
energies

Article

Study on the Static Load Capacity and Synthetic
Vector Direct Torque Control of Brushless Doubly
Fed Machines
Chaoying Xia * and Xiaoxin Hou

School of Electrical Engineering and Automation, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China;
18020037068@163.com
* Correspondence: xiachaoying@126.com; Tel.: +86-22-8789-2977

Academic Editor: K.T. Chau
Received: 27 June 2016; Accepted: 8 November 2016; Published: 18 November 2016

Abstract: Compared to the doubly fed machine, the brushless doubly fed machine (BDFM) has
high reliability and low maintenance requirements. First, by taking the negative conjugation of the
control motor variables in rotor reference frame, a state-space model of BDFM is derived. It is then
transformed into synchronous reference frame, called synchronous reference frame state-space model
(SSSM). In this way, all the variables of the SSSM are DC under the static state. Second, on the basis
of the analysis of static equations, the possible output torque limits are obtained. Third, the causes
of losing control are analyzed by the flux and the torque derivatives. A new control strategy called
synthetic vector direct torque control (SVDTC) is proposed to solve the losing control problems of
the conventional direct torque control (DTC). Finally, the correctness of the results of this paper is
verified by calculation examples and simulation results, the losing control problems can be solved,
and the theoretical output capacity limits can be reached using SVDTC.

Keywords: brushless doubly fed machine (BDFM); state-space model; load capacity; losing control;
synthetic vector direct torque control (SVDTC)

1. Introduction

A brushless doubly fed machine (BDFM) is a new type of AC variable speed motor that has
the characteristics of both asynchronous and synchronous motors. BDFM has good application
prospects in AC driving systems, wind power generation because it offers high reliability and
low-maintenance requirements by removing the brush gear and slip ring [1–9]. Furthermore, BDFM
shows commercial potential because of its low converter capacity requirement. However, the BDFM
is a high-order, multivariable, and strong coupling nonlinear system. Compared with asynchronous
and synchronous motors, BDFM has a complicated structure and a complicated running mechanism,
thus the establishment of a mathematical model, the analysis of stability, and the design of a control
strategy are difficult.

BDFM, which originates from a self-cascaded induction machine, has one special rotor and two
sets of stator windings with different pole pairs. Among them, the motor, which stator winding is
connected directly to the power grids, is called power motor (PM), the other motor, which stator
winding is connected to a frequency converter, is called control motor (CM) [2].

Many scholars have proposed various mathematical models for BDFMs to analyze their
performance and study its control methods [10–15]. Roberts et al. developed a network model
of BDFM in a three phase static coordinate [10]. Wallace et al. proposed a model of cascade wound
rotor doubly fed motor in a rotor reference frame. In these models, all the variables of the PM and CM
are AC under the static state [11]. In order to obtain a model which all variables of the PM and CM are
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DC under the static state, the so-called double synchronous frame BDFM model was presented [12,13].
In this double synchronous model, the BDFM was decomposed into two subsystems, a power winding
subsystem and a control winding subsystem, the electromagnetic torque depends on the current and
the flux of both subsystems, so the control system is complex, and the controls of flux and torque
are not decoupled. For a cage rotor BDFM, the so-called unified reference frame BDFM model was
proposed [14,15]. This model is the most advanced and widely used one at present. But the unified
reference frame model adopts the mixing description of differential equations and algebraic equations,
so it is not convenient to analyze the static and dynamic characteristics of BDFMs.

In addition, the supply of a BDFM is dual source, and the motor torque is the sum of the
asynchronous torque and synchronous torque. Due to the interaction between the two types of torques,
the motor torque control process from a setting value to another setting value is rather complex,
and oscillation and loss of control appear easily [16,17]. To solve these problems, researchers have
been made a lot of efforts, and there are mainly three different methods, the method of working
point linearized small signal model, the method of feedback linearization, and the method of DTC
robustness control.

In the method of working point linearization, the BDFM stability was analyzed by the working
point linearized small signal model, which pointed out that the stable operating range of BDFM was
narrow under open loop control. Experimental and theoretical results showed that a small rotary inertia
or a high CM voltage led to a wide stable operating range [18–20]. The working point linearized small
signal model is related to the motor parameters, rotary inertia and the parameters of the controller,
and changes with the working point of the system, so this method can only study the local stability of
the system.

Feedback linearization was first applied to the BDFM based on a state-space model in the rotor
reference frame. The model selected the currents, rotor angle, and angular speed as the states.
Taking only the speed as the output, the input-output feedback linearization method was used
to solve the problem of speed control of BDFM, where in addition to all the motor parameters, load
torque and rotary inertia must also be known [21]. When an inner current loop of CM is adopted, the
control motor can be seen as supplied by a current source, a state-space model of CM synchronous
reference frame was obtained. The model selected the stator flux of the PM and the rotor flux of the
CM as the states. Taking the torque and the rotor flux of CM as the output, the input-output feedback
linearization was developed by the rotor flux of CM oriented, and the decoupling control of torque and
flux was achieved, where all the motor parameters need to know, the toque and flux need to observe,
and the control strategy is complex [22].

After the development of the vector control, direct torque control (DTC) is an another
high-performance AC motor control method. Since Takahashi presented DTC for an induction machine
in 1986 [23], the DTC technique has been widely used in AC machine control because of its simple
structure, high dynamic performance, and robustness [24,25]. The conventional DTC was introduced
directly into the variable speed system of BDFM. Through the analysis of relationships among the
converter voltage vectors and the derivatives of flux and torque, the losing control problems of BDFM
are investigated, and the flux priority and torque priority strategies are proposed [26]. However, these
strategies cannot eliminate the flux and torque ripples. For the flux and torque ripple problems of
BDFM’s DTC, some researchers have put forward many solutions, such as the fuzzy logic direct torque
control and predictive direct torque control, etc., but the results of these efforts are not obvious [27,28].

The remainder of this paper is organized as follows: Section 2 introduces the derivation process of
a synchronous reference frame state-space model (SSSM). Section 3 obtains the possible static operation
range of the BDFM. Section 4 presents the Synthetic Vector Direct Torque Control (SVDTC) to solve the
flux and torque losing control problems. In Section 5, the comparative simulation experiments of the
conventional DTC and the SVDTC are performed and the results confirm the good performance of
SVDTC. Finally, conclusions are summarized in Section 6.



Energies 2016, 9, 966 3 of 22

2. Synchronous Reference Frame State-Space Model of Brushless Doubly Fed Machine (BDFM)

For a wound rotor BDFM, in the rotor reference frame (dq reference frame), the stator and rotor
voltage equations of the BDFM’s power motor (PM) are:

udq
ps = rpsidq

ps +
dψ

dq
ps

dt + jppωrψ
dq
ps

udq
pr = rpridq

pr +
dψ

dq
pr

dt

(1)

The stator and rotor voltage equations of the BDFM’s control motor (CM) are:

udq
cs = rcsidq

cs +
dψ

dq
cs

dt + jpcωrψ
dq
cs

udq
cr = rcridq

cr + dψ
dq
cr

dt

(2)

where j =
√
−1 represents the unit imaginary, ωr is the rotor machinery angular speed, pp and

pc are the PM and CM pole pairs respectively, udq
ps = ud

ps + juq
ps, udq

pr = ud
pr + juq

pr, idq
ps = id

ps + jiq
ps,

idq
pr = id

pr + jiq
pr are the stator voltage, rotor voltage, stator current and rotor current of the PM

respectively, udq
cs = ud

cs + juq
cs, udq

cr = ud
cr + juq

cr, idq
cs = id

cs + jiq
cs and idq

cr = id
cr + jiq

cr are the stator voltage,
rotor voltage, stator current and rotor current of the CM respectively, and:

ψ
dq
ps = lpsidq

ps + lpmidq
pr

ψ
dq
cs = lcsidq

cs + lcmidq
cr

ψ
dq
pr = lpmidq

ps + lpridq
pr

ψ
dq
cr = lcmidq

cs + lcridq
cr

(3)

are the stator flux of the PM, stator flux of the CM, rotor flux of the PM, and rotor flux of the CM,
respectively. All the variables of the voltages, currents and fluxes are complex numbers. The complex
variable is a vector on the plane, so it is also called as “vector” in the following.

