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Abstract: A key issue in Low Voltage (LV) distribution systems is to identify strategies for the optimal
management and control in the presence of Distributed Energy Resources (DERs). To reduce the
number of variables to be monitored and controlled, virtual levels of aggregation, called Virtual
Microgrids (VMs), are introduced and identified by using new models of the distribution system.
To this aim, this paper, revisiting and improving the approach outlined in a conference paper,
presents a sensitivity-based model of an LV distribution system, supplied by an Medium/Low
Voltage (MV/LV) substation and composed by several feeders, which is suitable for the optimal
management and control of the grid and for VM definition. The main features of the proposed
method are: it evaluates the sensitivity coefficients in a closed form; it provides an overview of the
sensitivity of the network to the variations of each DER connected to the grid; and it presents a
limited computational burden. A comparison of the proposed method with both the exact load flow
solutions and a perturb-and-observe method is discussed in a case study. Finally, the method is used
to evaluate the impact of the DERs on the nodal voltages of the network.

Keywords: distributed energy resources; microgrids; distribution system modeling;
sensitivity analysis; voltage regulation

1. Introduction

Existing distribution networks present an inflexible structure which makes them inadequate
to allow a large spread of Distributed Energy Resources (DERs), such as distributed generators
from renewable energy sources, cogeneration facilities, energy storage systems (including electric
vehicles), and controllable loads (i.e., adopting active demand) [1–3]. To overcome this problem, the
smart grid paradigm is asserted and promoted by extensive use of Information and Communication
Technologies [4–6]. However, the advent of smart distribution grids will not take place by a revolution,
because it would require expensive investments, especially for Low Voltage (LV) networks that actually
present a low level of control and automation. The evolution from the present networks to the future
smart grids will be progressive instead. Then, the main technical challenge is to improve the flexibility
of the existing LV networks with limited investments so as to allow the wide spread of DERs and
enhance the power quality of the grids [7].

In this context, a key issue is to identify strategies for the optimal management and control of the
LV distribution networks in the presence of DERs. For an optimal distribution system operation, the
same strategy adopted at the transmission level could be used, in which a single operator controls
the whole power system by gathering measurements and acting on each electrical node of the grid.
Unfortunately, if such an approach were applied to LV distribution networks, it would be technically
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and economically infeasible because of the need to acquire and process a huge amount of information,
due to the large number of nodes and customers in the grids.

To reduce the number of variables to be monitored and controlled, an alternative approach
consists of modeling each LV distribution system by a cluster of Virtual Microgrids (VMs) and building
communication infrastructures among a few distributed controllers of the VMs and a control center
located at the Medium/Low Voltage (MV/LV) substation. Similarly to a microgrid [8], a VM is
composed of parts of the distribution networks including different types of DERs and their control
systems. However, differently from a microgrid, a VM is not self sustained from an energy point of
view, and it is not equipped with an autonomous centralized management and control system. To
identify VMs, new models of the distribution system are required. These models must be able to
overcome the classical formulation adopted at the transmission level (based on non-linear equations
written for each node of the grid) so as to facilitate the aggregation of portions of network on the
basis of the impact of DERs on specific control actions (i.e., voltage regulation [9,10] and current flow
limitation [11]). Sensitivity analysis can help face such a problem by quantifying the dependency
between nodal voltages and power flows of the grid as a linear function of both load consumptions
and DERs’ absorbtions/injections.

Several methods have been proposed in literature to perform sensitivity analysis. In [9], a
Jacobian-based method has been shown to control the nodal voltages by regulating the reactive powers
injected by distributed generators. Voltage magnitude as well as active and reactive power-loss
sensitivity coefficients for radial distribution networks have been calculated in [11] by using only
a base-case load flow solution. In [12], both the Gauss–Seidel method and Z-bus matrix have been
used to derive voltage and loss sensitivity coefficients as functions of real and reactive power injections.
In [13], voltage sensitivity factors and a linear load flow model for LV distribution system have been
derived by using historical smart meter data. In [14], sensitivities of bus voltage magnitudes to load
changes have been calculated using the adjoint-network method. In [15], a perturb-and-observe
algorithm has been proposed to compensate voltage rises induced by distributed generators and to
test siting and sizing of capacitors. Initial studies on the application of a closed-form solution of the
Dist–Flow equations of an LV distribution system have been shown in [16,17].

This paper, adopting the approach outlined in [16], proposes a sensitivity-based model of an LV
distribution system supplied by an MV/LV substation and composed by several feeders, which is
suitable for the optimal management and control of the grid and, then, for VM definition. Such a
model provides, in a closed form, the variations of the electrical variables characterizing each node of
a feeder (e.g., out-flowing active and reactive powers, nodal voltage) as linear functions of the powers
injected/absorbed by each DER connected to the LV network. The key steps of the proposed model are:
(i) the linearization of the branch flow equations of the electrical components of the distribution system;
(ii) the use of the chain-rule; (iii) the use of the border constraints at both the MV substation busbar and
the end-nodes of the feeders; and (iv) the use of the coupling equations at the LV substation busbar.
The main features of the proposed method are the following: (i) it evaluates the sensitivity coefficients
in a closed form; (ii) it provides an overview of the sensitivity of the network to the variations of each
DER connected to the grid; and (iii) it presents a limited computational burden. The last feature is very
important because of the large number of nodes in LV distribution networks, of the need to repeat the
analysis when the operating conditions of the distribution system change, and of the large dimension
of the optimal management problems that account for the random nature of DERs.

