The block diagram for the
HEV longitudinal speed control with a robust feedback controller is shown in Figure 4.
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3.2. Fuzzy Logic Forward Compensator Design

For accurate speed tracking, we need a controller that can exhibit robustness in stability, as well
as in tracking performance. In Section 3.1, we complete the design of the optimal linear quadratic (LQ)
feedback controller with robustness. However, neglecting the nonlinearities of the system may result
in an LQ controller with poor tracking performance. Combining the forward and feedback controllers
can therefore satisfy the performance requirements.

3.2.1. Forward Compensator Fc Design

As shown in Figure 4, a concern about the architecture is that the response to the reference input
is driven only by the integrated error. There is no forward path from the reference input to the system,
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and the transient response may be slow. This drawback can be mitigated by adding the forward
compensator FC shown in Figure 5. The control law for the revised implementation can be written as:

u “ ´K px̌` Fcˆ eq ´ KI XI (31)

Energies 2016, 9, 290 8 of 14 

 

Figure 4. Block diagram for the HEV longitudinal speed control with robust feedback controller. 

3.2. Fuzzy Logic Forward Compensator Design 

For accurate speed tracking, we need a controller that can exhibit robustness in stability, as 

well as in tracking performance. In Section 3.1, we complete the design of the optimal linear 

quadratic (LQ) feedback controller with robustness. However, neglecting the nonlinearities of the 

system may result in an LQ controller with poor tracking performance. Combining the forward and 

feedback controllers can therefore satisfy the performance requirements. 

3.2.1. Forward Compensator Fc Design 

As shown in Figure 4, a concern about the architecture is that the response to the reference 

input is driven only by the integrated error. There is no forward path from the reference input to 

the system, and the transient response may be slow. This drawback can be mitigated by adding the 

forward compensator 𝐹𝐶  shown in Figure 5. The control law for the revised implementation can be 

written as: 

𝑢 = −𝐾(�̌� + 𝐹𝑐 × 𝑒) − 𝐾𝐼𝑋𝐼 (31) 

 

Figure 5. Block diagram for the HEV longitudinal speed control with forward compensator. 

Note that the tracking error includes the output of the integrator and the state feedback 

components. Thus, this type of 2-DoF approach has the potential to enhance the performance 

problems identified in the original implementation. The entire design process of the forward 

controller (𝐹𝐶) is described as follows. 

Assume the state X of the HEV system in Figure 4 can be partitioned into 𝑥 and �̌�. 𝑥 are the 

parts we care about for tracking (𝑇𝑋) that we assume are directly available from 𝑦 = 𝑥 = 𝐶𝑋, and x̌ 

are the parts we do not care about for tracking (�̌� = �̅�𝑋). The matrices of 𝑇  and �̅�  can be 

considered selectors with diagonals of one and zero, but they do not always take this form. Assume 

�̅� is the complementary matrix of 𝑇 (𝑇 + �̅� = 𝐼) and state (vehicle speed) x is part of state vector 

𝑋([𝑥, 𝑣, … ]𝑇); let 𝑒 = 𝑟 − 𝐶𝑋, the control input 𝑢 in Equation (31) is rewritten as: 

𝑢 = −𝐾(�̌� − 𝐹𝑐 × 𝐶𝑋 + 𝐹𝑐 × 𝑟) − 𝐾𝐼𝑋𝐼 (32) 

To proceed, define 𝐹𝐶 × 𝐶 =  −𝑇; then:  

�̌� − 𝐹𝑐 × 𝐶𝑋 = �̅�𝑋 − (−𝑇)𝑋 = 𝑋 (33) 

Finally, the control input becomes: 

𝑢 = −𝐾(𝑋 + 𝐹𝑐 × 𝑟) − 𝐾𝐼𝑥𝐼 (34) 

Figure 5. Block diagram for the HEV longitudinal speed control with forward compensator.

Note that the tracking error includes the output of the integrator and the state feedback
components. Thus, this type of 2-DoF approach has the potential to enhance the performance problems
identified in the original implementation. The entire design process of the forward controller (FC) is
described as follows.

