Supplemental Information

Experimental Section:

Characterizations

XRD measurements were carried out using an automated Rigaku X-ray diffractometer with monochromatic Cu K α radiation. XPS measurements were performed at room temperature utilizing a Kratos AXIS Ultra Imaging XPS Spectrometer using a monochromated Al K α X-ray source operated at 150 W. The area of analysis was ~700 µm × 300 µm. Survey spectra and high resolution elemental region spectra were acquired using analyzer pass energies of 160 and 20 eV respectively. FTIR spectra was obtained using a Perkin-Elmer Spectrum One Instrument in conjunction with a Golden Gate ATP setup utilizing a spectral resolution of 2 cm⁻¹. Micro-FTIR spectra of pre/post decomposition samples were recorded against pure samples in the range of 4000 to 600 cm⁻¹ using a Nicolet iN10 MX FTIR Microscope.

Solid-state ¹¹B and ²⁷Al MAS NMR spectra were obtained on a Varian NMR spectrometer (400 MHz). The experiments were performed at ambient temperatures using air-tight end-capped zirconia rotors, which were packed with the sample in the glovebox and spun at 12–15 kHz. The spectral frequencies were 160.5 and 130.3 MHz for the ¹¹B and ²⁷Al nuclei, respectively. The ²⁷Al NMR chemical shift scale (ppm) was referenced externally with $[Al(H_2O)_6]^{3+}$ in aqueous solution to 0 ppm while ¹¹B NMR were referenced to 0 ppm with BF₃·OEt₂.

TPD measurements were performed on a Quantachrome Autosorb IQ Cor100 using a heating rate of 5 °C min⁻¹ and a carrier gas of argon at a flow rate of 60 mL·min⁻¹. Isothermal desorption/absorption and quantification of hydrogen evolution were obtained with a Hy-Energy PCT Pro-2000 instrument. Both MS signals were recorded using a mass spectrometer PrismaPlus PFEIFFER QME220.

Elemental analysis of carbon, hydrogen, and nitrogen were performed using an Elementar Vario MICRO CUBE analyzer. Elemental analysis of aluminum and boron were performed using a Leeman PROFILE SPEC Inductively Coupled Plasma-Atomic Emission Spectrometer.

Figure S1. FTIR spectrum of as-prepared Al(NH₂BH₃)₃·3NH₃.

Figure S2. Photograph of pressed shaped Al(NH₂BH₃)₃·3NH₃ powder after exposure to dry air for 3 days.

Molecule	Experimental	Theory [1,2] Vibrational modes		
	426	439	Al-N stretching	
NH ₃ /Al(NH ₃) ₆ ³⁺	1014, 1620	1027, 1620	H-N scissoring	
	3319	3421	H-N symmetric stretching	
	-	3540	H-N antisymmetric stretching	
AlAB/Al(NH2BH3)6 ³⁻	461		H antisymmetric rocking with Al-N	
		-	stretching/Al-N stretching	
	726, 780, 798		antisymmetric H-N,	
		-	H-B deformation/H wagging	
	875	861	N-B stretching	
	1066, 1112	987–1117	H wagging	
	1165, 1248, 1380	1124–1211, 1380	H-B scissoring	
	1555	1550	H-N scissoring	
	2116	-	-	
	2200, 2283	2178-2186	H-B symmetric stretching	
	2341, 2372	2225-2309	H-B antisymmetric stretching	
	3250	3335-3342	H-N symmetric stretching	
	-	3412-3415	H-N antisymmetric stretching	

Fable S1. Experimentally	y measured vibrational	modes of as-pre	epared Al(NH ₂ BH	3)3·3NH3 (cm ⁻	¹). ^{[a][b]}
---------------------------------	------------------------	-----------------	------------------------------	---------------------------	-----------------------------------

^[a] "-" indicates that no relevant data are available; ^[b] Part of the theory data are based on DFT studies of LiAB and AlH₃NH₃.