With respect to [16], the paper presents in more details the method derived from the model,
puts it into the frame of the sensitivity analysis, compares it with other methods, and applies it
to DER impact evalutation in view of VM definition. After a brief introduction, in the paper, the
sensitivity-based model of the LV distribution system is recalled and the step-by-step procedure of
the method is presented in Section 2; then, an extensive case study is discussed in Section 3. Firstly,
different sensitivity matrices are evaluated to illustrate how the proposed model provides the response
of the LV distribution system to the DERs’ injections. Then, a comparison of the proposed method with
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both exact load flow solution and a perturb-and-observe method is discussed. Finally, the proposed
method is used to evaluate the impact of the DERs on the nodal voltages of the network so as to
provide a road map to perform voltage regulation. Conclusions and further research developments
are reported in Section 4.

2. Distribution System Modeling

Let us consider the LV distribution system reported in Figure 1: an MV/LV substation supplies
m feeders; the h-th feeder is composed of nh branches and nh + 1 nodes (node 0 is common to all the
feeders being the LV busbar of the substation); along the feeders, uncontrolled loads and/or DERs
can be connected. In balanced operating conditions, the MV/LV supplying system is modeled by
the electric circuit shown in Figure 2. Two electric parameters identify the supplying system, namely
the resistance Rtr of the MV/LV transformer and the equivalent impedance Xeq = Xtr + Xsc, where
Xtr is the transformer reactance and Xsc the short-circuit impedance of the MV node. Three electric
variables characterize the model at the supplying MV node, namely the open-circuit voltage amplitude
VMV of the MV node (assumed to be fixed as the slack node), the in-flowing active power PMV and
the in-flowing reactive power QMV . Analogously, three electric variables characterize the MV/LV
substation at the receiving node 0, namely the voltage amplitude Vtr and the out-flowing active and
reactive powers, Ptr and Qtr, respectively. In a similar way, the j-th branch of a generic feeder of the LV
distribution system is represented by the electric circuit shown in Figure 3. Two electric parameters
identify the branch, namely the resistance Rj and the reactance Xj; three electric variables characterize
the branch at the supplying node j− 1, namely the voltage amplitude Vj−1, the in-flowing active power
Pj−1 and the in-flowing reactive power Qj−1; analogously, the same electric variables characterize the
branch at the receiving node j, namely the voltage Vj, and the out-flowing active and reactive powers,
Pj and Qj, respectively; in addition, other two external variables are taken into account at the receiving
node j, which are the shunt active power PS,j and the shunt reactive power QS,j defined as:

PS,j = PDER,j − PL,j,

QS,j = QDER,j −QL,j,

where PDER,j and QDER,j are, respectively, the active and reactive powers injected by the DER connected
to the j-th node; PL,j and QL,j are, respectively, the active and reactive powers absorbed by the
uncontrolled load connected to the j-th node, which are assumed to be constant. The model of the
LV distribution system, which is useful for the VM definition and which overcomes the limits of
the classical formulation adopted at the transmission level (based on non-linear equations written
for each node of the grid), is presented in the following. In particular, by the linearization of the
branch flow equations associated with the components of the LV distribution system represented in
Figures 2 and 3, and by imposing both border and coupling conditions, a closed form solution of
the linearized DistFlow equations is obtained through the use of the chain rule. Such a closed form
represents the linear model of the distribution system with DERs, and it is expressed in terms of the
variations of the electrical variables of the LV networks (with respect to an initial operating point) as
linear functions of the DER injections. The model is built step by step: firstly, the model of a generic
branch and of a feeder composed of different branches is developed; then, the model of the MV/LV
supplying system is introduced and combined with the models of the feeders, yielding the model of
the whole LV distribution system.
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Figure 1. Low Voltage distribution system with Distributed Energy Resources.

Vtr

R trX eqQM V

PM V

Qtr

Ptr

VM V

Figure 2. Electric equivalent circuit of the Medium/Low Voltage substation.
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Figure 3. Electric equivalent circuit of the j-th branch of a feeder.

2.1. Branch Model

The model of the j-th branch is derived from the following steady-state branch flow equations [18]:

Pj = Pj−1 − Rj (P2
j−1 + Q2

j−1)/V2
j−1 + PS,j,

Qj = Qj−1 − Xj (P2
j−1 + Q2

j−1)/V2
j−1 + QS,j, (1)

V2
j = V2

j−1 − 2
(

Rj Pj−1 + Xj Qj−1
)

+ (R2
j + X2

j ) (P2
j−1 + Q2

j−1)/V2
j−1.

Since they are not linear, they can be linearized around an initial operating point of the distribution
system, characterized by null powers injected by all the DERs connected to the LV distribution system
and a given absorption of all the uncontrolled loads. In the following, the electrical variables evaluated
in the initial operating point are identified by zero superscript.

Let the vector of nodal variables xj be defined as:

xj =
(

Pj Qj V2
j
)T.

