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Abstract: In consideration of the insolubility in water, sensitivity to heat and wide application
in the oil and gas industry as a degradable additive, this paper introduces polylactic acid (PLA)
to a self-degradable temporary sealing material (SDTSM) to investigate its effect on the SDTSM
performance and evaluate its potential to improve the rheological properties and further promote
the self-degradation of the material. The thermal degradation of PLA, the rheological properties,
compressive strength, hydrated products and water absorption of SDTSMs with different PLA
dosages were tested. The analysis showed that the addition of 2% PLA increased the fluidity by
13.18% and reduced the plastic viscosity by 38.04%, when compared to those of the SDTSM without
PLA. PLA increased the water absorption of 200 ◦C-heated SDTSM and had small effect on the
types but decreased the hydrate products of 85 ◦C-cured SDTSM, and created plenty of pores in
200 ◦C-heated SDTSM. PLA enhanced the self-degradation level of SDTSM by generating a large
amount of pores in cement. These pores worked in two ways: one was such a large amount of pores
led to a looser microstructure; the other was these pores made the water impregnate the cement more
easily, and then made the dissolution of substances in the 200 ◦C-heated SDTSM progress faster to
generate heat and to destruct the microstructure.

Keywords: self-degradable temporary sealing material; geothermal wells; polylactic acid; rheological
properties; self-degradation

1. Introduction

The development of geothermal reservoirs usually encounters highly permeable formations that
are either naturally fractured or created through stimulation operations [1–3]. To control the loss of
drilling fluids, these fractures must be plugged during drilling and reopened for production when the
drilling is completed. A temporary sealing material is required not only to plug the fractures at 85 ◦C,
but also to self-degrade both in hot water at 200 ◦C and when coming in contact with water during
stimulation operations after the dry heat of 200 ◦C, depending on the conditions of geothermal wells [4].
Sugama [4,5] and Li [6] added sodium carboxymethyl cellulose (CMC) into sodium silicate-activated
slag/Class C fly ash cementitious materials, to develop a self-degradable temporary sealing material
(SDTSM), which could meet these requirements.

The alkali-activated fly ash/slag cements, prepared from industrial by-products of the fly ash and
slag with pozzolanic properties has an ability to withstand the hot acidic environment caused by the
combination of concentrated dihydrogen sulfide (H2S) and carbon dioxide (CO2) [4]. The cements are
characterized by their high mechanical performance, low energy cost and low pollutant gas emission,
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less environmental deterioration, and their thermal resistance together with significantly reduced
energy costs [7,8].

CMC, which is commonly used as an additive in water-based drilling fluids to control fluid loss,
can significantly increase the viscosities of fluids [9,10]. However, the high viscosity of cement reduces
its pumpability and should be kept low enough during the entire cementing operation [11]. PLA is
sensitive to heat and will obviously degrade when the temperature is above 200 ◦C [12]. Additionally,
in consideration of PLA’s insolubility in water and application as a degradable polymer, this paper
introduced PLA to SDTSM aiming to improve the rheological properties and further promote the
self-degradation of the material.

PLA has been widely used in medical field, daily life and oil & gas industry as a degradable
additive. In medical operations, PLA is applied as an additive in bone cement, which will degrade to
cause high porosity of cements when it contacts with body fluids, thereby providing inter-connective
channels for the bone [13–15]. As a green environmental material, PLA was also used to manufacture
daily products, fresh-food packages, shopping bags and bed sheets, etc., replacing the petroleum-based
products [16,17]. In oil and gas industry, PLA is combined with other materials to form degradable
particulates in temporary sealant slurry for plugging the preexisting fractures, and then degraded
to remove the sealer after the re-fracturing operations [18]. PLA is used to coat proppant sand or
gravel pack sand, which will degrade to leave conducting channels at the end of a fracturing or gravel
packing operations [19]. It is also employed to form degradable diverter plugs for reducing the time
for operation, equipment standby and fluid flow back and reducing the risk of premature setting of
the fracturing plugs, by avoiding the need to drill out the plugs before production [20].

