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Abstract: Accurate state of charge (SoC) estimation of batteries plays an important role in 

promoting the commercialization of electric vehicles. The main work to be done in 

accurately determining battery SoC can be summarized in three parts. (1) In view of the 

model-based SoC estimation flow diagram, the n-order resistance-capacitance (RC) battery 

model is proposed and expected to accurately simulate the battery’s major time-variable, 

nonlinear characteristics. Then, the mathematical equations for model parameter 

identification and SoC estimation of this model are constructed. (2) The Akaike 

information criterion is used to determine an optimal tradeoff between battery model 

complexity and prediction precision for the n-order RC battery model. Results from a 

comparative analysis show that the first-order RC battery model is thought to be the best 

based on the Akaike information criterion (AIC) values. (3) The real-time joint estimator 

for the model parameter and SoC is constructed, and the application based on two battery 

types indicates that the proposed SoC estimator is a closed-loop identification system 

where the model parameter identification and SoC estimation are corrected mutually, 

adaptively and simultaneously according to the observer values. The maximum SoC 

estimation error is less than 1% for both battery types, even against the inaccurate initial SoC. 
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1. Introduction 

The battery is a bottleneck technology for electric vehicles (EVs). It is valuable both in theory and 

practical application to carry out research on the state estimation of batteries, which is very crucial to 

optimize the energy management, extend the cycling life, reduce the cost and safeguard the application 

of batteries in EVs. However, batteries, with their major time-variable, nonlinear characteristics, are 

further influenced by such random factors as driving loads, operation environment, etc., in terms of 

application in EVs. Real-time, accurate estimation of their state of charge (SoC) is challenging [1–3]. 

An assortment of techniques has previously been reported to measure or estimate the SoC of the 

cells or battery packs, each having its relative merits, as reviewed by Xiong et al. [4]. Generally, the 

model-based SoC estimation method is able to combine different kinds of SoC estimation methods to 

avoid the shortcomings of each one [5–10]. Figure 1 is the model-based SoC estimation flow diagram: 

the battery models and the online data are stored in the memorizers and the real-time data on current, 

voltage and temperature are collected by the sensors, then the main key technologies are left as the 

three aspects shown in Figure 1 as	①, ②, ③.  

 

Figure 1. Model-based state of charge (SoC) estimation flow diagram. 

For the first aspect, model selection/parameter identification, reference [7] summarized the battery 

models built in the National Renewable Energy Laboratory’s advanced vehicle simulator, which 

include an internal resistance model, a resistance–capacitance model, the PNGV (partnership for new 

generation Of vehicles) model, a lead acid neural network model, a fundamental lead acid model, and 

Saber’s lead acid electrical RC (resistance-capacitance ) model; also the application limitations of 

these models are deeply researched and listed based on comparisons. Reference [11] proposes a 

generalized impedance-based model, which takes into account the non-homogeneous battery dynamics 

with nonlinear lumped elements. This model is verified to simulate the dynamic and transient response 
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of lithium-ion polymer batteries accurately by experimental results. Reference [12] uses the recursive 

least square method (RLS) to estimate the LiFePO4 cell voltage and SoC online, and the results show 

that one or two RC networks connected to the Rint model in series are reasonable for the dynamic 

simulation of the LiFePO4 battery module. Reference [13] takes the multi-swarm particle swarm 

optimization (MPSO) method to select the optimal model out of the twelve equivalent circuit models 

for the LiNMC cell and LiFePO4 cell, and the results indicate that the first-order RC model is preferred 

for LiNMC cells, while the first-order RC model with one-state hysteresis seems to be the best choice 

for LiFePO4 cells. Reference [14] takes six battery models into consideration and applies the least 

square method and extended Kalman filter (EKF) to identify the LiPB cell model parameters and 

estimate its voltage; the results indicate that the battery model accuracy could improve greatly with 

additional hysteresis and filter states at some cost in complexity, while it makes no sense to increase 

the filter state order beyond 4. In summary, it is difficult to build one unique battery model for all 

kinds of batteries with an acceptable accuracy. In addition, factors also influence the model selection 

process such as the dataset used, the model parameter identification method, the battery SoC estimation 

method, the model evaluation rule, and so on. However, we find that the n-order RC battery model is 

expected to simulate the characteristics of various kinds of batteries more accurately [11,12,15]. 