The linearization of Equation (1) yields the following branch model:

∆xj = Jj ∆xj−1 +
(
∆PS,j ∆QS,j 0)T, (2)
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∆xj being the variation of the nodal variables xj with respect to their value x0
j in the initial

operating point

∆xj = xj − x0
j =

(
∆Pj ∆Qj ∆V2

j
)T,

with Jj being the Jacobian matrix related to (1) evaluated in the initial operating point and ∆PS,j,
∆QS,j the injections of the active and reactive powers by the DERs connected at the receiving node.

Equation (2) is the branch model: it expresses the vector ∆xj of the variation of the electrical
variables at the receiving node xj with respect to the initial operating point x0

j as a function of

• the vector ∆xj−1 of the variation of the electrical variables at the supplying node xj−1, with respect
to the initial operating point x0

j−1, through the Jacobian matrix Jj; and
• the vector (∆PS,j ∆QS,j 0)T of the DERs active and reactive power injections at the receiving node,

which are assumed to be assigned enforcements.

2.2. Feeder Model

The electric equivalent circuit of the h-th feeder of the LV distribution system is composed of a
series of nh branches (Figure 4). Then, the model of the feeder is composed of nh equations of type (2):

∆xj = Jj ∆xj−1 +
(
∆PS,j ∆QS,j 0

)T, (3)

with j = 1, ..., nh.

V0

P0, Q0

V1

P1, Q1
R1 X1

PS,1

QS,1

V2

P2, Q2
R2 X2

PS,2

QS,2

. . .
Vnh−1

Pnh−1, Qnh−1

PS,nh−1
QS,nh−1

Vnh

Pnh , Qnh
Rnh Xnh

PS,nh

QS,nh

Figure 4. Electric equivalent circuit of the h-th feeder.

Applying the chain rule to Equation (3),

∆xj = Mj∆x0 +
j

∑
k=1

Nj,k
(
∆PS,k ∆QS,k 0)T (4)

is induced where

Mj =
j−1

∏
`=0

Jj−` j = 1, . . . , nh, (5)

Nj,k =
j−k−1

∏
`=0

Jj−` j = 1, . . . , nh k = 1, . . . , j− 1, (6)

and Nj,j is equal to the identity matrix I. Assuming Nj,k = 0 for k > j, Equation (4) can be re-written as

∆xj = Mj∆x0 +
nh

∑
k=1

Nj,k

 ∆PS,k
∆QS,k

0

 , (7)

with j = 1, . . . , nh.
Equation (7) is a set of nh equations in nh + 1 variables, which are ∆xj and ∆x0. To obtain a defined

problem, three additional conditions must be assigned. They can be derived from the behavior of the
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feeder at its borders. In particular, the voltage amplitude at the head of the feeder is imposed by the
MV/LV supplying substation and the active and reactive powers flowing out of the end-node of the
feeder are always null. The border conditions can be expressed in terms of variations of the electric
nodal variables as

∆V2
0 = ∆Ṽ2

0 , ∆Pnh = 0, ∆Qnh = 0, (8)

where ∆Ṽ2
0 is the variation of the squared voltage amplitude imposed at the LV busbar by the MV/LV

supplying substation. By substituting Equation (8) into Equation (7) for j = nh, 0
0

∆V2
nh

 = Mnh

∆P0

∆Q0

∆Ṽ2
0

+
nh

∑
k=1

Nnh ,k

 ∆PS,k
∆QS,k

0

 (9)

is obtained.
The subset composed of the first two rows in Equation (9) can be solved in the two unknowns,

∆P0 and ∆Q0, yielding: (
∆P0

∆Q0

)
=

nh

∑
k=1

Ak

(
∆PS,k
∆QS,k

)
+ a ∆Ṽ2

0 , (10)

where,
Ak = −M−1

nh
Nnh ,k, a = −M−1

nh
mnh , (11)

with Mnh and Nnh ,k the (2× 2) leading principal minors of Mnh and Nnh ,k, respectively, and with
mnh the (2× 1) column vector composed of the first two rows in the third column of Mnh .

Combining Equation (10) with the condition on ∆V2
0 in Equation (8), the variable ∆x0 can be

written in the form:

∆x0=

∆P0

∆Q0

∆V2
0

 =
nh

∑
k=1

Ak

∆PS,k
∆QS,k

0

+ a ∆Ṽ2
0 , (12)

where each Ak is a (3× 3) matrix obtained by edging Ak with a third row and column of zero elements,
and a is a (3× 1) vector obtained by adding a third row with a unitary element to a.

By substituting ∆x0 given by Equation (12) into Equation (7) yields the model of the feeder:

∆xj =
nh

∑
k=1

Bj,k

∆PS,k
∆QS,k

0

+ bj ∆Ṽ2
0 , (13)

with j = 1, . . . , nh, where:
Bj,k = MjAk + Nj,k, bj = Mj a, (14)

which are, respectively, (3× 3) matrices and (3× 1) vectors of sensitivity with known coefficients.
In Equation (13), the vectors ∆xj of the variation of the electric variables at the receiving node of

each branch belonging to the feeder are expressed as a function of:

• The vectors (∆PS,k ∆QS,k 0)T of the DERs active and reactive power injections in all the nodes of
the feeder through the matrices Bj,k; and

• The variation ∆Ṽ2
0 of the squared voltage amplitude at the LV busbar of the supplying substation

through the vectors bj.