Because of the cross connection of the rotor windings of the PM and CM, the phase sequence
of the rotor windings are opposite, as shown in Figure 1. Between the rotor three-phase voltages
and currents, there are the relationships ua

pr = ua
cr, ub

pr = uc
cr, uc

pr = ub
cr and ia

pr = −ia
cr, ib

pr = −ic
cr,

ic
pr = −ib

cr, i.e., ud
pr = ud

cr, uq
pr = −uq

cr and id
pr = −id

cr, iq
pr = iq

cr, or udq
pr =

(
udq

cr

)∗
, idq

pr = −
(

idq
cr

)∗
, where

the superscript * expresses the conjugate operation.
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Figure 1. Variables of stator and rotor windings, stator ABC reference frame, static αβ reference frame, 

rotor abc reference frame and rotor dq reference frame. 
Figure 1. Variables of stator and rotor windings, stator ABC reference frame, static αβ reference frame,
rotor abc reference frame and rotor dq reference frame.
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Take the rotor currents of the PM as reference, define the rotor current complex variable

idq
r = idq

pr = −
(

idq
cr

)∗
, combine the two rotor voltage equations of Equations (1) and (2), then we have:

udq
ps = rpsidq

ps +
dψ

dq
ps

dt + jppωrψ
dq
ps

udq
cs = rcsidq

cs +
dψ

dq
cs

dt + jpcωrψ
dq
cs

0 =
(
rpr + rcr

)
idq
r +

dψ
dq
pr

dt −
d
(

ψ
dq
cr

)∗
dt

(4)

Due to the special structure of the rotor winding, when a steady sine current flows in the rotor
winding, two magnetic fields are generated in the stator and rotor windings of the PM and CM, and
they rotate with equal electrical angular speed and in opposite directions relative to the rotor. Thus, in
the rotor reference frame, and under the static state, the complex variables of the PM and CM are two
sets of rotation vectors, their speeds are same, and their directions are opposite. The complex variables
of the PM remain unchanged, and take negative conjugate operation in both sides of control motor
voltage equation, we have:

udq
ps = rpsidq

ps +
dψ

dq
ps

dt + jppωrψ
dq
ps

u′dq
cs = rcsi′dq

cs +
dψ′dq

cs
dt − jpcωrψ′dq

cs

0 = rridq
r +

dψ′dq
r

dt

(5)

and:
ψ

dq
ps = lpsidq

ps + lpmidq
pr = lpsidq

ps + lpmidq
r

ψ′dq
cs = −

(
ψ

dq
cs

)∗
= −lcs

(
idq
cs

)∗
− lcm

(
idq
cr

)∗
= lcsi′dq

cs + lcmidq
r

ψ′dq
r = ψ

dq
pr −

(
ψ

dq
cr

)∗
= ψ

dq
pr +

(
ψ′dq

cr

)∗
= lpmidq

ps + lridq
r + lcmi′dq

cs

(6)

where u′dq
cs = −

(
udq

cs

)∗
, i′dq

cs = −
(

idq
cs

)∗
, ψ′dq

cs = −
(

ψ
dq
cs

)∗
are the redefined complex variables,

rr = rpr + rcr, lr = lpr + lcr are the rotor resistance and rotor inductance of the BDFM and the
electromagnetic torque of the BDFM can be expressed as:

Te = ppIm
{(

ψ
dq
ps

)∗
idq
ps

}
+ pcIm

{(
ψ

dq
cs

)∗
idq
cs

}
= ppIm

{(
ψ

dq
ps

)∗
idq
ps

}
− pcIm

{(
ψ′

dq
cs

)∗
i′dq

cs

}
(7)

For the wound rotor BDFM discussed above, except that the methods of conjugate transformation
are different (the complex variables of the CM take negative conjugation or conjugation), the obtained
Equations (5) and (6) have the same form as the unified reference frame model of a cage rotor
BDFM [15]. Therefore, the following obtained results are universally suitable for a wound rotor and
cage rotor BDFM.

In this way, under the static state, the complex variables of the PM and the complex variables
of the CM (after taking negative conjugation) rotate in the same direction and have the same speed
relative to the rotor. This will bring great convenience for analysis.

The motion equation of BDFM is:

J
dωr

dt
= Te − Tl (8)

where Te and Tl are the electromagnetic torque and load torque respectively, J is the total motor shaft
rotary inertia.

Equations (5) and (6) adopt the mixing description of differential equations and algebraic
equations. This will lead to some difficulties in analysis and design. This study will give a state-space
description of BDFM, which is more effective form for the control system analysis and design.

Take the stator flux of the PM ψ
dq
ps , stator flux of the CM ψ′dq

cs , and rotor flux ψ′dq
r as the states, the

stator voltage of the PM udq
ps and stator voltage of the CM u′dq

cs as the inputs, substituting Equation (6)
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into Equation (5), to eliminate the currents idq
ps , i′dq

cs , and idq
r , we have the state-space model as follows

in the rotor reference frame:
.
x′

dq
= Adqx′dq

+ Bdqu′dq (9)

where Adq =

 −
rps(lcs lr−l2

cm)
K − jppωr − rps lpm lcm

K
rps lcs lpm

K

− rcs lpm lcm
K − rcs(lps lr−l2

pm)
K + jpcωr

rcs lps lcm
K

rr lcs lpm
K

rr lps lcm
K − rr lps lcs

K

, Bdq =

 1 0
0 1
0 0

,

x′dq =
[

ψ
dq
ps ψ′dq

cs ψ′dq
r

]T
and u′dq =

[
udq

ps u′dq
cs

]T
, K = lpslcslr − lpsl2

cm − lcsl2
pm.

Similarly, the electromagnetic torque can be again expressed as:

Te =
pp lcs lpm

K Im
{

ψ
dq
ps

(
ψ′dq

r

)∗}
− pc lps lcm

K Im
{

ψ′dq
cs

(
ψ′dq

r

)∗}
+

(pp+pc)lpm lcm
K Im

{(
ψ

dq
ps

)∗
ψ′dq

cs

}
(10)

In this way, different from Equation (7), the electromagnetic torque is represented as the cross product
of fluxes.

As we see, the BDFM is a 7th order nonlinear system (the complex number state-space model
of BDFM Equation (9) is a 3 × 2 = 6th order derivative equation, the motion equation of BDFM
Equation (8) is a 1st order), and in the rotor reference frame, its complex variables are still AC variable.
Therefore, the model should be transformed into the CM synchronous reference frame (mt reference
frame). In the synchronous reference frame, the vectors of the complex variables of the PM and the
negative conjugation complex variables of the CM will rotate synchronously under the static state.

As shown in Figure 2, λc is the angle between the mt reference frame and the rotor reference
frame. Using the following transformation:

x′mt
= T1x′dq, u′mt

= T2u′dq (11)

where T1 =

 e−jλc 0 0
0 e−jλc 0
0 0 e−jλc

, T2 =

[
e−jλc 0

0 e−jλc

]
, the synchronous reference frame

state-space model (SSSM) is obtained, that is:

.
x′

mt
= Amtx′mt

+ Bmtu′mt (12)

where Amt =


− rps(lcs lr−l2

cm)
K − j

(
ppωr +

.
λc

)
− rps lpm lcm

K
rps lcs lpm

K

− rcs lpm lcm
K − rcs(lps lr−l2

pm)
K + j

(
pcωr −

.
λc

)
rcs lps lcm

K
rr lcs lpm

K
rr lps lcm

K − rr lps lcs
K − j

.
λc

,

Bmt =

 1 0
0 1
0 0

, x′mt =
[

ψmt
ps ψ′mt

cs ψ′mt
r

]T
, u′mt =

[
umt

ps u′mt
cs

]T
, Amt = T1 AdqT−1

1 − T1
.
T
−1
1 ,

Bmt = T1BdqT−1
2 .

