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Abstract: Subway systems consume a large amount of energy each year. How to reduce the
energy consumption of subway systems has already become an issue of concern in recent years.
This paper proposes an energy-efficient approach to reduce the traction energy by optimizing the
train operation for multiple interstations. Both the trip time and driving strategy are considered in
the proposed optimization approach. Firstly, a bi-level programming model of multiple interstations
is developed for the energy-efficient train operation problem, which is then converted into an
integrated model to calculate the driving strategy for multiple interstations. Additionally, the
multi-population genetic algorithm (MPGA) is used to solve the problem, followed by calculating
the energy-efficient trip times. Finally, the paper presents some examples based on the operation
data of the Beijing Changping subway line. The simulation results show that the proposed approach
presents a better energy-efficient performance than that with only optimizing the driving strategy
for a single interstation.
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1. Introduction

With the rapid development of railway transportation, the energy consumption problem of
the railway transportation industry is becoming prominent. Many people give much focus to
energy-efficient strategies. Train traction energy consumption accounts for the largest proportion in
subway systems, which is closely related to the train operation. Hence, reducing the traction energy
by optimizing the train operation becomes more important.

Many studies have been focusing on the energy-efficient operation of railway trains. The earliest
research is based on the assumption that there are no speed limits and ramps in the lines. Ishikawa [1]
studied the optimal control model with constant traction efficiency. Erofeyev [2] solved the model by
using a dynamic programming method. For applying the theory into practice, many studies take
gradients, speed limit and variable traction efficiency into consideration. For example, Milroy [3]
and Asnis et al. [4] put forward a model with constant slope in the lines, then calculated the optimal
control sequence with the minimum energy consumption. Golovitcher [5,6] studied the problem
with variable gradients to find the general rules for optimizing the control sequence. Howlett et al. [7]
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studied an analytical method for the problem with steep slopes in the route. Khmelnitsky [8] proved
that the optimal train driving strategy consists of maximum acceleration, cruising, coasting and
maximum braking. Li et al. [9] studied the energy-efficient operation with an energy constraint, while
the trip time was considered to be related to the energy consumption.

As for integrated models optimizing the timetable and driving, Ding et al. [10] developed a
two-level hierarchical model to minimize the energy consumption for a train running on an uneven
rail with the specific trip time based on the characteristics of train movement and the control
rules of the locomotive. Ning et al. [11] proposed an integrated control method to optimize train
headway by adjusting the train arrival time at stations; the speed profiles for each train were also
obtained. Ghoseiri et al. [12] formulated a multi-objective optimization model for the passenger
train-scheduling problem, in which single and multiple tracks and multiple platforms with different
train capacities are considered. Cucala et al. [13] considered uncertainty in delays, then designed a
model for energy-efficient driving and timetables, in which the railway operator and administrator
requirements are also included. Kwan and Chang [14] studied a dual objective problem including
energy consumption and passenger dissatisfaction in a medium-sized mass rapid transit system;
a heuristic-based evolutionary algorithm was used to solved it. On the other hand, many studies
focus on the efficient driving of the train. Albrecht et al. [15] proved that the optimal switching
points are uniquely defined for each steep section, and the global optimal strategy is also unique.
Carvajal et al. [16] proposed an optimization algorithm to obtain the minimum energy consumption
and the Pareto optimal curve for CBTC (communication-based train control). Bocharnikov et al. [17]
considered both the tractive energy consumption and the utilization of regenerative energy to
obtain the minimum energy consumption for a single train, and then, a multi-train simulation was
performed to optimize the net energy consumption. Acikbas and Soylemez [18] obtained the optimal
coasting point using artificial neural networks and genetic algorithms. Chuang et al. [19] used an
artificial neural network to optimize the coasting speed of the train to minimize both the energy
consumption and passenger traveling time.