Energies 2016, 9, 801 7 of 16

To specify the model Equations (12) and (13) for each one of the m feeders, a superscript
referring to the feeder number is added to the variables, matrices and vectors. Then, the model
Equations (12) and (13) for the h-th feeders becomes:

∆xh
0 =

nh

∑
k=1

Ah
k

∆Ph
S,k

∆Qh
S,k

0

+ ah ∆Ṽ2
0 , (15)

∆xh
j =

nh

∑
k=1

Bh
j,k

∆Ph
S,k

∆Qh
S,k

0

+ bh
j ∆Ṽ2

0 , (16)

with j = 1, . . . , nh and h = 1, ..., m.

2.3. Medium/Low Voltage Supplying System

Similarly to the branch model Equation (2), the MV/LV supplying system, can be modeled as:

∆xMV = Jsub ∆xtr, (17)

where:

∆xMV = (∆PMV ∆QMV 0)T,

∆xtr =
(
∆Ptr ∆Qtr ∆V2

tr
)T,

where ∆V2
MV = 0 and Jsub is the Jacobian matrix of the linearized branch flow equations of the electric

circuit in Figure 2.

2.4. Low Voltage Distribution System Model

To obtain the model of the whole LV distribution system in Figure 1, it is necessary to combine
the model Equation of the MV/LV supplying system (17) with the model Equations of the feeders (15)
and (16).

As evident from Figure 1, three coupling equations can be written:

∆V2
tr = ∆Ṽ2

0 ; (18)

∆Ptr =
m

∑
i=1

∆Pi
0 ∆Qtr =

m

∑
i=1

∆Qi
0. (19)

By substituting Equations (18) and (19) into (17),∆PMV
∆QMV

0

 = Jsub

∑m
i=1 ∆Pi

0
∑m

i=1 ∆Qi
0

∆Ṽ2
0

 (20)

is obtained.
Substituting the expression (10) generalized for m feeders, the third equation in (20) is written as:

0 = Jsub
3,3 ∆Ṽ2

0+
(

Jsub
3,1 Jsub

3,2

) m

∑
i=1

(
ni

∑
k=1

Ai
k

(
∆Pi

S,k
∆Qi

S,k

)
+ ai∆Ṽ2

0

)
, (21)
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with (Jsub
3,1 , Jsub

3,2 , Jsub
3,3 ) being the third row of Jsub. By solving Equation (21) in the variable ∆Ṽ2

0 ,

∆Ṽ2
0 = −αT

m

∑
i=1

ni

∑
k=1

Ai
k

(
∆Pi

S,k
∆Qi

S,k

)
(22)

is obtained, where α is a (2× 1) vector equal to:

α =

((
Jsub
3,1 Jsub

3,2

) m

∑
i=1

ai + Jsub
3,3

)−1(
Jsub
3,1 Jsub

3,2

)T
. (23)

By substituting Equation (22) into (16), the model of the whole LV distribution system is obtained:

∆xh
j =

nh

∑
k=1

Bh
j,k

∆Ph
S,k

∆Qh
S,k

0

+ bh
j

(
−αT

m

∑
i=1

ni

∑
k=1

Ai
k

(
∆Pi

S,k
∆Qi

S,k

))
, (24)

with j = 1, . . . , nh and h = 1, ..., m.

By substituting into Equation (24) the matrix Ai
k from Equation (15) in place of Ai

k and adding
a third row with a null element to the vector (∆Pi

S,k ∆Qi
S,k)

T and to the vector α which becomes α,
the model of the LV distribution system with DERs becomes:

∆xh
j =

nh

∑
k=1

Uh
j,k

∆Ph
S,k

∆Qh
S,k

0

+
m

∑
i=1,i 6=h

ni

∑
k=1

Th,i
j,k

∆Pi
S,k

∆Qi
S,k

0

 , (25)

for j = 1, . . . , nh and h = 1, ..., m, where:

Uh
j,k = Bh

j,k − bh
j αTAh

k Th,i
j,k = −bh

j αTAi
k, (26)

which are (3× 3) sensitivity matrices with known coefficients.
In Equation (25), the vectors ∆xh

j of the variations of the electrical variables at the receiving node
of the j-th branch in the h-th feeder are expressed as functions of:

• The vectors (∆Ph
S,k ∆Qh

S,k 0)T of the DERs active and reactive power injections in all the nodes of
the h-th feeder through the matrices Uh

j,k; and
• The vectors (∆Pi

S,k ∆Qi
S,k 0)T of the DERs active and reactive power injections in all the nodes of

the other m− 1 feeders through the matrices Th,i
j,k .

The second term in Equation (25) is due to the coupling among the feeders at the LV busbar of the
MV/LV substation through the nodal voltage Vtr; a variation of the DER injections in any of the other
m− 1 feeders causes a variation of voltage at the supplying substation, and, in turn, of the electrical
variables of the h-th feeder.