Thermogravimetric analysis (TGA) and Pyrolysis-gas chromatography/mass spectroscopy
(Py-GC/MS) were employed to test the thermal decomposition properties of PLA. X-ray diffraction
analysis (XRD) was used to study the hydrated cement products. The rheological properties,
compressive strength, hydrated products and water absorption of SDTSMs with different PLA dosages
were tested to investigate the influences of PLA on the properties of SDTSM. After immersing
200 ◦C-heated samples in water for different times, the degradation of the samples was observed
by a polarizing microscope and scanning electron microscopy (SEM). The compressive strengths were
further determined to assess the level of degradation.

2. Experimental Procedures

2.1. Materials

The slag was obtained from Longang Trading Co. Ltd. (Tangshan, China). The Class C fly
ash was supplied by Luyuan Power Resource Development Groups Co. Ltd. (Dongying, China).
Sodium silicate was supplied by Qingdao Yousuo Chemical Technologies, Inc. (Qingdao, China).
CMC was supplied by Yanxing Chemical Industry, Inc. (Renqiu, China). PLA was obtained from
Changsheng New Materials Technologies, Inc. (Guangzhou, China) and typical values of its physical
properties are listed in Table 1.

Table 1. Typical values of PLA’s physical properties.

Physical Properties Typical Values

Density (g/cm3) 1.25 ± 0.05
Melting temperature (◦C) 155~165

Glass transition temperature (◦C) 56~60
Tensile strength (MPa) ≥5
Elongation at break (%) ≥3.0

Impact strength (kJ/m3, Izod) 1~3

The SDTSM formula, referencing the study of Sugama [4,5] and Li [6], had slag/Class C fly ash
ratio of 80/20 by weight, 6% sodium silicate and 1% CMC by total weight of the dry pozzolana cement.
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Water was added at a water/dry pozzolana cement ratio of 0.6 to prepare cement. The SDTSM without
CMC, i.e., the sodium silicate-activated slag/Class C fly ash cementitious material, was considered
the control sample. To study the rheological behavior of SDTSM with different PLA dosages, 1%, 2%,
3%, 4%, 5%, 6%, 7%, 8%, 9% and 10% PLA by the total weight of pozzolana cement were added into
SDTSM. 2%, 4%, 6%, 8% and 10% PLA were added to examine the effects of PLA on the compressive
strength, hydrate products, water absorption and self-degradation of SDTSM. The polymers and
the dry pozzolana cements were blended thoroughly and uniformly prior to adding into water.
These slurries were placed in air at room temperature for 72 h, afterwards, all set cements were cured
at 85 ◦C for 24 h (85 ◦C-cured), and some of these specimens were further heated for 24 h in an oven at
200 ◦C (200 ◦C-heated).

To evaluate the thermal decomposition of PLA in cement, PLA powder (4 g) was immersed into
filtrate (50 mL) obtained by a API filter tester from the SDTSM slurry without PLA. The pH of the
filtrate was 13.16. The filtrate with PLA was cured at room temperature for 72 h and at 85 ◦C for 24 h,
and then filtered, washed, and dried for further testing.

2.2. Measurements

A Thermo Gravimetric Analyser (TGA) (TA instruments, New Castle, DE, USA) was used to test
the decomposition of the non- and filtrate-treated PLAs. Tests were carried out in nitrogen atmosphere
and air atmosphere with a heating rate of 10 ◦C/min.

Py-GC/MS carried out on a pyrolyzer (Frontier Lab, Fukushima, Japan) and a gas
chromatograph-mass spectrometer (Agilent, Santa Clara, CA, USA) was used to identify and quantify
the volatile derivatives emitted by the decomposition of PLA. The chromatographic peaks were
identified by referencing them to the NIST MS library and data in the literatures, by comparing their
chromatographic retention times to those of the available reference chemical compounds.

Fluidity was measured according to Chinese national standard GB/T 8077-2012 [21]. A cone
frustum (60 mm high with diameters of 36 mm in the top and 60 mm in the base), a glass plate,
a stopwatch and a steel ruler were used to test the fluidity. The moist cone without water stains was
placed on the clean glass plate. Then the cone was fully filled with cement slurry, lifted up vertically.
Two maximal diameters in vertical direction of the slurry were measured after 30 s. The shear stress (τ)
of the samples at different shear rates (γ) (5.11, 10.21, 170 and 340 s−1) were tested by a six-speed
rotating viscometer (Haitongda, Qingdao, China) according to API Recommended Practice 10B-2 [22].
The accuracy of dial reading is 1.0◦.