In recent years, various algorithms have been successfully applied to the studies of the
energy-efficient operation of railway trains. Wong and Ho [20-23] searched the coasting position by
search algorithms, such as the golden section method, gradient search and the genetic algorithm, to
optimize the driving strategy and formulated a tri-level model for the train control system. Kim and
Chien [24] searched for the optimal operation by a simulated annealing algorithm while considering
speed limit and track alignment. Lu ef al. [25] developed a speed profile searching model that
considered equipment characteristics, speed limits and gradients; dynamic programming, the genetic
algorithm and the colony optimization algorithm were applied to search the optimal speed profile.
Gong et al. [26] proposed an energy-efficient operation methodology for metro system; a genetic
algorithm was used to modify the dwell time of each stop to obtain the most optimal energy-efficient
timetable. Tuyttens et al. [27] studied a real-time traffic control strategy to obtain the speed profiles
for every train on the route based on the genetic algorithm. Fu [28] calculated the switch position of
the energy-efficient driving strategy, which considered the specific driving regime sequence. Liu and
Golovitcher [29] solved the energy-efficient operation strategy of the train also by using the maximum
principle and finally obtained the switch point by using a numerical algorithm. Rémy [30] minimized
the trip time and energy consumption by using the genetic algorithm. Ke et al. [31-33] designed the
energy-efficient speed sequence of the block sections and calculated the optimal operation speed by
using the ACO(ant colony optimization) algorithm. Yu [34] further optimized the algorithm of this
problem and further improved the calculation speed. Dominguez ef al. [35] optimized the speed
profile using the genetic algorithm; regenerative energy was taken into account. Rodrigo et al. [36]
also focused on the use of regeneration energy; a Lagrangian multipliers method was proposed to
solve the problem by optimizing the speed profile. Yang et al. [37] designed a genetic algorithm to
maximize the use of regeneration energy by optimizing the timetable. Table 1 is the summary list of
the studies.
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Table 1. Summary list of the studies.

Publication Research Contents Algorithm

Wong and Ho [20-23] Coasting control Golden section method
Gradient search
Genetic algorithm
Kim and Chien [24] Speed Profile Simulated annealing algorithm
Luet al. [25] Speed profile Dynamic programming, genetic
algorithm and colony
optimization algorithm

Gong et al. [26] Energy-efficient timetable Genetic algorithm
Tuyttens et al. [27] Speed profiles Genetic algorithm
Fu [28] Liu Switch position for driving regime Genetic algorithm
and Golovitcher [29] Numerical algorithm
Rémy [30] Minimized the energy consumption Genetic algorithm
and trip time
Ke et al. [31-33], Yu [34] Energy-efficient speed ACO algorithm
sequence of the block sections
Dominguezet al. [35]  Speed profile + regenerative energy Genetic algorithm [24]
Rodrigo et al. [36] Timetable + regenerative energy Lagrangian multipliers method [25]
Yang et al. [37] Genetic algorithm
Our paper Trip time + switch position Multi-population genetic algorithm

for driving regime

Previous studies only optimize the driving strategy with the fixed trip time in the timetable,
which ignores the influence of trip time on the energy consumption. Actually, the trip time and
driving strategy are closely related to each other and can make a difference in energy savings. Firstly,
the trip time that is scheduled by the timetable is an important constraint for the driving strategy, and
there is an optimal driving strategy, costing the least energy consumption. Secondly, the trip time of
multiple intervals consists of the minimum trip time and reserve time; the distribution of reserve time
will influence the total energy consumption (Figure 1).

T Speed Speed profile for timetable 1

ffffff Speed profile for timetable 2

Different energy consumption for every interstation and entire route

Figure 1. Different timetables for multiple interstations.