In summary, to apply the proposed method, matrices Uh
j,k and Th,i

j,k in Equation (25) can be
evaluated by the following procedure:

1. Calculate the Jacobian matrices Jsub for the MV/LV supplying system and Jh
j for each j-th

branch of each h-th feeder, from the analytic derivatives of Equation (1) evaluated in the initial
operating point;

2. Calculate the matrices Mh
j and Nh

j,k for each j-th node of each h-th feeder, according to
Equations (5) and (6);

3. Calculate the matrices Ah
k and the vectors ah through Ah

k , ah, which are provided by Equation (11),
for each h-th feeder;
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4. Calculate the matrices Bh
j,k and the vectors bh

j for each j-th node of each h-th feeder according to
Equation (14);

5. Calculate the vector α through α which is provided by Equation (23);

6. Calculate the matrices Uh
j,k and Th,i

j,k according to Equation (26), for each j-th node of each
h-th feeder.

Finally, by substituting Equation (22) into (15) the variable ∆xh
0 can be expressed in the

same form as Equation (25); then, the MV/LV substation variables can be obtained by using
Equations (19) and (20).

3. Case Study

Reference is made to the 0.4 kV distribution system in Figure 5, supplied by an MV/LV substation
with a 20/0.4 kV transformer of 0.25 MVA rated power. The 20 kV distribution system is represented
by its Thevenin equivalent as seen from the MV/LV substation, assuming a 1000 MVA short-circuit
power and an open-circuit voltage VMV = 1.0 per unit (p.u.). Concerning the MV/LV transformer, it
is assumed that Xtr = 0.06 p.u. and Rtr = 0.005 p.u.. Two 0.4 kV radial feeders are connected to the
LV substation busbar (m = 2). Both of the feeders are composed of n1 = n2 = 7 branches, which are
characterized by the same impedances, reported in Table 1. In the same Table 1, the active and reactive
powers absorbed by the uncontrolled loads are also reported for each feeder. In the remainder, all
p.u. quantities are referred to a 25 kVA power basis. Four DERs are connected to the LV distribution
network, which can inject both active and reactive powers: DER1 and DER2 are connected to nodes 4
and 6 of feeder 1, respectively; DER3 and DER4 are connected to nodes 2 and 5 of feeder 2.

MV/LV

0

MV

DER1 DER2

DER3 DER4

1 2 3 4 5 6 7

1 2 3 4 5 6 7

feeder 1

feeder 2

Figure 5. Case study distribution system.

Table 1. Electrical parameters and loads for the branches of both the feeders. p.u.: per unit.

Both Feeders Feeder 1 Feeder 2From Node To Node R (p.u.) X (p.u.) PL (p.u.) QL (p.u.) PL (p.u.) QL (p.u.)

0 1 0.0105 0.0025 0.0832 0.0416 0.0928 0.0464
1 2 0.0060 0.0014 0.8400 0.3780 0.2756 0.1376
2 3 0.0114 0.0027 0.0600 0.0300 0.0872 0.0436
3 4 0.0080 0.0011 0.0 0.0 0.0872 0.0436
4 5 0.0095 0.0014 0.1776 0.0800 0.2756 0.1376
5 6 0.0052 0.0007 0.0600 0.0300 0.2220 0.1112
6 7 0.0040 0.0006 0.1200 0.0600 0.0572 0.0284

The case study is organized in four parts. Firstly, an application of the proposed method is
explained step by step. Secondly, a model validation is performed by comparing the results given by
the proposed model with the exact load flow solutions. Thirdly, the results of the proposed method
are compared with a perturb-and-observe method in terms of both computational time and accuracy.
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Finally, an application of the proposed model is presented to quantify the impact of the active and
reactive powers injected by DERs on nodal voltages.

3.1. Model Application

A load flow solution is evaluated by MATPOWER [19] (version 5.1, Power System Engineering
Research Center (PSERC), Arizona State University, Tempe, AZ, USA) considering the distribution
system in the initial operating condition in which all the power injections by the DERs are null. Starting
from this initial point, the proposed method is applied and the sensitivity matrices Uh

j,k and Th,i
j,k in

Equation (25) are evaluated. Such sensitivity matrices allow for evaluating the impact of any injection
by DERs on out-flowing powers and on voltage amplitudes of each node in the distribution system, as
explained in the following for two examples.

Firstly, let the connection of only two DERs be considered, namely DER1 at node 4 of feeder 1
and DER4 at node 5 of feeder 2 (Figure 5). Referring to the shunt active and reactive powers at the
DERs connection nodes, ∆P1

S,4 and ∆Q1
S,4, respectively, indicate the active and reactive powers injected

by DER1, whereas ∆P2
S,5 and ∆Q2

S,5, respectively, indicate the active and reactive powers injected by
DER4. The impact of the two DERs on the electrical variables of the j-th node belonging to feeder 1 is
derived from Equation (25):

∆x1
j = U1

j,4

∆P1
S,4

∆Q1
S,4

0

+ T1,2
j,5

∆P2
S,5

∆Q2
S,5

0

 . (27)