Compressive strength was tested according to Chinese National Standard GB 10238-2005 [23] and
Chinese Petroleum and Natural Gas Industry Standard SY/T 6544-2010 [24] by using a YAW-300B
servo universal testing machine (Chandler, Chengdu, China) with a loading rate of 17.1 kN/min.
The cube samples with the size of 50.8 × 50.8 × 50.8 mm (2 in × 2 in × 2 in) were cast. Three cubic
specimens of each composition were prepared to measure the compressive strength.

Powder X-ray diffraction (XRD) carried out on a diffractometer (Rigaku, Tokyo, Japan) was
employed to identify the crystalline phases of the 85 ◦C-cured sample. The samples were crushed,
ground and passed through a 325 mesh screen. The scanning regions were between 2θ values of 3◦

and 70◦, at a resolution of 0.02◦/step.
For the water absorption test, the specimens were weighed (W0) after 200 ◦C-heating, then the

specimens were immersed in water at room temperature for 30 min. After the immersion
period, the specimens were taken out and wiped quickly with wet cloth, and then the mass was
weighed (W1) [25]. The water absorption (WA) was calculated according to the formula:

WA =
W1 − W0

W0
(1)

To observe the self-degradation, the 200 ◦C-heated specimens were placed into water at
room temperature for 2 h (immersed in water for 2 h) and 24 h (immersed in water for 24 h).
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The compressive strength of samples immersed in water for different times was measured to assess
the level of self-degradation.

The pieces of SDTSM with 2% PLA (after 85 ◦C-curing, 200 ◦C-heating, immersing in water for 2 h
and for 24 h) were stored in absolute alcohol to extract free water, and then dried at 60 ◦C for 6 h.
Then the pieces were examined by a scanning electron microscope (SEM, with an acceleration voltage
of 15 kV; FEI, Hillsboro, OR, USA). In particular, the pieces of the samples after immersed in water for
2 h and 24 h were selected from the fractured surfaces of the degraded cement.

3. Results and Discussion

3.1. Thermogravimetric Analysis (TGA)

As the thermal properties of additives are important to the temporary sealing materials applied
to geothermal wells, TGA and Py-GC/MS were employed to investigate the thermal properties of
PLA. TGA curves tested in different atmospheres for non- and filtrate-treated PLA are shown in
Figure 1. All of the TGA curves present only one stage of decomposition. The decomposition stage
of original PLA in N2 is between 300 ◦C and 390 ◦C, and PLA decomposes completely in this stage.
Similarly, original PLA decomposes in the one decomposition stage at between 260 ◦C and 360 ◦C.
The decomposition stage of the filtrate-treated PLA is between 200 ◦C and 335 ◦C with the weight loss
of 88.8%, and 200~350 ◦C with the weight loss of 87.9%, in N2 and in air, respectively. After being
treated with the filtrate of SDTSM at room temperature for 72 h and at 85 ◦C for 24 h, the thermal
decomposition temperature declined both in N2 and in air. The decomposition temperature drops
from 300 ◦C to 200 ◦C in N2, and drops from 260 ◦C to 200 ◦C in air. The similar phenomenon was
also reported by literature [26], which showed that with increasing time of the hydrolysis experiment,
thermal stability of PLA decreased, as reflected by the changes in TGA curves. PLA hydrolyzes
in acidic and basic solutions, especially at elevated temperature [26–28]. The pH value of filtrate
of SDTSM without PLA is 13.16, alkalescence. The filtrate containing PLA powders was cured at
85 ◦C to simulate the curing conditions of cement, resulting in the hydrolysis of PLA. The hydrolytic
decomposition leads to a decrease in molecular weight [26,27,29]. The thermal stability of PLA is
closely related to the molecular weight. Cam et al. [30] reported that the thermal decomposition
temperature rose with the increase in the molecular weight. Therefore, PLA hydrolyzed in the pH
13.16 filtrate at 85 ◦C, leading to a decrease in molecular weight, and thus the thermal decomposition
temperature declined.
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3.2. Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS)