Usually model parameters can be identified during or after the model selection process. 

For the second aspect, real-time model parameter identification, it is optional. In fact, the battery 

parameters change along with the battery application and aging. In online or even offline model 

parameter identification it is hard to accurately determine battery characteristics. Herein, it is necessary 

to identify the battery parameters in real-time. Based on the Thevenin battery model, reference [16] 

applies the moving window least square (LS) method to realize real-time model parameter 

identification, and a state observer is built to estimate the battery SoC simultaneously. However, in real 

applications it is difficult for the moving window LS to choose a reasonable parameter updating 

frequency to achieve stability because of the open-loop characteristic of the joint estimator. Reference [17] 

uses the adaptive joint EKF to identify a real-time model parameter which has a high order state-space 

equation by taking the model parameter as the state set. Besides, it is difficult to obtain accurate SoC 

just by the interpolation of the OCV (open circuit voltage)-SoC relationship based on the estimated 

OCV, especially for batteries with the flat OCV-SoC relationship. To tackle the problem caused by the 

flat OCV vs. SoC segments when the OCV-based SoC estimation method is adopted, reference [18] 

proposes a method combining the coulombic counting and the OCV-based method, where two different 

real-time model-based SoC estimation methods for Lithium-ion batteries are presented, one based on 

model parameter identification using the weighted RLS method and another based on state estimation 

using the EKF method.  

For the third aspect, real-time SoC estimation, reference [19] implements the particle filter to 

estimate battery SoC, which is more accurate than EKF. However, the generation and operation of the 

numerous particles will create a heavy calculation burden in real applications. To reduce the calculation 

requirement, reference [20] proposes a new SoC estimation method based on a square root unscented 

Kalman filter using a spherical transform (Sqrt-UKFST) with unit hyper sphere. However, it still 

suffers from certain numerical stabilities. In contrast, the central difference Kalman filter (CDKF) is a 

stable algorithm and able to generate certain number of points for state estimation intelligently. 

References [21,22] indicate that CDKF, as one sigma-points Kalman filter (SPKF) method, is able to 
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avoid the linearization error of the battery model and improve the model’s precision for SoC 

estimation, which has the potential to solve the nonlinear estimation problems [23–27]. 

1.1. Contribution of the Paper 

In order to select the optimal battery model based on the measured data on current and voltage, the 

Akaike information criterion (AIC) is applied to make a tradeoff between battery prediction precision 

and complexity. Based on the selected battery model in different life stages, the input-output equation 

is built and the RLS algorithm is used to identify the model parameter in real time to track the  

time-varying characteristic of the battery. Also, the relationship between OCV and SoC is employed to 

describe the nonlinear characteristic of the battery, and to avoid the linearization error of the  

state-space equation for SoC estimation, the CDKF algorithm is applied to realize the real-time 

nonlinear SoC estimation. By combining the RLS and CDKF algorithms, the real-time closed-loop 

joint estimator for battery parameter and SoC is constructed. 

1.2. Organization of the Paper 

In order to estimate the parameters and SoC of a battery in real time, this paper is organized as 

follows: the battery modeling and real-time parameter identification process is described in Section 2. 

Then, the CDKF-based SoC estimator is constructed in Section 3. Section 4 shows the dataset of  

the lithium-ion cell for verification. Then, verification and discussion are in Section 5; Finally,  

some conclusions are made in Section 6. 

2. Battery Modeling and Real-Time Parameter Identification 

The n-order RC battery model is employed here to simulate the battery characteristics and the 

schematic diagram is shown in Figure 2, where iL is the load current with a positive value in the 

discharge process and a negative value in the charge process; Ut is the terminal voltage; UOC is the 

open circuit voltage (OCV); Ri is the equivalent ohmic resistance; Ci is the ith equivalent polarization 

capacitance and Ri is the ith equivalent polarization resistance simulating the transient response during 

a charge or discharge process; Ui is the voltage across Ci. i = 1, 2, 3, … , n. 
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Figure 2. Schematic diagram of the n-order resistance-capacitance (RC) battery model. 
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According to reference [10], the n-order RC battery model is expressed as: 
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where ai and bi (i = 1, 2, 3, … , n) are the fitting coefficients and can be expressed as the functions of 

the battery model parameters. 