Matrix U1
j,4 represents the linear dependence of the variations of the electrical variables of the

nodes of feeder 1 on the power injection by DER1, which is installed along the same feeder 1,
whereas matrix T1,2

j,5 represents the linear dependence of the variations of the electrical variables
of the nodes of feeder 1 on the power injection by DER4, which is installed along the other feeder 2.
This latter dependence is due to the coupling between the feeders introduced by the MV/LV supplying
system. Considering, for example, the third node of feeder 1 (j = 3), the variations of the electrical
variables are evaluated by: ∆P 1

3
∆Q 1

3

∆V2 1
3

=
 −1.0065 −0.0030 0
−9.0 · 10−4 −1.0004 0

0.0589 0.0262 0


∆P1

S,4
∆Q1

S,4
0

+
−5.0 · 10−6 −4.5 · 10−5 0
−7.8 · 10−7 −6.4 · 10−6 0

0.0015 0.0123 0


∆P2

S,5
∆Q2

S,5
0

 .

As expected, the values of the coefficients of T1,2
3,5 show that DER4 has a negligible impact on the

out-flowing powers but a significant impact on the voltage amplitude of node 3.
Similar considerations about the sensitivity matrices can be made when considering the variations

of the electrical variables of any generic j-th node belonging to feeder 2 caused by the injections of the
two DERs:

∆x2
j = U2

j,5

∆P2
S,5

∆Q2
S,5

0

+ T2,1
j,4

∆P1
S,4

∆Q1
S,4

0

 . (28)

Considering, for example, the third node of feeder 2 (j = 3), the variations of the electrical
variables are evaluated by: ∆P 2

3
∆Q 2

3

∆V2 2
3

=
−1.0241 −0.0119 0
−0.0034 −1.0017 0

0.0603 0.0269 0


∆P2

S,5
∆Q2

S,5
0

+
−1.5 · 10−5 −1.3 · 10−4 0
−2.1 · 10−6 −1.8 · 10−5 0

0.0014 0.0122 0


∆P1

S,4
∆Q1

S,4
0

 .
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Secondly, let the connection of all four DERs be considered (Figure 5). Similarly to Equation (27),
the impact of the four DERs on the electrical variables of the j-th node belonging to feeder 1 is derived
from Equation (25):

∆x1
j = U1

j,4

∆P1
S,4

∆Q1
S,4

0

+ U1
j,6

∆P1
S,6

∆Q1
S,6

0

+ T1,2
j,2

∆P2
S,2

∆Q2
S,2

0

+ T1,2
j,5

∆P2
S,5

∆Q2
S,5

0

 . (29)

Considering, for example, the third node of feeder 1 (j = 3), the variations of the electrical
variables are evaluated by: ∆P 1

3
∆Q 1

3

∆V2 1
3

 =

 −1.0065 −0.0030 0
−9.0 · 10−4 −1.0004 0

0.0589 0.0262 0


∆P1

S,4
∆Q1

S,4
0

+

−1.0162 −0.0077 0
−0.0023 −1.0011 0

0.05962 0.0265 0


∆P1

S,6
∆Q1

S,6
0


+

−5.0 · 10−6 −4.5 · 10−6 0
−7.0 · 10−7 −6.4 · 10−6 0

0.0013 0.0122 0


∆P2

S,2
∆Q2

S,2
0

+

−5.5 · 10−6 −4.5 · 10−5 0
−7.8 · 10−7 −6.4 · 10−6 0

0.0015 0.0123 0


∆P2

S,5
∆Q2

S,5
0

 .

3.2. Model Validation

Starting from the initial operating condition in which all the power injections by the DERs are
null, the proposed method is applied and the sensitivity matrices Uh

j,k and Th,i
j,k in Equation (25) are

evaluated. Then, new operating conditions are considered, characterized by active PDER and reactive
QDER power injections by the DERs. In particular, two different conditions are considered:

• Case A: PDER,g = 10 kW and QDER,g = 5 kVAr for g = 1, . . . , 4,
• Case B: PDER,g = 20 kW and QDER,g = 10 kVAr for g = 1, . . . , 4.

In both of the cases, the variations of nodal voltages and active and reactive power flows along
the two feeders are evaluated by Equation (25) and added to the corresponding initial values, yielding
the final values. These latter ones are compared with the results obtained by solving the load flow
using MATPOWER in both Cases A and B. The results are compared in Figure 6 for feeder 1 (a) and
2 (b). In each figure, the first graph reports the nodal voltage amplitudes, and the second and the
third graphs, respectively, the branch active and reactive power flows along the considered feeder.
In each graph, the results obtained by the proposed method and by the load-flow solution are plotted
for Cases A and B.

Considering feeder 1 (Figure 6a), in Case A, the evaluated voltage profile presents a decreasing
trend from the substation LV busbar until node 2, and, then, it inverts its trend until node 6, in which,
again, the voltage presents a slight decrease towards the end of the feeder. The reason for such a
voltage profile is to be found in the power flows reported in the other graphs, which present two
inversions, one between nodes 1 and 2, and the other one between nodes 5 and 6. In Case B, the
voltage profile is strictly increasing along feeder 1 except for the last branch, because of the negative
values of active and reactive powers, that is power flows toward the supplying substation. It is
worth noting that the powers flowing out at the last nodes of the feeders are always null because the
proposed model imposes the border constraints (8). In both of the cases and in all of the graphs, it
is apparent that the results obtained by the proposed method accurately follow the same trend as
the ones obtained by the load-flow solution. Similar considerations can be made analyzing feeder 2
(Figure 6b). Since loading conditions and DER allocations differ with respect to feeder 1, different
voltage profiles and power flows are obtained. In Case A, power flows always remain positive, and,
consequently, the voltage profile is strictly decreasing along the feeder. In Case B, power flows are
negative from the LV substation until node 4 and then positive from node 5 until the end of the feeder;
consequently, the voltage profile is increasing until node 5 and then slightly decreasing. In addition,
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for this feeder, the results obtained by the proposed method present the same trends as the ones
obtained by load-flow solution.