The electromagnetic torque can be re-expressed as:

Te =
pp lcs lpm

K Im
{

ψmt
ps

(
ψ′mt

r

)∗}
− pc lps lcm

K Im
{

ψ′mt
cs

(
ψ′mt

r

)∗}
+

(pp+pc)lpm lcm
K Im

{(
ψmt

ps

)∗
ψ′mt

cs

}
(13)

and the motion equation is same as Equation (8). Because the rotation transformation does not affect the
cross-product operation of two vectors, the torque expressions before and after rotation transformation,
Equations (10) and (13), are the same form. In the mt reference frame, all variables of state equations
are DC values under the static state. The static working point is easily obtained.
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3. Static Load Capacity of Brushless Doubly Fed Machine

Using the SSSM of the previous section, the relationships among flux, torque and speed
under the static state can be easily obtained. The load capacity of BDFM is analyzed by applying
these relationships.

When the mt reference frame orients on the stator flux of the CM ψ′mt
cs , there is:

ψ′
mt
cs = ψm

cs + jψt
cs = ψcs + j0 (14)

where ψcs is the stator flux amplitude of the CM. To analyze the static load capacity of BDFM, let
the derivatives of the states are zero in Equation (12), and the static equations of BDFM are obtained
as follows:

−
(

rps
(
lcslr − l2

cm
)

K
+ jωp

)
ψmt

ps −
rpslpmlcm

K
ψcs +

rpslcslpm

K
ψ′

mt
r + umt

ps = 0 (15)

−
rcslpmlcm

K
ψmt

ps −

 rcs

(
lpslr − l2

pm

)
K

− jωc

ψcs +
rcslpslcm

K
ψ′

mt
r + u′mt

cs = 0 (16)

rrlcslpm

K
ψmt

ps +
rrlpslcm

K
ψcs −

(
rrlpslcs

K
+ j

.
λc

)
ψ′

mt
r = 0 (17)

where
.
λc is the slip velocity of the stator flux of the CM relative to the d axis of the rotor reference

frame. In practice, the CM is supplied through a converter (the stator flux amplitude of the CM will be
a constant by a stator flux of the CM feedback control), and the stator of the PM is connected directly
to the power grid. Therefore, the voltage amplitude and frequency of the PM are constant, and there
are the following constraint conditions:

u2
ps = um

ps
2 + ut

ps
2, ωp = ppωr +

.
λc = 2π fp (18)

where fp and ωp are the frequency and electrical angular velocity of the PM power supply, respectively.
The BDFM has the operation characteristics of the synchronous motor, when the frequency of the PM
and the motor speed are constant, the slip is constant, and from Equation (13), the torque is adjusted
by the angle between the stator fluxes of the CM and the PM. Even though the flux amplitudes of PM
and CM can keep constant, the output torque are limited. Otherwise, with the increase of the stator
current, the voltage drop in stator resistance of the PM will lead to the reduction of the PM exciting
level, and the output torque is further limited. In the following discussion, the limitation of the stator
voltage of the CM will not be taken into account. That is to say, for any ψmt

ps , ψ′mt
r and ψcs, there is

always a supply voltage of the CM u′mt
cs that meets Equation (16), Equation (16) need not be considered.

Nevertheless, for a certain stator flux of the CM ψcs, speed ωr, by Equations (13), (15), (17) and (18), the
solutions of ψmt

ps and ψ′mt
r (its components of m axis and t axis are real number) are only obtained in

a certain range of torque. Then we can get the upper and lower limits of BDFM’s load capacity.
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For getting the solutions of the stator flux of the PM ψmt
ps and the rotor flux ψ′mt

r , firstly, by

multiplying the conjugate of
(

rr lps lcs
K − j

.
λc

)
in both sides of Equation (17), the relationship between the

rotor flux, the stator fluxes of the PM and CM, and the slip velocity is given as:

ψ′
mt
r =

rrlcslpm
.
λ

2
c K2 + r2

r l2
psl2

cs

(
rrlpslcs − j

.
λcK

)
ψmt

ps +
rrlpslcm

.
λ

2
c K2 + r2

r l2
psl2

cs

(
rrlpslcs − j

.
λcK

)
ψcs (19)

Substituting Equation (19) into Equation (13), to eliminate the rotor flux ψ′mt
r , the electromagnetic

torque can be expressed as:

Te = a1ψ2
ps + Re

{
(a2 + ja3)ψmt

ps ψcs

}
− a4ψ2

cs (20)

where ψ2
ps = ψm

ps
2 + ψt

ps
2, a1 =

pprr l2
cs l2

pm
.
λc(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) , a2 =
(pp−pc)rr lps lcs lpm lcm

.
λc(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) , a3 =
(pp+pc)lpm lcm

.
λ

2
c K(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) ,

a4 =
pcrr l2

ps l2
cm

.
λc(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) , ai(i = 1, 2, · · · , 4) are only the functions of the motor parameters and slip velocity,

and they are constant under the static state.
In the electromagnetic torque expression of Equation (20), there are four terms. The first term

a1ψ2
ps is the asynchronous torque of the PM, and the fourth term −a4ψ2

cs is the asynchronous torque

of the CM. The second and third terms Re
{
(a2 + ja3)ψmt

ps ψcs

}
are the synchronous torque. It can

be seen that, for a certain slip velocity and stator flux amplitude, the two asynchronous torques are
constant, and always have opposite directions. When the slip velocity

.
λc is relatively large (this is the

majority working condition of BDFM), and the rotor impedance relatively small (rr is relatively small),
a1, a2, and a4 will be small, and the asynchronous torque of BDFM can be neglected. Therefore, the
electromagnetic torque of the BDFM is controlled by the synchronous torque, and it is only determined
by the angle between the two stator fluxes.

Secondly, substituting Equation (19) into Equation (15), to eliminate the rotor flux ψ′mt
r , the

relationship between the stator voltage of the PM and the stator fluxes is obtained as:

umt
ps = (b1 + jb2)ψmt

ps + (b3 + jb4)ψcs (21)

where b1 =
rps

.
λ

2
c K(lcs lr−l2

cm)+rpsr2
r lps l2

cs(
r2

r l2
ps l2

cs+
.
λ

2
c K2

) , b2 =
ωp

(
r2

r l2
ps l2

cs+
.
λ

2
c K2

)
+rpsrr l2

cs l2
pm

.
λc(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) , b3 =
rps lpm lcm

.
λ

2
c K(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) ,

b4 =
rpsrr lps lcs lpm lcm

.
λc(

r2
r l2

ps l2
cs+

.
λ

2
c K2

) , bi(i = 1, 2, · · · , 4) are only the functions of motor parameters and slip velocity.