The RLS method is applied to identify the model parameters in real time, and the identification 

process is as follows [10]: 
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where k̂  is estimate of the parameter vector k ; ,Ls kK  is the algorithm gain matrix and ,Ls kP  is the 

covariance matrix; the constant   is the forgetting factor and is very important to obtain a good 

estimated parameter set with small error, typically  0.95,1 . The reader is referred to reference [10] for 

the detailed mathematical model deduction and RLS-based model parameter identification process. 

3. Central Difference Kalman Filter (CDKF)-Based State of Charge (SoC) Estimator 

3.1. State of Charge Definition 

In this study, battery SoC has been defined by the following Equation [28]: 

,
1

k L k
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a

i t
z z
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
 


 (3)

where t  represents the sampling time, aC  represents the available capacity of battery, and   denotes 

the current efficiency of battery. 

3.2. State-Space Modeling 

The state space equation of Figure 2 for SoC estimation is expressed as [28]: 
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where  
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(5)

 oc kU z  is the OCV value obtained by the interpolation based on the OCV-SoC relationship, which 

represents the battery nonlinear characteristic. Both k  and k  are assumed unrelated white Gaussian 

random processes, with zero mean and covariance matrices with known value: 
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 (6)

3.3. SoC Estimation Using the Central Difference Kalman Filter Algorithm 

To deal with the battery’s nonlinear characteristic, the CDKF algorithm is proposed to build the 

battery SoC estimator. The CDKF algorithm estimates the mean and covariance of the output of a  

non-linear function using a small fixed number of function evaluations. A set of points (sigma points) 

is obtained from the function so that the (possibly weighted) mean and covariance of the points exactly 

matches the mean and covariance of the a priori random variable being modeled. These points are then 

passed through the non-linear function, resulting in a transformed set of points. The a posteriori mean 

and covariance that are sought are then approximated by the mean and covariance of these points. It is 

noted that the CDKF algorithm can avoid the linearization error of the state-space equation. The reader 

is referred to reference [21] for the detailed calculation process of the CDKF algorithm. 

Figure 3 shows the general diagram of the real-time joint SoC estimator and the operating steps are 

as follows: 

 Data measurement. The sensors collect the real-time data on current, voltage and temperature at 

each sampling time, and then the collected data are applied to identify the model parameters 

and estimate the SoC real-timely. 

 Model parameter identification. The RLS method is used to realize real-time model parameter 

identification based on the collected data of current and voltage. Then the identified model 

parameters are transferred to the CDKF-based SoC estimator and the estimated OCV value is 

transferred back in turn. Herein, a stable and accurate RLS-based model parameter 
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identification process can ensure, and at the same time is based on the good stability and high 

accuracy of the CDKF estimator. 

 CDKF-based SoC estimator. The CDKF algorithm is used to estimate the SoC based on the 

identified model parameters. In this process, if model parameters are not identified correctly, 

the CDKF estimator will not work normally, thus leading to the wrong returned OCV value. 

However, the RLS and CDKF automatically correct the wrong estimates based on the big 

observer errors and gain matrices simultaneously, then both estimates of them will converge to 

the true values quickly, which realizes the close-loop SoC estimation process. Herein the 

proposed estimator in this paper is able to estimate the SoC accurately against different 

operating environment disturbances. 
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Figure 3. The general diagram of the real-time joint SoC estimator. 

4. Data Set of Lithium-Ion Cell for Verification 

4.1. Experiment Setup  

As a verification case, the LiFePO4 cell and LiMn2O4 cell are selected to evaluate the proposed method. 

The test bench setup is shown in Figure 4. It is made up of an Arbin BT2000 battery cycler  

(Arbin company, College Station TX, USA), a thermal chamber used to control the operation 

temperature, a computer used to do programming and store experimental data and one 

LiFePO4/LiMn2O4 cell. The battery cycler channel is applied to load the current or power profiles on 

the test cells with the voltage range of 0–60 V and current range of ±300 A, and its recorded data 

include current, voltage, temperature, charge-discharge amp-hours (Ah), watt-hours (Wh), etc.  

The measurement error of the current and voltage sensors inside the Arbin BT2000 cycler is less than 

±0.05%. The measured data is passed to the host computer through TCP/IP ports. The test cell is 

connected with the Arbin BT2000 cycler and then placed inside the thermal chamber to maintain the 

desired temperatures to perform special behavior. 
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Figure 4. The battery test bench. 