Figure 2 shows the Py-GC/MS abundance-retention time curve of non-treated PLA. Table 2 shows
the main pyrolysis derivatives, of which peak area accounts for more than 1.5% of the total, along with
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their peak area % of the total obtained from Py-GC/MS for non-treated PLA. The main pyrolysis
derivatives are γ-butyrolactone, o-xylene, hexyl alcohol and 3-methylpent-1-en-3-ol. The boiling points
of o-xylene, hexyl alcohol and 3-methylpent-1-en-3-ol are 144.4 ◦C, 157.0 ◦C, and 115.9 ◦C, respectively.
Although the boiling point of γ-butyrolactone is 204 ◦C, it evaporates together with water vapor [31].
When the environment temperature was above 100 ◦C, water in cement turned into water vapor.
When the cement was heated at 200 ◦C, γ-butyrolactone evaporated with water vapor. Thus all of the
main products (90.83% of the total) were in gaseous state when the cement was heated at above 200 ◦C.
The large release of volatile derivatives emanated would enhance the magnitude of self-degradation
of cement [4].
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Table 2. Main pyrolysis derivatives along with their peak area % of total obtained from Py-GC/MS for
non-treated PLA.

Number Retention Time (min) Compounds Peak Area % of Total

1 4.577 o-Xylene 3.29
2 5.514 γ-Butyrolactone 82.91
3 8.717 Hexyl alcohol 2.95
4 11.829 3-Methylpent-1-en-3-ol 1.68

3.3. Rheological Properties

Fluidity, viscosity and shear stress can be used to describe the flow of cement pastes. As shown
in Figure 3, the fluidities of the control and SDTSM without PLA are 17.7 cm and 16.2 cm, indicating
that CMC decreased the fluidity of cement. The enhancement in fluidity is 14.8% with the addition of
2% PLA, compared to SDTSM without PLA. The effect of PLA dosage on fluidity of SDTSM presents
a fluctuation tendency. The additions of 2% and 8% PLA reach two different peak values of 18.6 cm
and 18.3 cm, respectively. Despite the fact that SDTSMs with 6% and 10% PLA present lower fluidity,
the values are higher than SDTSM without PLA, suggesting that PLA enhanced the fluidity. As shown
in Table 3, the shear stress of all samples increases with the increasing shear rate. Shear stress–shear
rate relationships were described according to Bingham plastic model [32]:

τ = τ0 + µpγ (2)

where τ is the shear stress (Pa), µp is the plastic viscosity (mPa·s), γ is the shear rate (s−1)
(also referred to as the shear strain rate) and τ0 is the yield stress (Pa) (also referred to as the yield
point). Linear fitting of rheological curves of the control and SDTSMs with 0%, 1%, 2%, 3%, 4%, 5%, 6%,
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7%, 8%, 9% and 10% PLA was performed by using a computer software named ‘Origin’, as shown in
Figure 4, to determine a slope (plastic viscosity) and an intercept (yield stress). The quality of the fitting
of the experimental data to the Bingham plastic model was evaluated using error function assessments,
namely, the coefficient of determination (R2) and residual root-mean-square errors (RMSE) tests.
The values R2 and RMSE are given by Equations (3) and (4), respectively:

RMSE =

√
1

n − p

n

∑
i=1

(qei − qci)
2 (3)

R2 =

 ∑n
i=1 (qei − qe) (qci − qc)√

∑n
i=1 (qei − qe)

2 ∗
√

∑n
i=1 (qci − qc)

2

2

(4)

where qei and qci are the experimental and calculated shear stress, respectively; qe and qc are the mean
of experimental and calculated shear stress values; n is the number of experimental data points; and p is
the number of parameters in the model equation. The experimental data obeyed one model well when
the R2 value was close to 1, and the RMSE value was close to zero.
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Table 3. The values of shear stress (Pa) of slurries of the control and SDTSMs with different PLA
dosages at different shear rates.