Furthermore, substituting Equation (21) into the constraint condition Equation (18), the
relationship between the stator voltage amplitude of the PM and the stator fluxes is obtained as:

u2
ps =

(
b2

1 + b2
2

)
ψ2

ps + 2Re
{
[(b1b3 + b2b4)− j (b1b4 − b2b3)]ψmt

ps

}
ψcs +

(
b2

3 + b2
4

)
ψ2

cs (22)

Combining Equations (20) and (22) and letting Te = Tl (under the static state, the electromagnetic
torque Te equals the load torque Tl), the following equation is obtained:

a1
(
k2

1 + k2
2
)

k2
2

ψm
ps

2 +

(
a2k2

2ψcs − 2a1k1k3 − a3k1k2ψcs
)

k2
2

ψm
ps +

a1k2
3

k2
2

+
a3k3ψcs

k2
− a4ψ2

cs − Tl = 0 (23)

where k1 = a2
(
b2

1 + b2
2
)
− 2a1 (b1b3 + b2b4)ψcs, k2 = a3

(
b2

1 + b2
2
)
− 2a1 (b2b3 − b1b4)ψcs,

k3 =
(
b2

1 + b2
2
)

Tl − a1u2
ps + a4

(
b2

1 + b2
2
)
+ a1

(
b2

3 + b2
4
)

ψ2
cs, ki(i = 1, 2, 3) are not only the functions
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of the motor parameters and slip velocity, but also related to the stator flux amplitude of the CM,
among them, the k3 is also related to the voltage amplitude of the PM and load torque.

Equation (23) is complicated and difficult to obtain the analytical solutions. However, for a given
u2

ps, stator flux of the CM ψcs, speed ωr (so the slip velocity
.
λc is also given) and torque Tl , the numerical

solution of ψm
ps can be solved. Then, substituting the solved ψm

ps into Equation (22), the ψt
ps is obtained,

and substituting the solved ψm
ps and ψt

ps into Equation (19), the ψ′mt
r is obtained. These solutions meet

the conditions of Equations (15), (17) and (18). All real number solutions constitute the possible static
operation range of the BDFM (Stability is temporarily not considered). When the torque arrives at
a certain value, the solved ψm

ps is not a real number, that is, the torque reaches the upper limit or lower
limit of the static solution range, corresponding to the maximum or minimum torque of the BDFM.
In this way, looking for the static working range of the BDFM is transformed to find the real solutions
of Equation (23).

4. Losing Control Problems of Conventional Direct Torque Control (DTC) for BDFM and Its
Improved Strategy

As mentioned above, the model of the BDFM is complex, and in practice its parameters are difficult
to measure. DTC has less dependence on motor parameters, and specifically, it is not dependent on the
rotor parameters. This is especially important for the BDFM control system design. However, compared
to the induction motor, the flux and torque losing control problems of the BDFM’s conventional DTC
are more evident (There may exist some time intervals, where the flux and the torque cannot be
controlled simultaneously, the flux and torque ripples exceed the hysteresis ring). In Reference [26], the
losing control problems of the BDFM are investigated, and flux priority and torque priority strategies
are proposed. However, these strategies cannot eliminate the flux and torque ripples. In this paper, the
causes of losing control problems are analyzed deeply, and an improved control strategy of DTC is
proposed to solve these problems.

In the mt reference frame, the CM stator flux amplitude and the torque derivative equations about
time are as follows:

dψcs

dt
=

∂ψcs

∂ψ′mt
cs

dψ′mt
cs

dt
=

1
ψcs

Re
{(

ψ′
mt
cs

)∗ .
ψ
′mt

cs

}
(24)

dTe
dt = ∂Te

∂ψmt
ps

dψmt
ps

dt + ∂Te
∂ψ′mt

cs

dψ′mt
cs

dt + ∂Te
∂ψ′mt

r

dψ′mt
r

dt =
pp lpm lcs

K Im
{(

ψ′mt
r

)∗ .
ψ

mt
ps −

(
ψmt

ps

)∗ .
ψ
′mt

r

}
− pc lps lcm

K Im
{(

ψ′mt
r

)∗ .
ψ
′mt

cs −
(

ψ′mt
cs

)∗ .
ψ
′mt

r

}
+

(pp+pc)lpm lcm
K Im

{(
ψmt

ps

)∗ .
ψ
′mt

cs −
(

ψ′mt
cs

)∗ .
ψ

mt
ps

} (25)

Substituting Equation (12) into Equations (24) and (25), we have that:

dψcs

dt
=

1
ψcs

[
α1Re

{
ψ′

mt
cs

(
ψ′

mt
r

)∗}
− α2Re

{
ψmt

ps

(
ψ′

mt
cs

)∗}
+ α3ψ2

cs + Re
{

u′mt
cs

(
ψ′

mt
cs

)∗}]
(26)

dTe
dt = −α4Te + α5

[
Im
{

u′mt
cs

(
ψ′mt

r

)∗}
− pcωrRe

{
ψ′mt

cs

(
ψ′mt

r

)∗}]
+ α6Im

{
ψ′mt

cs

(
ψ′mt

r

)∗}
−α7Im

{
ψmt

ps

(
ψ′mt

r

)∗}
− α8

[
Im
{

umt
ps

(
ψ′mt

r

)∗}
+ ppωrRe

{
ψmt

ps

(
ψ′mt

r

)∗}]
+α9

[
Im
{

ψmt
ps

(
u′mt

cs

)∗}
− Im

{
ψ′mt

cs

(
umt

ps

)∗}
+
(

pp + pc
)

ωrRe
{

ψmt
ps

(
ψ′mt

cs

)∗}] (27)

where α1 =
rcs lps lcm

K , α2 =
rcs lpm lcm

K , α3 =
rcs(l2

pm−lps lr)
K , α4 =

rps(lcs lr−l2
cm)+rcs(lps lr−l2

pm)+rr lps lcs
K , α5 =

pc lps lcm
K ,

α6 =
pcrps lcm

K , α7 =
pprcs lpm

K , α8 =
pp lcs lpm

K , α9 =
(pp+pc)lpm lcm

K , αi(i = 1, 2, · · · , 9) are only the functions of
motor parameters, and independent of motor working points. Obviously, the CM stator flux amplitude
and the torque derivatives have no relationship with the selection of coordinate, thus, the derivatives
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of Equations (26) and (27) can be transformed into the two-phase static reference system (αβ reference
frame), so we have:

dψcs

dt
=

1
ψcs

[
α1Re

{
ψ′

αβ
cs

(
ψ′

αβ
r

)∗}
− α2Re

{
ψ

αβ
ps

(
ψ′

αβ
cs

)∗}
+ α3ψ2

cs + Re
{

u′αβ
cs

(
ψ′

αβ
cs

)∗}]
(28)

dTe
dt = −α4Te + α5

[
Im
{

u′αβ
cs

(
ψ′αβ

r

)∗}
− pcωrRe

{
ψ′αβ

cs

(
ψ′αβ

r

)∗}]
+ α6Im

{
ψ′αβ

cs

(
ψ′αβ

r

)∗}
−α7Im

{
ψ

αβ
ps

(
ψ′αβ

r

)∗}
− α8

[
Im
{

uαβ
ps

(
ψ′αβ

r

)∗}
+ ppωrRe

{
ψ

αβ
ps

(
ψ′αβ

r

)∗}]
+α9

[
Im
{

ψ
αβ
ps

(
u′αβ

cs

)∗}
− Im

{
ψ′αβ

cs

(
uαβ

ps

)∗}
+
(

pp + pc
)

ωrRe
{

ψ
αβ
ps

(
ψ′αβ

cs

)∗}] (29)

For the static working points (discussed in the previous section), the output torque and the motor
speed are constant. Using the stator flux of the CM as the reference (the initial phase angle of the stator
flux of the CM is zero), the amplitudes of all vectors, the angles among these vectors are const, and
they can be expressed as:

ψ
αβ
ps = ψpsej(ωct+δ), ψ′

αβ
cs = ψcsejωct, ψ′

αβ
r = ψrej(ωct+θ), uαβ

ps = upsej(ωct+δ+γ) (30)

where ωc is the synchronous angular speed of the stator voltage of the CM, δ is the angle between the
stator flux of the PM and stator flux of the CM, θ is the angle between the stator flux of the CM and
rotor flux, and γ is the angle between the stator voltage and stator flux of the PM. The stator of the CM
is supplied through a converter, and the converter output voltage vectors are as follows:

u′αβ
cs =

2
3

Vbusej(π/3(n−1)) (31)

where Vbus is the DC bus voltage, and n = 1, 2, · · · , 6 correspond to the six fundamental nonzero
voltage vectors (three-phase two level converter, six fundamental voltage vectors and two zero voltage
vectors). Substituting Equations (30) and (31) into Equations (28) and (29), we obtain the stator flux
amplitude of the CM and torque derivative equations around the static working points are as follows:

dψcs

dt
=

2
3

Vbuscos (ωct− π/3 (n− 1)) + A (32)

dTe

dt
=

2
3

α5Vbusψrsin (π/3 (n− 1)−ωct− θ) +
2
3

α9Vbusψpssin (ωct + δ− π/3 (n− 1)) + B (33)

where:
A = α1ψrcosθ − α2ψpscosδ + α3ψcs

B = −α4Te + α9ψpsψcs
[(

ppωr + pcωr
)

cosδ + ωpsin (δ + γ)
]
− α5 pcωrψcsψrcosθ − α6ψcsψrsinθ

+α8ψpsψr
[
ωpsin (θ − δ− γ)− ppωrcos (θ − δ)

]
+ α7ψpsψrsin (θ − δ)

are constant (but change with working points), and they are the derivative values of the stator
flux amplitude of the CM and torque when the converter output voltage is the two zero voltage
vectors, respectively.

As mentioned above, if the asynchronous torque is neglected, we have:

dψcs

dt
=

2
3

Vbuscos (ωct− π/3 (n− 1)) + A (34)

dTe

dt
=

2
3

α9Vbusψpssin (ωct + δ− π/3 (n− 1)) + B (35)

where:
A = −α2ψpscosδ + α3ψcs
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B = −α4Te + α9ψpsψcs
[(

ppωr + pcωr
)

cosδ + ωpsin (δ + γ)
]

For a large power motor, the stator resistance of the CM is small. Because α1, α2 and α3 are
proportional to the stator resistance of the CM and the stator flux amplitude will decrease when the
converter output voltage is zero, A is always small and negative. The stator flux amplitude of the CM
and the torque derivatives are sinusoidal with the synchronous angle ωct, and when the converter
output voltage u′αβ

cs is different fundamental voltage vectors (n = 1, 2, · · · , 6), the electric angles of
these derivative curves are 60

◦
apart in turn. For a given voltage vector u′αβ

cs , the angle between the
stator flux amplitude of the CM derivative curves and the torque derivative curves changes with the
variation of the working points.

For conventional DTC, there are the six nonzero voltage vectors, V1–V6. As shown in Figure 3,
the two-phase static reference frame is divided into six sectors (sector I–VI), each sector occupies 60

◦
,

and the angle φ between the boundary of sector I and the α axis is −30
◦
.
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In the follow discussion, a rated power 3.7 kW BDFM is used as an example, the parameters of
which are shown in the Appendix A, and the supply voltage and frequency of the PM are 220 V/50 Hz.
Using the Equations (32) and (33), the stator flux amplitude of the CM and the torque derivative curves
are shown in Figure 4a,b.Where the stator flux of the CM is 1.2 Wb, the motor speed is 62.8 rad/s
(subsynchronous), and the output torques are 30 Nm (motoring mode) and –30 Nm (generating mode).
It is clear that the flux derivative curves of the two nonzero voltage vectors with 180

◦
phase difference

are symmetrical about the line of dψcs/dt = A. In each sector, there must be two flux derivative
curves, their signs will be changed, and the two corresponding voltage vectors cannot be selected,
because they cannot provide a fixed response direction of flux. Similarly, the torque derivative curves
of the two fundamental nonzero voltage vectors with 180

◦
phase difference are symmetrical about

the line of dTe/dt = B, there must be two torque derivative curves in each sector, their signs will be
changed, and the two corresponding voltage vectors cannot be selected. In each sector, if the above
four voltage vectors are not the same, as shown in Figure 4a,b, there will be four voltage vectors, they
cannot be selected. Obviously, the rest of two voltage vectors cannot satisfy the four kinds of control
requirements: decreasing in flux and torque, decreasing in flux and increasing in torque, increasing in
flux and decreasing in torque, and increasing in flux and torque. The selection of the voltage vector
can only make the losing control time as short as possible. In Figure 4c,d, the flux derivative curves of
sector I are enlarged to show the regions of the flux losing control more clearly.
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Figure 5. Control system of conventional DTC. 

Figure 4. Stator flux of the CM and torque derivative curves (light load). (a) Motoring mode
(Te = 30 Nm); (b) Generating mode (Te = −30 Nm); (c) Partial enlarged (Te = 30 Nm); (d) Partial
enlarged (Te = −30 Nm).

Thus, the voltage vector switch tables can be obtained under the motoring mode and generating
mode, as shown in Tables 1 and 2, called the conventional DTC. From the sector I to the sector VI,
the electric angles of voltage vectors selected for the same control requirements are 60

◦
apart in turn.

The control system is shown in Figure 5. Under the motoring mode, the flux will lose control when
an increase in flux and a decrease in torque, or an increase in flux and an increase in torque are
desired, corresponding to the third and fourth rows in Table 1 (that is the circular region in Figure 4c).
Under the generating mode, the flux will lose control when an increase in flux and a decrease in torque,
or an increase in flux and an increase in torque are desired, corresponding to the third and fourth rows
in Table 2 (that is the circular region in Figure 4d).
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Table 1. Voltage vector switch table (motoring mode).

Output of Hysteresis Comparator Six Sectors

Flux Torque I II III IV V VI

–1
−1 V5 V6 V1 V2 V3 V4
1 V3 V4 V5 V6 V1 V2

1
−1 V6 V1 V2 V3 V4 V5
1 V2 V3 V4 V5 V6 V1

Note: “1” and “−1” indicate the increased and decreased flux or torque, respectively.

Table 2. Voltage vector switch table (generating mode).

Output of Hysteresis Comparator Six Sectors

Flux Torque I II III IV V VI

–1
–1 V3 V4 V5 V6 V1 V2
1 V5 V6 V1 V2 V3 V4

1
–1 V2 V3 V4 V5 V6 V1
1 V6 V1 V2 V3 V4 V5

Note: “1” and “−1” indicate the increased and decreased flux or torque, respectively.

From Figure 4a,b, it can be also seen that if the angle φ is increased, the flux losing control can
be eliminated under the action of the voltage vector V6, but the flux losing control will be serious
under the action of the voltage vector V2. On the contrary, if the angle φ is decreased, the flux losing
control can be eliminated under the action of the voltage vector V2, but the flux losing control will be
serious under the action of the voltage vector V6. Therefore, it is useless to solve the flux losing control
by changing the angle φ. Because the DC component A of the flux amplitude derivative is relatively
small in general situations, the time interval of the flux losing control is short, and the range of the flux
fluctuation is small. When the load is light, the torque will not lose control.

With the increase in torque, the DC components A and B are increase, the phase angles of the flux
derivative curves remain unchanged, and the torque derivative curves move right or left (motoring or
generating modes) relative to the flux derivative curves. In Figure 6a,b,the stator flux of the CM and
the torque derivative curves are shown, where the stator flux of the CM is 1.2 Wb, the motor speed
is 62.8 rad/s (subsynchronous), and the output torques are 55 Nm (motoring mode) and −99 Nm
(generating mode). The voltage vector switch tables can be obtained, which are same as the Tables 1
and 2. When the load is heavy, the flux and the torque will all lose control. Under the motoring mode,
the torque will lose control when a decrease in flux and an increase in torque, or an increase in flux
and a decrease in torque are desired, corresponding to the second and third rows in Table 1 (that is the
losing control regions I and II in Figure 6a). Under the generating mode, the torque will lose control
when a decrease in flux and a decrease in torque, or an increase in flux and an increase in torque are
desired, corresponding to the first and fourth rows in Table 2 (that is the losing control regions II and I
in Figure 6b).