4.2. Battery Test 

The characteristics of the two types of batteries used are shown in Table 1. From Table 1 we can see 

that the LiFePO4 cell capacity has decreased about 4.35% and the LiMn2O4 cell capacity has decreased 

about 9.11%. The experimental data used in this paper are respectively shown in Figures 5–9. It is 

important to note that in this research, we only consider the operation temperature at 25 °C. 

Table 1. Main specifications of the two types of batteries. 

Lithium-Ion Battery Cell LiFePO4 LiMn2O4 

Nominal capacity (Ah) 2.3 35 
Maximum available capacity (Ah) 2.2 31.81 

Nominal voltage (V) 3.3 3.7 
Upper cut-off voltage (V) 3.8 4.2 
Lower cut-off voltage (V) 1.6 3.0 

Figures 5–7 show the experimental data of the LiFePO4 cell. Figure 5 is the relationship between 

battery SoC and OCV. Figure 6 shows the details of the hybrid pulse power characteristic (HPPC) test [29]. 

Figure 6a is the current profile, and Figure 6b is the voltage profile. Figure 6c,d describes a sample 

HPPC current curve and voltage curve, respectively. The profiles of the Dynamic Stress Test (DST) 

are shown in Figure 7. Figure 7a describes the experimental current. Figure 7b is the terminal voltage, 

and Figure 7c describes the calculated SoC. The sample frequency is set to 1 Hz. 
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Figure 5. SoC vs. OCV (open circuit voltage) of the LiFePO4 cell. 
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Figure 6. The hybrid pulse power characteristic HPPC (hybrid pulse power characteristic) test 

of the LiFePO4 cell: (a) Current; (b) Voltage; (c) One current profile; (d) One voltage profile. 
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Figure 7. The dynamic stress test of the LiFePO4 cell: (a) Current; (b) Voltage; (c) SoC. 

Figures 8 and 9 show the experimental data of the LiMn2O4 cell. Figure 8 is the relationship 

between battery SoC and OCV. The profiles of the Beijing Driving cycles (BJDC) are shown in Figure 9. 

Figure 9a describes the experimental current. Figure 9b is the terminal voltage, and Figure 9c describes 

the calculated SoC. The sample frequency is set to 1 Hz. 
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Figure 8. SoC vs. OCV of the LiMn2O4 cell. 
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Figure 9. The Beijing Driving cycles (BJDC) test of the LiMn2O4 cell: (a) current; (b) voltage; (c) SoC. 

5. Verification and Discussion 

Considering practical applications, only the portion of the test data within 10%–90% SoC in these 

datasets is used in SoC estimation. 

5.1. Model Selection 

Referring to the n-order RC battery model, Reference [12] points out the model parameters will 

increase abundantly with the increase of the number of RC networks, and the calculation burden will 

be heavier and a larger memory will be required to store the large amount of sample data. It is 

meaningful to properly select a minimum RC network with an acceptable accuracy.  
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In this paper the AIC is employed to establish a tradeoff between the model complexity and 

prediction precision. The information-theoretic or entropic AIC criterion aims to identify an optimal 

and parsimonious model in data analysis from a class of competing models which takes model 

complexity into account [30].The AIC model used here is as: 
2ˆAIC 2log 2ks n   (7)

where n  denotes the RC order of the combined model. 2
k̂s  denotes the sum of the residual error 

squares based on the RLS method (Equation (2)) and is expressed as: 

 22

1

1
ˆ ˆ=

N

k k k
k

s y y
N 

  (8)

where N  denotes the data length. 

The datasets used here are the HPPC profiles of the LiFePO4 cell. Figure 10 plots the model voltage 

prediction errors with n = 0 − 5, and the statistical results are shown in Table 2. From Table 2, we can 

see that the minimum AIC value is −4.80 if n equals 1. When n equals 0, the battery model is simple 

but the model precision is poor. From Table 2 we can see that the maximum voltage prediction error is 

up to 67.02 mV, while the model precision mainly operates on calculating the AIC which is then large. 