PLA Dosage (%)
Shear Rates (s−1)

5.11 10.21 170 340

Control 1.02 2.30 14.82 27.59
0 5.37 7.67 62.85 123.92
1 3.83 7.41 52.12 97.35
2 3.32 5.37 42.41 76.65
3 3.58 5.62 47.01 87.13
4 4.34 6.64 53.14 98.37
5 4.85 8.94 61.32 110.89
6 5.11 7.41 62.09 114.98
7 3.83 9.45 54.93 100.16
8 4.34 5.62 41.39 76.14
9 3.83 6.13 48.80 90.45

10 4.85 6.64 58.51 109.35

The values of µp, τ0, the coefficient of determination (R2) and the residual root mean square error
(RMSE) values are shown in Table 4. All of the values of R2 are between 0.99 and 1, and all of the RMSEs
are smaller than 2.7 with the mean value of 1.4694, indicating that the relationship between shear stress
and shear rate of all the cement pastes can be described by the Bingham plastic model. The plastic
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viscosity curve of SDTSMs with different PLA dosage is shown in Figure 5. Similar to the fluidity
curve, the plastic viscosity curve also presents a fluctuation tendency as the PLA dosage increases.
However, contrast to fluidity curve, two different minimum plastic viscosity values, 218.16 mPa·s
and 214.57 mPa·s are obtained by adding 2% and 8% PLA, which decrease by 38.04% and 39.07%
compared to that of SDTSM without PLA. Although the fluidity and plastic viscosity curves present
fluctuation tendency, the addition of PLA increased the fluidity and reduced the plastic viscosity
and yield stress compared to SDTSM without PLA, and thus improved the rheological properties
of the CMC-modified cement. The fluidity is related to rheological parameters, viscosity and yield
stress [33]. In general, the increment of rheological parameters is accompanied by a reduction of
fluidity, and vice versa, as reported in literatures [34–36]. Assaad [34] reported that the extraction of
water decreased the fluidity and increased the viscosity of inject cementitious grouts. Celik et al. [35]
reported that increasing the replacement level of rice husk ash increased plastic and apparent viscosity,
and the yield stress, but also decreased fluidity. Shang et al. [36] reported the addition of graphene
oxide into the cement caused a noticeable reduction in fluidity and increased rheological parameters.
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Figure 4. The rheological curves of the control and SDTSMs with different PLA dosages.

Table 4. The values of τ0 (Pa), µp (mPa·s), R2 and RMSE of the control and SDTSMs with different
PLA dosages.

PLA Dosage (%) τ0 µp R2 RMSE

Control 1.14954 78.17 0.99878 0.53179
0 3.62560 352.13 0.99991 0.66444
1 3.80992 276.44 0.99924 1.4894
2 3.17759 218.16 0.99837 1.7229
3 3.07989 248.97 0.99926 1.3228
4 3.76898 280.15 0.99930 1.4440
5 5.15655 314.27 0.99831 2.5178
6 4.25199 327.94 0.99931 1.6738
7 4.94911 282.35 0.99774 2.6160
8 3.64514 214.57 0.99943 1.0007
9 3.38908 257.79 0.99893 1.3432

10 3.75633 312.99 0.99931 1.3058

The powders of PLA, slag and fly ash were screened by sieves with different pore diameters to
investigate the influences of PLA powders on the rheological properties of cement slurries. The weight
percentages of powders between different pore diameters sieves are provided in Table 5, from which
we can learn that the PLA particles are larger than those of slag and fly ash. The increased dosage of
the large particle PLA powders changed the particle size distribution, and thus changed the specific
surface area and particle number density, both of which have effects on the rheological behavior of
cementitious slurries, as reported in [37,38]. Bentz et al. [37] reported that, as the fly ash particles were
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larger than the cement particles, the replacement of fly ash decreased the particle number density of
cement-fly ash pastes and produced significantly lower yield stress values. Vance et al. [38] reported
that the yield stress and plastic viscosity of the cement pastes containing limestone powder were found
to increase with the specific surface area. Besides, as the cement was prepared through adding water
by the water/dry pozzolana cement ratio of constant 0.6, the addition of PLA enhanced solid content
in the cement slurry. The increased solid content increases the viscosity and yield stress and decreases
the fluidity. Therefore, the fluidity and plastic viscosity curves present a fluctuation tendency resulting
from the combined influences of particle size distribution and the solid content change as the PLA
dosage is increased.
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Table 5. The weight percent of powders between different pore diameters sieves of PLA, slag and
fly ash.