Similarly, from Figure 6a,b, it can be also seen that if the angle φ is increased, the flux losing
control can be eliminated under the action of the voltage vector V6, but the flux losing control will be
serious under the action of the voltage vector V2, and the torque losing control will also be serious
under the action of the voltage vectors V3 and V6. On the contrary, if the angle φ is decreased, the
flux losing control can be eliminated under the action of the voltage vector V2, and the torque losing
control also can be eliminated under the action of the voltage vector V3 and V6, but the flux losing
control will be more serious under the action of the voltage vector V6. Therefore, the losing control
problems of the conventional DTC cannot be solved by changing the angle φ.
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From the analysis above, it can be seen that the BDFM’s conventional DTC easily loses control,
because the selected voltage vector are fewer and the sector is relatively wide. The losing control
problems cannot be improved by increasing the switch sectors, or by changing the angle φ between
the boundary of sector I and the α axis. And increasing the DC bus voltage, the time of losing control
will decrease, but the losing control phenomena would not disappear. Therefore, for the BDFM’s DTC
control system, the flux and torque losing control phenomenon always exist and are inevitable.

Without changing the converter topology, the new voltage vectors are synthesized by the six
fundamental voltage vectors. As shown in Figure 7, the V12 is synthesized by the V1 and V2, the V23

is synthesized by the V2 and V3, the V34 is synthesized by the V3 and V4, the V45 is synthesized by
the V4 and V5, the V56 is synthesized by the V5 and V6, and the V61 is synthesized by the V6 and V1.
The duty ratio of two fundamental voltage vectors related to every synthesized voltage vector are 50%.
The six fundamental voltage vectors and the six synthesized voltage vectors, there are twelve voltage
vectors. At the same time, the switch sectors also increase to twelve, each sector occupies 30

◦
, and

the angle φ is −15
◦
. The following will point out that the losing control problems can be solved by

increasing the number of voltage vectors and the switch sectors simultaneously, and combined with
the appropriate choice of angle φ.
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After adding synthesized voltage vectors, the stator flux amplitude of the CM and the torque
derivative curves are shown in Figure 8a,b, where the stator flux of the CM is 1.2 Wb, the motor speed
is 62.8 rad/s (subsynchronous), the output torques are 30 Nm and 59 Nm (light load and heavy load
under the motoring mode), and the angle φ = −15◦–σ = −21 has been chosen properly.
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Figure 8. Stator flux of the CM and torque derivative curves. (a) Motoring mode (Te = 30 Nm);
(b) Motoring mode (Te = 59 Nm).

Similarly, in each sector, there are also two flux amplitude and two toque derivative curves, their
signs change inevitably, the corresponding four voltage vectors cannot be selected. Among the rest of
eight voltage vectors, the vectors, they can satisfy the control requirements of flux and torque and their
derivative curves are farther from the horizontal axis, will be selected. In this way, the selection of
voltage vector makes that the control effect is more obvious (good effectiveness and quick adjustment),
and the effectiveness can be maintained (strong robustness) when the operating conditions (load
torque, speed, etc.) change. Then twelve sectors voltage vector switch tables can be obtained, as shown
in Tables 3 and 4, and called SVDTC control strategy. From the sector I to the sector XII, the electric
angles of selected voltage vectors for the same control requirements are 30

◦
apart in turn. If the angle φ

is still−15
◦
, the sector I as an example, the selected voltage vectors can satisfy the control requirements

of torque, but the flux will lose control under the action of the voltage vector V56. Because the DC
component A of the flux derivative is relatively small in general situations, only a small adjustment of
φ is needed in the basis of −15

◦
. The analysis of the generating mode is similar to the motoring mode,

the figures of its derivative curves are omitted here. The control system of SVDTC is shown in Figure 9.
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The following simulation will illustrate that the SVDTC not only can solve the flux and torque
losing control problems of the conventional DTC, but also can make the BDFM output torque reach
the theoretical output capacity limits.
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Table 3. Twelve sectors voltage vector switch table (motoring mode).

Output of Hysteresis Comparator Twelve Sectors

Flux Torque I II III IV V VI VII VIII IX X XI XII

−1
–1 V45 V5 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4
1 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 V12 V2

1
–1 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 V45 V5
1 V12 V2 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1

Table 4. Twelve sectors voltage vector switch table (generating mode).

Output of Hysteresis Comparator Twelve Sectors

Flux Torque I II III IV V VI VII VIII IX X XI XII

–1
–1 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 V12 V2
1 V45 V5 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4

1
–1 V12 V2 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1
1 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 V45 V5

5. Simulation Experiments

5.1. Numerical Calculation of Static Operation Ranges

The BDFM of the Appendix A is still used as an example, the supply voltage and frequency of the
PM are 220 V/50 Hz, a specific calculation result is shown in Figure 10. It can be seen that the range of
possible maximum output torque decreases gradually with the increase in motor speed when the stator
flux amplitude of the CM is constant. The range of possible maximum output torque first increases
and then decreases gradually with the increase in the stator flux amplitude of the CM when the motor
speed is constant. When the stator flux amplitude of the CM increases to 1.8 Wb, the maximum output
torque of the BDFM reaches the peak value of 72 Nm. Compared with the maximum torque, the range
of possible minimum output torque increases gradually with the increase in the stator flux amplitude
of the CM, and decreases gradually with the increase in speed.

Energies 2016, 9, 966 15 of 22 

 

Table 3. Twelve sectors voltage vector switch table (motoring mode). 

Output of Hysteresis Comparator Twelve Sectors 

Flux Torque I II III IV V VI VII VIII IX X XI XII 

−1 
–1 V45 V5 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 

1 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 V12 V2 

1 
–1 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 V45 V5 

1 V12 V2 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 

Table 4. Twelve sectors voltage vector switch table (generating mode). 

Output of Hysteresis Comparator Twelve Sectors 

Flux Torque I II III IV V VI VII VIII IX X XI XII 

–1 
–1 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 V12 V2 

1 V45 V5 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 

1 
–1 V12 V2 V23 V3 V34 V4 V45 V5 V56 V6 V61 V1 

1 V56 V6 V61 V1 V12 V2 V23 V3 V34 V4 V45 V5 

5. Simulation Experiments 

5.1.Numerical Calculationof Static Operation Ranges 

The BDFM of the Appendix A is still used as an example, the supply voltage and frequency of 

the PM are 220 V/50 Hz, a specific calculation result is shown in Figure 10. It can be seen that the 

range of possible maximum output torque decreases gradually with the increase in motor speed 

when the stator flux amplitude of the CM is constant. The range of possible maximum output torque 

first increases and then decreases gradually with the increase in the stator flux amplitude of the CM 

when the motor speed is constant. When the stator flux amplitude of the CM increases to 1.8 Wb, the 

maximum output torque of the BDFM reaches the peak value of 72 Nm. Compared with the 

maximum torque, the range of possible minimum output torque increases gradually with the increase 

in thestator flux amplitude of the CM, and decreases gradually with the increase in speed. 

00.5 11.522.5 3 0 50 100 150 200 250

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

l
T

N
m

 r rad s
cs Wb



 

Figure 10. Maximum and minimum torque curve surfaces of a BDFM. 

For large power motor, the situation of above is somewhat different. In this case, the stator and 

rotor resistances are very small, the ranges of possible maximum and minimum output torque will 

tend to be equal, independent of the motor speed, and increase with the increase in the stator flux 

amplitude of the CM. 