Assume the state X of the HEV system in Figure 4 can be partitioned into x and x̌. x are the parts
we care about for tracking (TX) that we assume are directly available from y “ x “ CX, and x̌ are the
parts we do not care about for tracking (x̌ “ TX). The matrices of T and T can be considered selectors
with diagonals of one and zero, but they do not always take this form. Assume T is the complementary
matrix of T

`

T` T “ I
˘

and state (vehicle speed) x is part of state vector Xprx, v, . . .sTq; let e “ r´ CX,
the control input u in Equation (31) is rewritten as:

u “ ´K px̌´ Fcˆ CX` Fcˆ rq ´ KI XI (32)

To proceed, define FC ˆ C “ ´ T; then:

x̌´ Fcˆ CX “ TX´ p´TqX “ X (33)

Finally, the control input becomes:

u “ ´K pX` Fcˆ rq ´ KI xI (34)

Using T “ ´FC ˆ C ensures avoiding double counting in the feedback. Without loss of generality,
we can use:

Fc “ ´γCT , γ ă 1 (35)

The entire closed-loop dynamics of the 2-DoF controller system is expressed as:

« .
X
.

X I

ff

“

«

A´ BK ´BKI
´C 0

ff«

X
XI

ff

`

«

´BKFc
I

ff

r (36)

Because of the nonlinear properties of HEV speed control, through Equations (16) and (35), the
matrix C is not constant, but the fuzzy parametric uncertainty. To obtain optimal system performance,
the weighting (BKFC) of forward compensator FC should not be constant, either. The next section
discusses how to use fuzzy logic controllers (FLCs) to tune the BKFC of forward compensator FC.

3.2.2. The Weighting (BKFc) of Forward Compensator Tuning by FLC

An FLC is used to design the tuning of forward compensator FC. The inputs to the FLC are the
error (e “ r´ y) and change in error (ce), and the output variable is the BFC. The input triangular
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membership functions are designed according to five linguistic terms: positive big (PB), positive (P),
zero (Z), negative (N) and negative big (NB). The output linguistic levels are assigned as small (S),
medium small (MS), medium (M), medium big (MB) and big (B). Twenty-five rules for using the trial
and error method are shown in Table 2. The entire system diagram is depicted in Figure 6.

Table 2. The rule base of the FLC: positive big (PB), positive (P), zero (Z), negative (N), negative big
(NB), small (S), medium small (MS), medium (M), medium big (MB) and big (B).

Error NB N Z P PB

Change in Error

NB S S MS MS M
N S MS MS M MB
Z MS MS M MB MB
P MS M MB MB B

PB M MB MB B B

1 
 

 
Figure 6. Block diagram for the HEV longitudinal speed control with the 2-DoF fuzzy controller. FLC,
fuzzy logic controller.

3.3. Design Procedure

We summarize the design procedure for the proposed robust 2-DoF controller as follows.

1. Step 1: Linearize the nonlinear HEV model at specific operating points and represent as an
uncertain interval model.

2. Step 2: The uncertain interval parameters are represented by a fuzzy number rq with membership
function α “ µ prqq P r0, 1s. Translate the uncertain interval system into the fuzzy parametric
uncertain system.

3. Step 3: For α “ 0, the maximum uncertain interval of the system is translated into the weighting
matrix Q of the linear quadratic tracking (LQT) servo problem.

4. Step 4: Design an optimal controller for α “ 0, which can be considered as the worst case
condition.

5. Step 5: Use Kharitonov’s theorem to test whether the optimal feedback controller is a solution to
stabilize all of the systems for various values of α P r0, 1s.

6. Step 6: Design the FLC-based forward compensator to satisfy the performance requirements.

4. Simulation Results

This section illustrates how to design robust longitudinal speed control systems for HEVs based
on a 2-DoF design method.