Pore Diameter (µm) PLA Slag Fly Ash

>550 0.0903 0 0
550~325 25.67676 0 0
325~250 60.11703 0 0
250~120 12.70065 53.76577 0.56842
120~106 1.04332 11.69448 6.977688

<106 0.371942 34.53976 92.45389

3.4. Compressive Strength of 85 ◦C-Cured Specimens

Figure 6 shows the compressive strength of the 85 ◦C-cured samples of the control and
SDTSMs with different PLA dosages. The compressive strength of SDTSMs without PLA exhibits
an enhancement of 29.90% compared to the control, indicating that CMC has an ability to increase the
compressive strength of the alkali-activated slag/Class C fly ash cement. The reduction in compressive
strength is 9.8%, 32.8% and 54.8% with the addition 2%, 4% and 6% PLA compared to SDTSM without
PLA, respectively, revealing that PLA decreased the compressive strength of 85 ◦C-cured SDTSM.
However, SDTSM with 2% PLA exhibits an enhancement in compressive strength compared to the
control, indicating that 1% CMC with a lesser PLA dosage could still reinforce the compressive
strength of the sodium silicate-activated slag/Class C fly ash cement. The compressive strength of
SDTSM decreased as the PLA dosage increased, may result from the hydrolysis of ester bonds in PLA
yielding—COOH groups, which reacted with OH−, leading to a decrease in alkali content. The dosage
of the alkali activator has notable influence on the strengths of cement. Abdalqader et al. [39] reported
that increasing the activator dosage led to an increase in the strengths of sodium carbonate activated
slag/fly ash cement at all ages. Therefore, the SDTSM containing a larger PLA dosage presented a lower
85 ◦C-cured compressive strength. The accepted compressive strength for the drilling operations to
resume after curing circulation losses is 3.5 MPa [4], so even the compressive strength of SDTSM with
8% PLA is more than sufficient for plugging fractures and resuming drilling.
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3.5. Powder X-ray Diffraction (XRD)

All of the XRD patterns of the 85 ◦C-cured samples (shown in Figure 7) exhibit a crystalline
phase at about 2θ value of 26.6◦, which indicates the presence of quartz attributed to the Class C
fly ash residue. Besides, each XRD pattern exhibits an amorphous hump between 2θ values of 20◦

and 40◦ due to the non-hydrated slag. The diffuse peak at about 2θ value of 29.5◦ is assigned to
calcium-silicate-hydrate (C-S-H) phase or calcite [40,41]. The XRD patterns of the 85 ◦C-cured samples
seem to be similar to each other, the diffraction peaks are in the same positions, revealing that the effect
of PLA or CMC on the types of hydrate products of the alkali activated slag/Class C fly ash cement is
less pronounced. However, the intensity value of the peak at 29.5◦ of the control and SDTSM with
0%, 2%, 4%, 6%, 8% and 10% PLA is 170, 170, 170, 161, 153, 150 and 137, in sequence. The intensity is
closely associated with crystalline phases, as reported in literatures [42–44]. Literature [42] reported
that the intensity of quartz and mullite peaks was decreased related to the higher reactivity of fly
ash which resulted into consumption of quartz and mullite phase. Literature [43] reported that
the increasing intensity of cementitious product peak indicated the increase in the cementitious
compounds. Literature [44] reported that the intensity of calcium hydroxide peak decreased due
to a rapid consumption of Ca(OH)2. In addition, the peak area is 3103, 2564, 2457, 2342, 2024,
1371 and 1300, respectively; and the sharpness of the peak weakens with the increasing PLA dosage,
compared to SDTSM without PLA. To some extent, a sharper peak means a better crystallinity,
and a larger peak area reflects a larger amount of the crystalline phase. Literature [45] reported that
the broad crystallization peak indicated surface crystallization whereas the sharp peak signified bulk
crystallization. Therefore, the intensity, peak area and sharpness of peak at 29.5◦ decrease as the
increasing PLA dosage suggesting that the hydrate products decreases with the increasing PLA dosage.
Furthermore, the decrease of hydrate products attributed to the compressive strength decrease of the
85 ◦C-cured cement.
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3.6. Water Absorption