Obviously, the stable working points of BDFM must locate in the interior of the maximum and 

minimum torque curves, and the percentage of the stable operation range is related to the control 

method. When the stator flux amplitude of the CM is 1.2 Wb, the maximum and minimum torque 

curves, the stability operation ranges of the BDFM underconstant V/f open loop controland under 

conventional DTC are shown in Figure 11. As we seen that, using the constant V/f open loop control, 

the stability operation rangeis near the synchronous speed, and occupies a small part of the entire 

Figure 10. Maximum and minimum torque curve surfaces of a BDFM.

For large power motor, the situation of above is somewhat different. In this case, the stator and
rotor resistances are very small, the ranges of possible maximum and minimum output torque will
tend to be equal, independent of the motor speed, and increase with the increase in the stator flux
amplitude of the CM.

Obviously, the stable working points of BDFM must locate in the interior of the maximum and
minimum torque curves, and the percentage of the stable operation range is related to the control
method. When the stator flux amplitude of the CM is 1.2 Wb, the maximum and minimum torque
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curves, the stability operation ranges of the BDFM under constant V/f open loop control and under
conventional DTC are shown in Figure 11. As we seen that, using the constant V/f open loop control,
the stability operation rangeis near the synchronous speed, and occupies a small part of the entire
static solution range, using conventional DTC, the torque will lose control before it reaches the limits
of the static solution region.
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5.2. Simulation Test of Synthetic Vector Direct Torque Control (SVDTC)

To display the performance of the proposed new control strategy SVDTC, simulation tests have
been carried out. The control performances of the conventional DTC and SVDTC are compared
under various kinds of operating conditions. The power motor is connected to a 220 V/50 Hz
power supply, and the control motor is supplied through a bridge converter, and the DC voltage
of the converter is 500 V. The stator flux observers of the PM and CM use voltage current models,
ψ

αβ
ps =

∫ (
uαβ

ps − rpsiαβ
ps

)
dt and ψ

αβ
cs =

∫ (
uαβ

cs − rcsiαβ
cs

)
dt. In order to overcome the problem of dc

drifts of a pure integral, the stator fluxes are estimated by a adaptive compensation integrator, where
the cutoff angular velocity of low-pass filter ωCF is 1 rad/s, and the PI parameters of regulator
are kp = 0.01, kI = 1 [29]. The torque is calculated by the cross product of fluxes and currents,

Te = ppIm
{(

ψ
αβ
ps

)∗
iαβ
ps

}
+ pcIm

{(
ψ

αβ
cs

)∗
iαβ
cs

}
. The speed outer loop is adopted, the PI parameters of

speed loop are kp = 2, kI = 20. The upper and lower limits of flux and torque hysteresis comparators
are 0.05 and −0.05, 2 and −2. The parameters of BDFM are shown in the Appendix A.

5.2.1. Simulation Waveforms of DTC and SVDTC

Figures 12 and 13 display the simulation results of conventional DTC and SVDTC, respectively.
In this simulation, the reference value of ψcs is 1.2 Wb, the reference value of ωr is 62.8 rad/s or
100 rad/s (subsynchronous or supersynchronous) under different load torque.
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been carried out. The control performances of the conventional DTC and SVDTC are compared under 
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p 0.01k  , I 1k  [29]. The torque is calculated by the cross product of fluxes and currents, 
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rad/s (subsynchronous or supersynchronous) under different load torque. 

 
(a) (b) 

i
/A

r

t/ms t/ms

/(
ra

d
/s

)
ω

r
/W

b
ψ

cs

5

/A
i p

s
cs

/A
i

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

/N
m

T
l

/(
ra

d
/s

)
ω

r

i
/A

r

0 2 4 6 8

t/ms

10

0 2 4 6 8 10

0 2 4 6 8
t/ms

10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

/W
b

ψ
cs

cs
/A

i
/A

i p
s

/N
m

T
l

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

62.4

62.8

63.2

1.1

1.2

1.3

51

53

55

57

59

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

99.6

100

100.4

1.1

1.2

1.3

46

48

50

52

54

-20

-10

0

10

20

-20

-10

0

10

20

0

10

20

Figure 12. Cont.



Energies 2016, 9, 966 17 of 22

Energies 2016, 9, 966 17 of 22 

 

i
/A

r

t/ms t/ms

/(
ra

d
/s

)
ω

r
/W

b
ψ

cs

5

/A
i p

s
cs

/A
i

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

/N
m

T
l

/(
ra

d
/s

)
ω

r

i
/A

r

0 3 6 9 12

t/ms

15

0 3 6 9 12 15

0 3 6 9 12
t/ms

15

0 3 6 9 12 15

0 3 6 9 12 15

0 3 6 9 12 15

/W
b

ψ
cs

cs
/A

i
/A

i p
s

/N
m

T
l

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

Reference

Actual

-93

-89

-85

-81

-77

62.4

62.8

63.2

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

1.1

1.2

1.3

99.6

100

100.4

1.1

1.2

1.3

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-90

-80

-70

 
(c) (d) 

0 20 40 60 80 100 0 15 30 45 60 75 0 20 40 60 80 100 0 15 30 45 60 75

t/ms t/ms t/ms t/ms

/N
m

T
l

/N
m

T
l

/N
m

T
l

/N
m

T
l

Reference

Actual
Reference

Actual

Reference

Actual
Reference

Actual

51

53

55

57

59

-93

-89

-85

-81

-77

-90
-88
-80
-75
-70

46

48

50

52

54

 
(e) (f) (g) (h) 

Figure 12. Simulation waveforms of conventional DTC. (a) 55 Nm, 62.8 rad/s (motoring mode); (b) 50 

Nm, 100 rad/s (motoring mode); (c) −85 Nm, 62.8 rad/s (generating mode); (d) −80 Nm, 100 rad/s 
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Figure 12. Simulation waveforms of conventional DTC. (a) 55 Nm, 62.8 rad/s (motoring mode);
(b) 50 Nm, 100 rad/s (motoring mode); (c) −85 Nm, 62.8 rad/s (generating mode); (d) −80 Nm,
100 rad/s (generating mode); (e) 55 Nm, 62.8 rad/s; (f) 50 Nm, 100 rad/s; (g) −85 Nm, 62.8 rad/s;
(h) −80 Nm, 100 rad/s.
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Figure 13. Simulation waveforms of SVDTC. (a) 55 Nm, 62.8 rad/s (motoring mode); (b) 50 Nm, 100 

rad/s (motoring mode); (c) −85 Nm, 62.8 rad/s (generating mode); (d) −80 Nm, 100 rad/s (generating 

mode); (e) 55 Nm, 62.8 rad/s; (f) 50 Nm, 100 rad/s; (g) −85 Nm, 62.8 rad/s; (h) −80 Nm, 100 rad/s. 

Under the four conditions of different torques and different speeds, the partial enlarged 

simulation waveformsof the conventional DTC are illustrated in Figure 12a–d. It can be seen that, the 

deviations of torquewill exceed the upper and lower limits of hysteresis comparator, the speed 

fluctuation appearswhen the torque loses control. And the torque losing control has two forms, from 

little to big, and from big to little, which is associated with the different change trends of torque 

derivative curves in the losing control region, as shown in Figure 12a,b. Figure 12e–h show the torque 

waveforms in a 360  of electric angles under the four work conditions, there are six torque ripples 

in each of them. With the increase in the torque, the torque losing control becomes serious and 

continues for a longer time, the maximum torque ripple reaches 9 Nm, and the maximum proportion 

of losing control time is over 70%. 