Simulation of Optimal Based Robust Feedback Controller

In Equation (16), the transfer function of the HEV system with parametric variation is expressed as:
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rG psq “
r1.87 17s ˆ 108

s5 ` r655 764s s4 ` r1.19 2.2s ˆ 104s3 ` r3.9 9.1s ˆ 104s2 ` r1.56 25s ˆ 104s` r5.5 200s
(37)

For convenience, we translate this equation into its controllable canonical form, and the transfer
function of the parametric uncertain system in Equation (21) is expressed as:

.
x

»

—

—

—

—

—

–

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

´r5.5 200s ´ r1.56 25s ˆ 104 ´r3.9 9.1s ˆ 104 ´r1.19 2.2s ˆ 104 ´r655 764s

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

A

x`

»

—

—

—

—

—

–

0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

fl

loomoon

Bu

u

C “
”

r1.87 17s ˆ 108 0 0 0 0
ı

(38)

In order to satisfy the requirement of LQT, we augment the system Equations (38) to (29).
Using Equation (20), the maximum uncertainty φ prqq is bounded by:

φ prqq “
”

1.3ˆ 108 194.5 234, 400 52, 000 10, 100 109
ı

(39)

The upper bound of the uncertainty in Equation (24) can be expressed as F “ φTφ. Then, the LQT
weighting matrix Q can be written as rF` Is. Considering R “ 1000 and solving the feedback control
gain by using the LQT approach, we obtain KLQT as follows:

KLQT “
”

1.38ˆ 108 1.45ˆ 107 8.99ˆ 105 29096.8 98.5 ´3.45
ı

(40)

With the feedback control law, all four of Kharitonov’s extreme characteristic polynomials over
all of the operating conditions can be expressed as:

k1 psq “ s6 ` 753.5s5 ` 40, 997s4 ` 9.9ˆ 105s3 ` 1.47ˆ 107s2 ` 1.38ˆ 108s` 5.85ˆ 107

k2 psq “ s6 ` 862.5s5 ` 51, 097s4 ` 9.3ˆ 105s3 ` 1.45ˆ 107s2 ` 1.38ˆ 108s` 6.45ˆ 108

k3 psq “ s6 ` 862.5s5 ` 40, 997s4 ` 9.3ˆ 105s3 ` 1.47ˆ 107s2 ` 1.38ˆ 108s` 5.85ˆ 107

k4 psq “ s6 ` 753.5s5 ` 51, 097s4 ` 9.9ˆ 105s3 ` 1.45ˆ 107s2 ` 1.38ˆ 108s` 6.45ˆ 108

(41)

We verify the conditions for robust stability in Equation (41) and find the entire fuzzy uncertain
system to be stable. Furthermore, to demonstrate that the proposed feedback approach can consider
robustness, we evaluate the proposed approach by comparing H8 methods [12] with different
cruise-tracking regimes.

The step responses of the system with two kinds of feedback controller are shown in Figure 7.
The comparison of the time domain performance indices in terms of the overshoot (OS), rise time (RT),
delay time (DT) and settling time (ST) that correspond to transient state characteristics is shown in
Table 3. Both control schemes stabilize the entire uncertain system. The simulation results show higher
overshoot and longer settling times in the H8 controller. However, the proposed robust feedback
controller yields longer response times.
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feedback controller.

Table 3. The comparison of the time domain performance index: overshoot (OS), rise time (RT), delay
time (DT) and settling time (ST).

Controller Condition OS (%) RT (s) DT (s) ST (s)