To quantify the accuracy of the results with respect to the ones obtained by load-flow solution, the
maximum relative errors on the variations of the nodal voltage amplitudes and on the branch active
and reactive power flows along each feeder are reported in Table 2 for Cases A and B. The relative
errors are always limited to between 1 and 9 %. The largest errors are obtained in Case B and feeder 1,
which actually represents an extreme operating condition as clearly evidenced by the voltage profile in
Figure 6.
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(a) (b)
Figure 6. Voltage amplitudes and power flows along feeder 1 (a) and feeder 2 (b) evaluated by the
proposed model and by load flow solution: Case A—proposed model (red) and load-flow (blue);
Case B—proposed model (green) and load-flow (black).

Table 2. Maximum relative errors.

Maximum Errors (%) on the Variations of
Case Feeder Number Voltage Amplitudes Active Power Flows Reactive Power Flows

1 3.3 4.4 1.9A 2 3.1 2.8 1.3

1 6.5 8.5 3.6B 2 5.5 5.4 2.4

3.3. Comparison with a Perturb-and-Observe Method

The proposed method is compared with an alternative method that is used for sensitivity analysis,
namely a perturb-and-observe method of the type in [15]. In this approach, the values of the system
variables in an assigned initial operating condition of the distribution system are evaluated by solving
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a load flow. Then, a small DER injection, firstly of active power and secondly of reactive power, for one
node at a time, is added to the initial operating condition and a new load-flow is solved. Finally, the
sensitivity coefficients of the system variables with respect to each DER injection are evaluated as
the ratio between the variations of the system variables with respect to their corresponding values
in the initial operating condition and the amplitude of the considered DER injection. In particular,
for the considered distribution system, the same initial operating condition as the one adopted for
the proposed method is assumed, in which all the power injections by the DERs are null. Then, small
injections of active power (1 kW) and of reactive power (1 kVAr) are imposed on one node at a time,
for all the 14 nodes along the feeders: the variations of the system variables and the related sensitivity
coefficients are obtained by 28 load-flow solutions.

Comparing the proposed method with the perturb-and-observe one in terms of computation
times of the sensitivity coefficients, both methods require the solution of a load-flow in the same initial
operating condition. The computation time of this load-flow solution is assumed as reference time
unit and indicated as LF. The proposed method evaluates the coefficient matrices in Equation (25)
using the closed-form expressions derived in Section 2 and the related computation time is equal
to 0.20 LF. On the other hand, the perturb-and-observe method evaluates the sensitivity coefficients
by 28 load-flow solutions with a computational time equal to 17.6 LF (it is less than 28 LF because
of computational efficiency improvements that can be introduced). In conclusion, even for a small
network as the considered one, the proposed method requires a computational time smaller of two
orders of magnitude than the one required by a perturb-and-observe method.

To compare the proposed method with the perturb-and-observe one in terms of accuracy of the
results, Case B defined in Section 3.2 is considered. Firstly, the voltage variations due to the DER
injections are evaluated by using, respectively, the sensitivity coefficients for the perturb-and-observe
method and Equation (25) for the proposed method. Then, the voltage variations are added to the
corresponding values of the nodal voltages in the initial operating condition, yielding the new voltage
amplitudes that account for the DER injections. In Figure 7, such voltage amplitudes evaluated by
the proposed method, and by the perturb-and-observe method, are reported for both feeders and
compared with the exact values provided by a load-flow solution in Case B. From the comparison, it is
apparent that the results provided by the proposed method are more accurate than the ones obtained
by the perturb-and-observe method. The main reason is that the proposed method uses the analytical
derivative functions rather than the numerical derivatives used by the perturb-and-observe method.

0 1 2 3 4 5 6 7

1
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1.02

1.03

1.04

1.05

0 1 2 3 4 5 6 7

1

1.005

1.01

1.015

1.02

1.025

nodenode

p.u.p.u.

(a) (b)
Figure 7. Voltage amplitudes in the case B for feeder 1 (a) and feeder 2 (b) evaluated by the exact
load-flow (black); the proposed method (blue) and the perturb-and-observe method (red).

3.4. Distributed Energy Resources Impact Evaluation

In the following, an example of the application of the proposed method to the evaluation of the
impact of DERs on the nodal voltages of the distribution system is described to give evidence of the
effectiveness of the method. The injection by DER2 connected to node 6 of feeder 1 and by DER3

connected to node 2 of feeder 2 are considered. The advantage of the proposed method is its linearity
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that allows for separately analyzing the impact in terms of nodal voltage variations of active and
reactive power injection by each DER, to separately analyze the impact of the injections PDER2 , QDER2 ,
PDER3 , QDER3 . Then, the impact of any combination of these injections can be obtained by simply
adding the voltage variations that each considered injection produces at each node, provided that all
voltage variation is referred to the same initial operating condition, which is always assumed to be the
one in which all the power injections by DERs are null.