The partial enlarged simulation waveforms of the SVDTC are illustrated in Figure 13a–d. It can 

be seen that the SVDTC can effectively solve the losing control problems, whether the motor operates 

in motoring or generating modes, and it makes the deviations of the stator flux of the CM and torque 

are restricted in the hysteresis ring width simultaneously. The motor speed and stator flux amplitude 

of the CM properly follow the reference value. When a fundamental voltage vector is selected, until 

the deviations of the flux or torque reach the limits of hysteresis comparators, and the voltage vector 

will switch once. In this case, the switching frequency is related to the hysteresis ring width. When a 

synthesized voltage vector is selected, two related fundamental voltage vectorsare modulated, the 

duty ratio of the two fundamental voltage vectors are 50% , and the modulation frequency is 20 KHz. 
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Figure 13. Simulation waveforms of SVDTC. (a) 55 Nm, 62.8 rad/s (motoring mode); (b) 50 Nm,
100 rad/s (motoring mode); (c)−85 Nm, 62.8 rad/s (generating mode); (d)−80 Nm, 100 rad/s (generating
mode); (e) 55 Nm, 62.8 rad/s; (f) 50 Nm, 100 rad/s; (g) −85 Nm, 62.8 rad/s; (h) −80 Nm, 100 rad/s.

Under the four conditions of different torques and different speeds, the partial enlarged simulation
waveforms of the conventional DTC are illustrated in Figure 12a–d. It can be seen that, the deviations of
torque will exceed the upper and lower limits of hysteresis comparator, the speed fluctuation appears
when the torque loses control. And the torque losing control has two forms, from little to big, and
from big to little, which is associated with the different change trends of torque derivative curves in
the losing control region, as shown in Figure 12a,b. Figure 12e–h show the torque waveforms in a 360

◦

of electric angles under the four work conditions, there are six torque ripples in each of them. With the
increase in the torque, the torque losing control becomes serious and continues for a longer time, the
maximum torque ripple reaches 9 Nm, and the maximum proportion of losing control time is over 70%.

The partial enlarged simulation waveforms of the SVDTC are illustrated in Figure 13a–d. It can be
seen that the SVDTC can effectively solve the losing control problems, whether the motor operates in
motoring or generating modes, and it makes the deviations of the stator flux of the CM and torque are
restricted in the hysteresis ring width simultaneously. The motor speed and stator flux amplitude of
the CM properly follow the reference value. When a fundamental voltage vector is selected, until the
deviations of the flux or torque reach the limits of hysteresis comparators, the voltage vector will switch
once. In this case, the switching frequency is related to the hysteresis ring width. When a synthesized
voltage vector is selected, two related fundamental voltage vectors are modulated, the duty ratio
of the two fundamental voltage vectors are 50%, and the modulation frequency is 20 KHz. In this
case, the switching frequency is fixed, until the hysteresis comparator state changes and other voltage
vector is selected. Figure 13e–h also show the torque waveforms of several periods under the four
conditions. This demonstrates that the effectiveness can be maintained in a wide range by the SVDTC
control strategy when the operating conditions (load torque, speed) change. The proposed SVDTC is
effective in coping with losing control problems. The stability and robustness of the control system
are improved.

5.2.2. Speed Command and Load Torque Disturbance Responses of SVDTC

Figure 14 shows the dynamic response of the BDFM to a step speed command. In this simulation,
the reference value of ψcs is 1.2 Wb, the reference value of ωr changes from 62.8 rad/s to 100 rad/s at
0.21 s, and the load torque is 5 Nm, the PI regulator output limiting values are ±53 (the maximum
torque is 54 Nm at 100 rad/s when the flux is 1.2 Wb). It can be seen that, when the speed command
changes from subsynchronous to supersynchronous, the actual speed rapidly follows the reference
value without overshoots, and the current phase sequence of the CM changes. The motor accelerates
at 53 Nm, and then the torque returns back 5 Nm after approximately 0.06 s.

Figure 15 shows the regulating performance of the BDFM to a step change in load torque. In this
simulation, the reference value of ψcs is 1.2 Wb, the reference value of ωr is 62.8 rad/s, and the load
torque changes from 5 Nm to 30 Nm at 0.1 s. The system stability is validated under a step load torque
disturbance. The speed returns to the reference speed after several dynamic fluctuations, and the speed
regulator is able to compensate for the load torque disturbance in a time period of approximately 0.3 s.
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Figure 14. Speed changes from 62.8 rad/s to 100 rad/s at 5 Nm load. 
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Figure 15. Load torque changes from 5 Nm to 30 Nm at 62.8 rad/s. 
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Figure 15. Load torque changes from 5 Nm to 30 Nm at 62.8 rad/s. 
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Figure 15. Load torque changes from 5 Nm to 30 Nm at 62.8 rad/s.

Figures 14 and 15 also show the stator currents of the PM and CM, and the rotor current. Figures 14
and 15 demonstrate that the system of SVDTC has a good response characteristics for step speed
command, and a good regulating performance under step load torque disturbance. The stator flux
amplitude of the CM follows the reference value well, and it is almost unaffected by the variations of
speed and torque.

5.2.3. Output Capacity of the SVDTC of BDFM System

In addition to the losing control problem, the systems of conventional DTC and CM constant V/f
open loop control will lose stability when the load torque increases to a certain value. For example,
under the conventional DTC, when the flux ψcs is 1.2 Wb, the speed ωr is 62.8 rad/s, if the load torque
exceeds 55 Nm, the torque will diverge.

The SVDTC not only can solve the flux and torque losing control problems of the conventional
DTC, but also can make the output torque of the BDFM reach the theoretical output capacity limits.
In order to validate this conclusion, simulation tests have been carried out.

In this simulation, the reference value of ψcs is 1.2 Wb, the reference value of ωr is 62.8 rad/s,
and the load torque is changed gradually. According to Figure 11, the maximum output torque of
BDFM is 59 Nm under the above working conditions. Figure 16 shows that the actual output torque is
always able to follow reference torque when the load torque changes from 30 Nm to 50 Nm at 0.2 s,
and then changes from 50 Nm to 58 Nm at 1 s. In the interior of the maximum and minimum output
torque curves of Figure 11, setting some test points on the boundaries, we find that the results are
same, and the waveforms are omitted here. The SVDTC can make the output torque of the BDFM
reach the theoretical output capacity limits, but conventional DTC cannot.
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Figure 16. Simulation waveforms of SVDTC at limit torque. 

6. Conclusions 

For different rotor structures BDFM, the method of taking conjugation transformation of the 

complex variables of CM or PM has universality. Using this method, the synchronous reference frame 

state-space model, called SSSM, is obtained in this paper. By the description of the SSSM, the analysis 

method of the output capacity limits of BDFM is given and used to test the performance of the control 

strategy. The improved DTC strategy, called SVDTC, can solve the losing problems of the flux and 

torque, and keep the advantage of conventional DTC, such as simple structure, less dependence on 

motor parameters, and strong robustness. The dynamic performance of SVDTC is tested over a wide 

range of speeds from subsynchronous to supersynchronous, and also under conditions of sudden 

load change. The theoretical output capacity limits can be reached by the SVDTC control strategy. 

These results have significant meaning for the BDFM’s design and development and also for the 

control strategy study. 
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6. Conclusions

For different rotor structures BDFM, the method of taking conjugation transformation of the
complex variables of CM or PM has universality. Using this method, the synchronous reference frame
state-space model, called SSSM, is obtained in this paper. By the description of the SSSM, the analysis
method of the output capacity limits of BDFM is given and used to test the performance of the control
strategy. The improved DTC strategy, called SVDTC, can solve the losing problems of the flux and
torque, and keep the advantage of conventional DTC, such as simple structure, less dependence on
motor parameters, and strong robustness. The dynamic performance of SVDTC is tested over a wide
range of speeds from subsynchronous to supersynchronous, and also under conditions of sudden
load change. The theoretical output capacity limits can be reached by the SVDTC control strategy.
These results have significant meaning for the BDFM’s design and development and also for the
control strategy study.
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