H8 controller
Nominal 1.369 1.59 0.63 2.17

Lower Bound 0 2.86 0.2 5.27
Upper Bound 25.13 1.92 1.13 8.99

Proposed feedback controller
Nominal 0 1.7 0.61 2.8

Lower Bound 13.37 0.31 0.24 0.72
Upper Bound 0 5.27 1.67 8.77

Because the speed does not generally change stepwise in practical applications, trapezoidal speed
profiles are used instead. In this case, the accurate tracking of the reference input during acceleration
and deceleration is crucial. Again, the robust properties and tracking performance of the two control
schemes are also assessed. The scenario of wide-range cruise-tracking performance is set as follows:
the vehicle speed is 20 m/s for the first 6 s; there is then an acceleration at the rate of 6 m/s2; thence,
the vehicle runs at a constant speed of 32 m/s for 8 to 12 s. For a time interval of 12 to 14 s, the vehicle
runs in a decelerating mode at 4 m/s2, reaching 24 m/s; finally, from 14 to 20 s, the vehicle runs at a
constant speed of 24 m/s. The wide-range cruise-tracking responses of the system with two types of
feedback controllers are shown in Figure 8.
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Although both the H8 feedback controller and proposed LQ feedback controller are robust
because of high nonlinearities in the HEV system, when the range of operation is complex, the
single-type feedback controller deteriorates in tracking performance. Figure 8 shows that the 1-DoF
fixed-value controller cannot yield adequate tracking performance. To improve the slow transient
response and enhance the tracking performance of the 1-DoF robust feedback controller, it can be
paired with the forward compensator FC in Figure 6. The proposed 2-DoF fuzzy controller has an
additional component to compensate for the effects of the response.

Based on Figure 6, the FLC is a two input and one output system. For successful implementation
of the fuzzy forward compensator, we must estimate the maximum excursion of the input and output
signals of the fuzzy controller. Using trial and error, the universe of discourse in fuzzy membership
function designed for the error, the change of error and the output covers a range of [–10,20], [–25,25]
and [0.25,7.5], respectively.

The tracking performance of the designed 2-DoF controller is analyzed by comparing it to that of
the self-tuning fuzzy logic PID (STF-PID) controller in [12]. The integral error performance indices are
used to obtain greater insight into HEV tracking performance with two controllers. The wide-range
cruise-tracking responses of the system with two types of controllers are shown in Figure 9. The
comparison of input energy for the period from t =5 s to t = 16 s in the nominal condition are shown
in Figure 10. Table 4 shows the performance index analysis of the integral squared error (ISE) and
integral absolute error (IAE).
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Table 4. The comparison of the integral error performance index. IAE, integral absolute error; ISE,
integral squared error; STF, self-tuning fuzzy logic.

IAE ISE

Controller Nominal Lower Upper Nominal Lower Upper

STF-PID 13.58 12.94 13.27 86.80 68.77 88.18
2-DoF controller 7.35 6.59 8.15 44.59 49.07 45.84

The proposed 2-DoF controller uses more input energy to adjust the throttle position quickly to
satisfy the performance requirement. Although the input energy of the proposed controller (0.0343) is
bigger than that of STF-PID controller (0.0078), the performance of the proposed controller is higher
than that of the STF-PID controller, as shown in Figure 9 and Table 4. Compared to the STF-PID
controller, the maximum tracking errors (IAE, ISE) of the 2-DoF controller are smaller and reach
8.15 and 49.7, respectively. From the practical point of view, the accuracy of speed control is the key
technology to improve many important applications of HEVs (E.g. adaptive cruise control, intelligent
collision avoidance or car following). Besides, the accuracy of throttle position control can upgrade
the fuel economy and reduce the pollutant emission. Furthermore, if the performance requirements
concern the factor of input energy, based on the LQT character, the proposed methodology still has the
flexibility to adjust the LQT weighting matrix R to reduce the magnitude of input energy.

5. Conclusions

In this paper, a 2-DoF robust fuzzy controller is successfully applied to the nonlinear uncertain
HEV longitudinal speed control model. First, using the proposed algorithm, the uncertainty intervals
of HEV dynamic systems are approximated by fuzzy α-cut coefficients. Subsequently, the maximum
uncertainty interval is then translated into the weighting matrix Q of the LQT problem to guarantee that
the designed optimal feedback controller is robust under various values of α P[0,1]. The robust stability
of the longitudinal speed control is analyzed using Kharitonov’s theorem. Finally, to compensate for
the longer response time of the single-type feedback controller, the forward compensator is connected
to enhance tracking performance. In contrast to many previously-proposed nonlinear controllers, our
controller is easy to understand and implement. The proposed 2-DoF method was successfully applied
in speed tracking control of HEVs and can also be extended to general servo control design.
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