Referring to active power injection, Figure 8a reports the variations of the nodal voltage
amplitudes along both feeders caused by imposing PDER2 = 10 kW and evaluated by the proposed
method. The injection has a different impact on the two feeders. In particular, on feeder 1, to which
DER2 is connected, the power injection causes a significant variation of the nodal voltage profile, which
increases starting from the LV busbar until node 6, and then remains quite constant until the end of the
feeder. Concerning feeder 2, the power injection along the other feeder has a practically null effect on
the nodal voltage profile. In conclusion, the active power injection has a large impact on the feeder to
which the DER is connected; on the contrary, it has a negligible impact on other feeders because of its
negligible impact on the voltage drop along the MV/LV transformer.

Referring to reactive power injection, Figure 8b reports the variations of the nodal voltage
amplitudes along both feeders caused by imposing QDER2 = 10 kVAr and evaluated by the proposed
method. Concerning feeder 1, the reactive power injection causes a significant variation of the nodal
voltage profile, which increases from the LV busbar until node 6, and then remains quite constant until
the end of the feeder. Concerning feeder 2, there is a significant variation on all the nodal voltages,
but the shape of the voltage profile does not change, since all the nodes are subject to approximately
the same voltage variation. In conclusion, the reactive power injection has a significant impact on the
feeder to which the DER is connected, but also on other feeders, because it causes a reduction of the
voltage drop along the MV/LV transformer.

Comparing the graphs (a) and (b) in Figure 8, it is apparent that PDER2 has a higher impact on
the nodal voltages of feeder 1 with respect to QDER2 because the branch resistances Rj are larger than
the branch reactances Xj (Table 1); on the contrary, QDER2 has a higher impact on the nodal voltages
of feeder 2 with respect to PDER2 because the substation reactance Xeq is larger than the substation
resistance Rtr.

Similar considerations can be made for Figure 9, which reports the voltage variations caused
by imposing PDER3 = 10 kW (a) and QDER3 = 10 kVAr (b). In this case, the major impact is on the
voltages of feeder 2, where DER3 is connected.

Comparing Figures 8 and 9, it is apparent that the impact on the voltage profile of DER2 on
feeder 1 is higher than the impact of DER3 on feeder 2 because the former DER2 is connected near the
end of feeder 1, whereas the latter DER3 is connected near the beginning of feeder 2. On the contrary,
the impacts of DER2 on feeder 2 and of DER3 on feeder 1 are very similar, which is negligible for active
power injections and about 0.0024 p.u. for reactive power injections. Then, the impact of a DER on the
voltage profile of a feeder, other than the one at which the DER itself is connected, does not depend on
the position of the connection node.

Using the voltage variations that quantify the impact of each DER injection, it is possible to:

• Identify the VMs with respect to voltage regulation problems: e.g., from the graphs (a) in
Figures 8 and 9, it is apparent that the two feeders belong to two different VMs as far as active
power injections are considered;

• Quantify the effectiveness of each DER on the voltage regulation in a VM: e.g., from the
comparison of Figures 8 and 9, it is apparent that DER2 has a major effect on the voltage regulation
of a VM along feeder 1 with respect to DER3;

• Quantify the interaction between the voltage regulation devices that are installed in a VM [17]:
e.g., if a VM is defined along feeder 1, the voltage variation at node 4 caused by DER2 and
the voltage variation at node 6 caused by DER1 represent the interaction between the voltage
regulators acting on DER1 and DER2.
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Figure 8. Voltage variations in the case of PDER2 = 10 kW (a) and of QDER2 = 10 kVAr (b) for feeder 1
(red) and feeder 2 (blue).
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Figure 9. Voltage variations in the case of PDER3 = 10 kW (a) and of QDER3 = 10 kVAr (b) for feeder 1
(red) and feeder 2 (blue).

4. Conclusions

A new model of LV distribution systems with DERs has been proposed, which is suitable for
aggregating an existing distribution system into a cluster of virtual microgrids. The model is based on
a linearized formulation of the branch flow equations and of the MV/LV supplying system. Then, the
model is solved by imposing the border constraints at the MV busbar of the substation and at the
end-nodes of the feeders and the coupling equations at LV substation busbar. The resulting closed
form solution expresses the variations of the electrical variables of the LV distribution network as linear
functions of the DERs injections. A numerical case study has evidenced the satisfactory accuracy of the
results obtained by the proposed method with respect to the exact load flow solution. A comparison of
the proposed method with a perturb-and-observe method is discussed with reference to computation
time and accuracy of the results, thus giving evidence of the better performance of the proposed
method. Eventually, an application to the evaluation of the impact of DERs on the voltage regulation
problem of an LV distribution system has been presented, quantifying the sensitivity of the nodal
voltages to the active and reactive power injections. Future work will extend the model to account for
more complex network topologies and for unbalanced operating condition.
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