From Figure 10 we can see that the voltage prediction precision improves greatly if n increases to 1 

from 0, and Table 2 shows that the maximum voltage error decreases about 60 mV, thus leading to the 

decrease of AIC. However, from Figure 10 and Table 2 we can see that the model precision improves 

only a little as n continues to increase; for example the standard deviation decreases only 0.05 mV if n 

increases to 5 from 1, and the maximum voltage error is even worse during this process, while the 

model complexity mainly operates on calculating the AIC. Herein the AIC value will continue to 

increase with the increase of n from 1. 

 

Figure 10. Model voltage prediction error with n = 0–5. 

Hence the model with n = 1 is the optimal tradeoff between the model complexity and precision, 

which is thus selected to implement the SoC estimation later. The duration of each case is also shown 

in Table 2. Note that all the procedures in this paper are run in Matlab/Simulink R2012b version  

with the HP Z620 workstation (Hewlett-Packard Development Company, Palo Alto, CA, USA) 

equipped with an Intel Xeon E5-2620 v2@2.10GHz CPU and 32 GB of RAM. 
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Table 2. Statistical results of voltage prediction error. 

n Maximum (mV) Mean (mV) Standard Deviation (mV) AIC Duration (s)

0 67.02 −0.30 6.02 7.18 4.64 
1 7.68 7.9 × 10−3 0.18 −4.80 4.75 
2 8.82 9.3× 10−3 0.15 −3.67 4.93 
3 8.81 7.2 × 10−3 0.14 −1.93 5.28 
4 8.77 5.7 × 10−3 0.13 −0.04 5.54 
5 8.74 4.4 × 10−3 0.13 1.88 5.90 

5.2. SoC Estimation 

The datasets firstly used here are the DST profiles of the LiFePO4 cell, which are regarded as the 

real-time data to drive the CDKF-based SoC estimator. It is noted that the exact initial SoC is 90%. 

Also, an inaccurate initial SoC of being 80% is set to evaluate the robustness of the proposed estimator. 

Figure 11 is the model parameter identification results with different initial SoCs of the LiFePO4 

cell. Figure 11a is the internal resistance R0. Figure 11b is the polarization resistance R1 and Figure 11c 

is the polarization capacitance C1. From Figure 11 we find that the estimation results of the 80% initial 

SoC case are the same with that of the 90% initial SoC case, which is in accordance with the real 

applications. Besides, the model parameters converge to the true values quickly after the initial 

fluctuation. We also find that as the SoC decreases the R0 increases gently, but the R1 and C1 both 

change strongly. This is because the polarization resistance and capacitance describe the transient 

characteristic of battery which varies greatly when the battery is in charge or discharge, while the 

internal resistance does not. 

Figure 12 is the voltage prediction results with different initial SoCs of the LiFePO4 cell based on 

the identified model parameters. Figure 12a describes the reference terminal voltage and the predicted 

terminal voltage. Figure 12b describes the voltage prediction error. Statistical results of the voltage 

prediction error are shown in Table 3. From Figure 12 and Table 3 we find that the predicted voltage 

agrees very well with the reference voltage and the maximum predicted voltage error is less than 5 mV 

for both cases of initial SoCs being respectively 90% and 80%. 

 

Figure 11. Model parameter identification results of the LiFePO4 cell: (a) R0; (b) R1; (c) C1. 
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Figure 12. Voltage prediction results of the LiFePO4 cell: (a) voltage; (b) voltage error. 

Table 3. Statistical results of the voltage prediction error. 

Initial SoC (%) Maximum (mV) Mean (mV) Standard Deviation (mV) 

90% 4.71 −8.42 × 10−2 3.56 × 10−2 
80% 4.72 –8.43 × 10−2 3.56 × 10−2 

Figure 13 describes the SoC estimation results, where the initial SoC value is set at the exact 90%. 

It is noted that, in all cases, SoC reference profiles are calculated from the Arbin data-logger using 

power counting on measured data. In order to get the reference SoC profiles, the cells are firstly fully 

charged and lastly fully discharged after several loading profiles test with nominal current. In this way, 

we can get accurate initial SoC and terminal SoC. Then, the SoC reference trajectory is achieved  

based on the Arbin data-logger and the correction from the current efficiency map. In most cases,  

the battery’s current efficiency is close to 100%. 
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Figure 13. SoC estimation results with the accurate initial SoC of the LiFePO4 cell:  

(a) Voltage; (b) Voltage error; (c) SoC; (d) SoC error. 
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The SoC estimation results with the accurate initial SoC of the LiFePO4 cell are shown in Figure 13. 