Figure 8 shows the water absorption of the 200 ◦C-heated specimens of the control and SDTSMs
with different PLA dosages. The value of SDTSM with 0%, 2%, 4%, 6%, 8% and 10% PLA is 19.5%,
24.4%, 27.1%, 31.7%, 34.2% and 37.5%. The water absorption increased by 92.49% due to the addition
of 10% PLA. The water absorption was increased with the increasing PLA dosage, suggesting that
the addition of PLA contributed to the rapid entering of water into the specimens in a short time.
Additionally, larger water absorption is usually accompanied by a larger porosity and a looser
structure. Aprianti et al. [46] reported that a denser cement mortar microstructure achieved a higher
compressive strength with lower water absorption. Hossain et al. [47] reported that the incorporation
of soluble silicates into alkali-activated blast furnace slag paste led to a denser and more homogeneous
microstructure with lower water absorption and apparent porosity. Therefore, the enhancement
in water absorption due to the addition of PLA, points to a larger porosity and a looser structure,
to some extent.
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3.7. Self-Degradation

To observe the self-degradation, the 200 ◦C-heated samples of SDTSM were immersed in water
for 2 h and 24 h. Then the water-immersed specimens were cut into pieces and observed under
a polarizing microscope and SEM. The compressive strength of the samples immersed in water for
different times was measured to assess the level of degradation.

Figure 9 shows the images of section of 200 ◦C-heated samples after immersed in water for 2 h.
The amount of pores in SDTSM increases with the increasing PLA dosage. Figure 10 shows the images
of the section of the 200 ◦C-heated samples after immersed in water for 24 h. The images illustrate that
after the immersing period for 24 h, cracks appeared in SDTSM specimens, compared to the specimens
immersed for 2 h, indicating that the self-degradation level of cement increased with the extension
of immersing-time. However, contrary to SDTSMs with PLA, the specimens of the control are dense,
no matter immersed in water for 2 h or for 24 h.

Figure 11 shows the compressive strength of the control and SDTSMs with different PLA
dosages after 200 ◦C-heated, immersed in water for 2 h and 24 h. All of the samples show
declines in compressive strength after different immersing periods compared to the 200 ◦C-heated.
SDTSM without PLA presents a reduction in compressive strength of 15.14% and 24.77% compared to
the 200 ◦C-heated specimens, after immersed in water for 2 h and 24 h, respectively. The reduction of
SDTSMs with 2% PLA is 35.75% and 56.73%, respectively. The reduction extent of cement immersed
in water for 2 h and 24 h increased as the addition of PLA, revealing that PLA promoted the
self-degradation of SDTSM.
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Figure 11. Compressive strength of control and SDTSM with different PLA dosages after being
200 ◦C-heated, immersed in water for 2 h and 24 h.

With the addition of 2% and 8% PLA, SDTSM showed lower viscosity and larger fluidity.
However, increasing the PLA dosage decreased the compressive strength of the 85 ◦C-cured cement.
The compressive strength of 85 ◦C-cured cement should be kept high enough to plug fractures and
resume drilling operation. In addition, the compressive strength of 200 ◦C-heated SDTSM with
2% PLA immersed in water for 24 h decreased by 56.73%, when compared to the 200 ◦C-heated
specimen, suggesting the significant effect of 2% PLA on the self-degradation of SDTSM. Therefore the
optimum dosage of PLA is 2%, which can make the cement self-degrade to disintegrate for production,
and obtain a larger 85 ◦C-cured compressive strength to resume drilling.