Figure S3. The B 1s XPS results of Al(NH₂BH₃)₃·3NH₃ before (**a**) and after thermal decomposition in an open system (**b**)/in a closed system (**c**). The experiment data are in black, while the fitted ones are in red.

Figure S4. Micro-FTIR spectra: (a) $Al(NH_2BH_3)_3 \cdot 3NH_3$, (b) $AlN_3B_3H_6$, (c) $AlN_6B_3H_{6.5}^*$. AlN₃B₃H₆ (open system) and $AlN_6B_3H_{6.5}^*$ (closed system) are generated from $Al(NH_2BH_3)_3 \cdot 3NH_3$ decomposition.

Molecule	Experimental	Vibrational modes		
	706, 893	Al-N stretching/AlN [3–5]		
	1108	H wagging		
	1170, 1207	H-B scissoring		
AlN ₃ B ₃ H ₆	1390, 1544	N-B stretching/h-BN [6,7]		
	2283	H-B symmetric stretching		
	2340, 2373	H-B antisymmetric stretching		
	2877, 2929, 2969	H-N or H-O deformation		
	748, 858	Al-N stretching/AlN [3-5]		
AINDII *	1068, 1114	H wagging		
$AIIN_6D_3\Pi_{6.5}$	1367, 1627	N-B stretching/h-BN [6,7]		
	2868, 2931, 2979	H-N or H-O deformation		

Table S2. Experimentally measured vibrational modes of AlN₃B₃H₆ and AlN₆B₃H_{6.5}* (cm⁻¹).

Figure S5. Structural representation borazine-derivated AlN₃B₃H₆.

Figure S6. (a) ¹¹B CPMAS NMR spectra and (b) ²⁷Al CPMAS NMR spectra of as-prepared (black) Al(NH₂BH₃)₃·3NH₃ and after desorption at 105 °C (red) in a closed vessel.

Sample	Al	Ν	В	Н	С
Al(NH ₂ BH ₃) ₃ ·3NH ₃	15.16	44.74	18.45	13.51	_
AlAB 3NH ₃ decomposition open system	20.19	37.54	23.65	6.28	0.16
AlAB·3NH ₃ decomposition closed system	15.83	48.18	18.36	3.83	0.13

Table S3. Elemental analysis of Al(NH₂BH₃)₃·3NH₃ before and after thermal decomposition in an open system/in a closed system (%).

References

- 1. Lee, S.M.; Kang, X.D.; Wang, P.; Cheng, H.M.; Lee, Y.H. A comparative study of the structural, electronic, and vibrational properties of NH₃BH₃ and LiNH₂BH₃: Theory and experiment. *ChemPhysChem* **2009**, *10*, 1825–1833.
- 2. Leboeuf, M.; Russo, N.; Salahub, D.R.; Toscano, M. A density functional study of borane and alane monoammoniate (BH₃NH₃,AlH₃NH₃). *J. Chem. Phys.* **1995**, *103*, 7408–7413.
- 3. Danh, N.Q.; Monz, K.H.; Pulker, H.K. Reactive low voltage ion plating of aluminium nitride films and their characteristics. *Thin Solid Films* **1995**, *257*, 116–124.
- Ying, J.Y. Processing of Nanocrystalline Nitrides and Oxide Composites. Available online: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA369525 (accessed on 6 July 2015).
- 5. Jiang, N.; Xu, S.; Ostrikov, K.N.; Chai, J.W.; Li, Y.N.; Ling, K.M.; Lee, S. Synthesis and structural properties of Al-C-N-O composite thin films. *Thin Solid Films* **2001**, *385*, 55–60.
- 6. Geick, R.; Perry, C.H.; Ruppercht, G. Normal modes in hexagonal boron nitride. *Phys. Rev.* **1966**, *146*, 543–547.
- 7. Ohba, N.; Miwa, K.; Nagasako, N.; Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. *Phys. Rev. B* **2001**, *63*, 115207.