Figure 13a describes the reference terminal voltage and the estimated terminal voltage. Figure 13b 

shows the voltage estimation error. The reference SoC and the estimated SoC are shown in Figure 13c. 

Figure 13d describes the SoC estimation error. It is noted that the accurate CDKF-based SoC 

estimation depends on the accurate RLS-based model parameter identification, and the return of the 

accurate OCV will further ensure the high estimation accuracy of the RLS algorithm. From Figure 13a,b 

we find that the voltage estimation result is good, and Table 4 shows that the voltage mean error and 

standard deviation are respectively −14.30 and 11.32 mV. However, if the more accurate estimated 

voltage is needed, we can always apply the RLS-based voltage estimation in real applications. From 

Figure 13c,d we find that the SoC estimation is very accurate, and Table 4 shows that the maximum 

SoC estimation error is only 0.04%. In considering that the model parameters are identified in real time 

based on the RLS algorithm, the CDKF-based SoC estimator is expected to realize the accurate voltage 

and SoC estimation against different operation conditions. Table 4 also shows the joint estimation 

duration in this case, which is 48.585 s. Compared to the duration in Table 2 we find that the 

calculation complexity will be much heavier if the dual-CDKF joint estimator is constructed referring 

to reference [18]. 

Table 4. Statistical results of the SoC estimation error. 

Index Maximum Mean Standard Deviation Duration (s) 

SoC (%) 0.04 −0.01 0.01 
48.585 

Voltage (mV) 74.63 −14.30 11.32 

However, during practical applications the accurate initial SoC value cannot be obtained, so the 

robustness of the SoC estimator against inaccurate initial values should be systematically studied. 

Figure 14 and Table 5 show the SoC estimation results with an inaccurate initial SoC, where the initial 

SoC is incorrectly set to 80%. 

Figure 14 describes the SoC estimation results with an inaccurate initial SoC of the LiFePO4 cell. 

Figure 14a describes the reference voltage and the estimated voltage. Figure 14b shows the estimated 

voltage error. Figure 14c describes the reference SoC and SoC estimation, and Figure 14d shows the 

SoC estimation error. The statistical results of the SoC estimation are listed in Table 5. From Figure 14,  

we find that the estimated terminal voltage and SoC are converged to the reference trajectory quickly 

after only one second for correcting the erroneous initial state of the SoC estimator. This is because the 

proposed estimator can precisely estimate the voltage and adjust the Kalman gain according to the 

terminal voltage error between the true values and the estimated values timely. The erroneous SoC 

estimation brings bigger terminal voltage errors, which will in turn produce a large Kalman gain 

matrix and then compensate the SoC estimation in efficient closed-loop feedback. Thus it can achieve 

the accurate SoC estimates, especially with a significant SoC offset. From Table 5 we find that the 

maximum SoC estimation error is only 0.05% after the inaccurate initial SoC converges with the 

reference value. The joint estimation duration is 49.115 s when the inaccurate initial SoC is set to 80%. 

Thus the joint estimator is able to describe the LiFePO4 cell characteristics accurately and realize 

the precise real-time battery parameter and SoC estimation even when the cell capacity decreases  

about 4.35%. 
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Figure 14. SoC estimation results with an inaccurate initial SoC (SoC0 = 80%) of the 

LiFePO4 cell: (a) voltage; (b) voltage error; (c) SoC; (d) SoC error. 

Table 5. Statistical results of the SoC estimation error. 

Index Maximum Mean Standard Deviation Duration (s) 

SoC (%) 0.05 −0.02 0.01 
49.115 

Voltage (mV) 74.67 −14.31 11.32 

In order to further verify the proposed SoC estimator against different battery types, the BJDC 

datasets of the LiMn2O4 cell are used. It is noted the exact initial SoC is 90%. 

Figure 15 is the model parameter identification results with different initial SoCs of the LiMn2O4 

cell. Figure 15a is the internal resistance R0. Figure 15b is the polarization resistance R1 and Figure 15c 

is the polarization capacitance C1. Still, as the results show in Figure 11, the estimation results of the 

80% initial SoC case are the same with that of the 90% initial SoC case. Also, the model parameters 

converge to the true value quickly, and compared to the internal resistance, the polarization resistance 

and capacitance fluctuates more strongly. 