3.8. Self-Degradation Mechanism

As shown in Figure 12a, the PLA particles distribute in the cement, after 85 ◦C-curing, besides,
there are some pores as the particles were peeled off the SEM samples during the preparation.
However, these particles can’t be observed in Figure 12b–d, after the 200 ◦C-heating. As the melting
temperature of PLA is 155~165 ◦C (as shown in Table 1), it melted during the period of 200 ◦C-heating.
Meanwhile, the thermal decomposition of PLA produced γ-butyrolactone, o-xylene, hexyl alcohol and
3-methylpent-1-en-3-ol, all of which are in gaseous states, when the temperature was above 200 ◦C,
thus created a large amount of pores in cement. The amount of the pores increases as the increase
of PLA dosage, as shown in Figures 9 and 10. Since the volume of water added in to cement was
constant when preparing the samples, the pores attributed to the evaporation of the water is constant.
The significant increase of the amount of the pores resulted from the PLA dosage increased.
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High strength is related to a compact microstructure, therefore, a loose microstructure results in
decreasing mechanical properties. The fact that porosity has significant effects on the cement strength
has been reported in many references. Habib et al. [48] found that increasing dosages of melamine
formaldehyde sulfanilate and cyclohexanone formaldehyde sulfonate led to a decrease in the total
porosity of the resulting cement pastes, and consequently the compressive strength value increased.
Zhang et al. [49] reported that the compressive strength of alkali-activated cement decrease was almost
linear with the increasing total porosity at the studied range. Huang et al. [50] reported that the
strength loss of limestone powder-incorporated mortar increased in comparison with Portland cement
mortar, as a result of an increase in porosity. Norambuena-Contreras et al. [51] reported that the
carbon powder waste increased the effective macroporosity of the cement paste, and weakened the
microstructure, thus presented a lower strength resistance. The phenomenon that the compressive
strength of 200 ◦C-heated SDTSM decreases as the PLA dosage increases, since PLA created a large
amount of pores when compared with the SDTSM without PLA, supporting the point that porosity
makes significant effects on the cement strength.

The greater magnification SEM images of the border of PLA particles and cementitious material (a),
the surfaces of the pores in the samples after heated (b) and immersed in water (c), (d), are shown in
Figure 13. The microstructures of the cementitious material in (a) and (b) are observed more compact
than in (c) and (d), especially than in (d) which has internal micro-cracks. The microstructures of
samples which were immersed in water are looser than those non-immersed. Sugama [4] pointed out
that the dissolution of abundant CMC and sodium silicate reaction products generated in situ heat
in CMC modified sodium silicate-activated slag/Class C fly ash cement, when contacted with water.
The high heat release was considered to play a pivotal role in the self-degradation performance of
alkali-activated slag/Class C fly ash blend cement.
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Besides, some other components in cement are dissolved in water when the cement is in contact
with water after 200 ◦C-heating. We believe that this dissolution process itself should also contribute to
the cement degradation. The dissolution process may lead to a chemical deterioration, which destroys
the microstructures of the cement. References [52–54] reported that pure water or ion solutions leads
to leaching of calcium from cement-based materials. Calcium leaching has a strong impact on their
microstructure because of the dissolution of hydrated phases, and reduces the cement strength by
perforating a highly eroded microstructure.

In addition, the many more pores generated by PLA made the water impregnate into cement
more easily (shown in Figure 8), which made the dissolution progress faster, and then destroyed the
cement microstructure, thus facilitating cement degradation. The dissolution continued as the time
was extended, with the destruction of cement microstructure, as reflected by the continuous decrease
of the compressive strength.

4. Conclusions

This paper was aimed at studying the potential of PLA for improving the fluidity and further
promoting the self-degradation of SDTSM for geothermal wells, and the effect of PLA on the SDTSM
performance. The conclusions obtained in this paper are as follows:

(1) The thermal decomposition temperature of PLA declined after treatment with filtrate of
SDTSM. The main pyrolysis products of PLA are γ-butyrolactone, o-xylene, hexyl alcohol
and 3-methylpent-1-en-3-ol.

(2) The optimum PLA dosage is 2%. The addition of PLA increased the fluidity and reduced the
viscosity of SDTSM, thus improving its rheological and pumping properties. 2% PLA enhanced
the level of self-degradation, and ensured the SDTSM obtain a relatively larger 85 ◦C compressive
strength to resume drilling.
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(3) PLA or CMC have a small effect on the types of hydrated products of the 85 ◦C-cured alkali
activated slag/Class C fly ash cement, however, the hydrated products decrease as the dosage of
PLA increases.

(4) The existence of the large amount of pores generated by melting and thermal decomposition is
the major reason for PLA enhancement of the self-degradation level of SDTSM. This works in
two ways: first, the large amount of pores leads to a looser microstructure which results in lower
strength; second, these pores make the water impregnate the cement more easily, and this made
the dissolution progress faster to generate heat and destroy the microstructure of the cement,
ultimately, facilitating the self-degradation.

As future work, considering that PLA decreased the compressive strength of 85 ◦C-cured SDTSM,
we will try to enhance the strength by replacing PLA powders with fiber or increasing the dosage of
sodium silicate. Besides, the rheological behaviors of SDTSMs should be investigated more deeply.
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