 

Figure 15. Model parameter identification results of the LiMn2O4 cell: (a) R0; (b) R1; (c) C1. 
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Figure 16 describes the voltage prediction results with different initial SoCs of the LiMn2O4 cell. 

Figure 16a shows the reference voltage and the predicted voltage, and Figure 16b shows the voltage 

prediction error. The statistical results of the voltage prediction error are presented in Table 6.  

Still from Figure 16 and Table 6, we find that the RLS-based predicted voltage is very accurate,  

with the maximum estimation error being within 7 mV for both cases. 

 

Figure 16. The voltage prediction results of the LiMn2O4 cell: (a) Voltage; (b) Voltage error. 

Table 6. Statistical results of the voltage prediction error. 

Initial SoC (%) Maximum (mV) Mean (mV) Standard (mV) 

90% 6.95 −8.16 × 10−2 0.74 
80% 6.85 −8.58 × 10−2 0.74 

Figure 17 shows the SoC estimation results with different initial SoCs of the LiMn2O4 cell, where 

the initial SoCs are respectively set to 80% and 90%. Figure 17a describes the reference voltage and 

the estimated voltage and Figure 17b describes the voltage estimation error. Figure 17c shows the 

reference SoC and the estimated SoC, and Figure 17d describes the SoC estimation error. The 

statistical results of the SoC estimation are listed in Table 7. From Figure 17 we find that for the case 

of the initial SoC being 80%, the estimated terminal voltage and SoC converged with the reference 

trajectory quickly after only one second for correcting the erroneous initial state of the SoC estimator. 

Afterwards, it traces the reference SoC trajectory stably and accurately just like the exact initial SoC 

case does. Table 7 shows that the maximum SoC estimation error is less than 1% for both cases. The 

voltage estimation result may not be as good as enough, still in real applications we can apply the  

RLS-based estimated voltage. The simulation durations of two cases are also shown in Table 7. Herein, 

the joint estimator is able to describe the LiMn2O4 cell characteristics accurately and realize the precise  

real-time battery parameter and SoC estimation even when the cell capacity decreases about 9.11%. 

Table 7. Statistical results of the SoC estimation error. 

Initial SOC 

(%) 

Voltage Prediction Error (mV) SOC Estimation Error (%) Duration 

(s) Maximum Mean Standard Deviation Maximum Mean Standard Deviation 

80 73.98 −4.83 9.29 0.77 −0.28 0.23 63.017 

90 72.93 −4.89 9.36 0.65 −0.40 0.21 62.900 
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Figure 17. SoC estimation results with different initial SoCs of the LiMn2O4 cell:  

(a) Voltage; (b) Voltage error; (c) SoC; (d) SoC error. 

6. Conclusions 

In view of the model-based SoC estimation schematic diagram, the n-order RC battery model is 

proposed to simulate the major time-variable, nonlinear characteristics of batteries. To select a 

reasonable n, the AIC criterion is applied to establish the optimal tradeoff between the model 

complexity and prediction precision, and the results show that the first-order RC model is the best. 

Then, a real-time joint estimator based on the RLS and CDKF algorithms is built to realize real-time 

battery model parameter identification and SoC estimation. The results based on the LiFePO4 cell and 

the LiMn2O4 cell indicate that the proposed SoC estimator is a closed-loop identification system where 

the model parameter identification and SoC estimation are corrected mutually, adaptively and 

simultaneously according to the observer values. The maximum voltage prediction error is within 10 mV 

and the maximum SoC estimation error is less than 1%, even against an erroneous initial SoC. It is 

noted that the LiFePO4 cell and the LiMn2O4 cell are in different life stages. Herein the proposed  

SoC estimator is expected to estimate SoC accurately even under different application and battery  

aging conditions. 
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Abbreviations 

SoC: State of charge 
AIC: Akaike information criterion 
PNGV: Partnership for New Generation Of Vehicles 
RC: Resistance-capacitance 
OCV: Open circuit voltage 
CDKF: Central difference Kalman filter 
HPPC: Hybrid pulse power characteristic 
DST: Dynamic Stress Test  
BJDC: Beijing Driving cycles  
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