In addition, the amount of energy consumption determined by the driving strategy can be the
basis of optimizing the trip times [38]. Therefore, to reduce the energy consumption of the subway
system, both the driving strategy and trip times, as well as the relationship between them, should
be considered. The aim of this paper is to obtain an integrated solution to the energy-efficient train
operation problem. Considering the constraints of speed limits and gradients of the real subway
line, an optimization model is formulated for multiple interstations based on the energy-efficient
driving strategy for interstations, then the speed profile and trip times are calculated based on the
multi-population genetic algorithm.
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2. Model Formulation

The aim of this paper is to minimize the total energy consumption of multiple interstations.
A bi-level programming model is developed for the energy-efficient problem, where the high level
aims to optimize the trip time and the low level is to find the energy-efficient driving strategy. Then,
an integrated model is concluded to solve the driving strategy for multiple interstations, which can
obtain the energy-efficient trip time, as well.

In order to facilitate the understanding of this paper, the assumptions, the parameters and the
variables are introduced firstly.

2.1. Assumptions
The train is considered as a particle; the length of the train is not considered.
2.2. Decision Variables

Tinterstationi: trip time for the i-th interstation.
Ci,j: driving regime for the i-th section in the j-th interstation.

2.3. Intermediate Variables

v: speed of the train.

Vi: final speed for the i-th section.

vjj: final speed for the j-th subsection in the i-th section.

a;j: acceleration for the j-th subsection in the i-th section.

al: equivalent acceleration for the traction force.

Fjj: traction force for the j-th subsection in the i-th section.
For,;: basic resistance for the j-th subsection in the i-th section.
Fg,: gradient resistance force.

F.;: curve resistance force.

Es: the optimal energy consumption.

E;: energy consumption for the i-th section per unit mass.

ejj: energy consumption for the j-th subsection in the i-th section per unit mass.
Ts: the optimal trip time.

T;: trip time for the i-th section.

tij: trip time for the j-th subsection in the i-th section.

T : minimum trip time for the i-th interstation.

interstationi*

max . 3 . . i . .
T stationi: Maximum trip time for the i-th interstation.

2.4. Parameters

k: number of interstations.

p: number of sections in an interstation.

m: number of subsections in a section.

w: number of driving regimes in an interstation.

Tp: the practical trip time.

S;: trip distance for the i-th section.

Sinterstationi® trip distance for the i-th interstation.

M;: mass of the train for the i-th interstation.

d: trip distance for each subsection.

Ulimit: speed limits.

Ep: the practical energy consumption.

a: penalty coefficient of time in the objective function.
[3: penalty coefficient of speed in the objective function.
Taweli: dwell time for the i-th interstation.
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2.5. Model

In general, the train’s energy-efficient operation in subway systems contains two levels. At the
high level, a timetable is designed, which regulates the trip time and the dwell time for trains. The low
level calculates the energy-efficient speed profile for each interstation with the trip time and the dwell
time given by the high level. In addition, the dwell times are not included in the model, and that total
trip time does not include the dwell times. The dwell time for each station remains unchanged when
optimizing the timetable.

The high level can be describe as Equation (1a), and (1b). The object in Equation (la) is to
solve the minimum energy consumption of the entire route, and the decision variable in Equation
(1a), and (1b) is Tinterstationi- Equation (1b) is the constraints and boundary conditions, in which the
first equation denotes the constraints on the energy consumption; the last two equations denote the
constraints on the trip time.

k
min Es = ) M;E(Tintersation ) (1a)
i=1

P
E (Tinterstation i ) = ';l E;

1

s.t. k (1b)
Tp =Ts= Y Tinterstationi
i=1
min g . i max
Tinterstationi < Tinterstation i < Tinterstationi

The low level can be describe as Equation (2a), and (2b). The object Function (2a) is to solve the
minimum energy consumption of a given interstation with a given trip time Tinterstationi- 1he decision
variable in Equation (2a), and (2b) is the driving regime sequence C;. Equation (2b) is the constraints
and boundary conditions, in which the first two equations denote the constraints on the energy
consumption and train speed. The last two inequalities denote the constraints about the comfort
of passengers.

p
min E<Tinterstation i) = Z Ei(ci ) (2a)
i=1
m
Ei(ci) = '21 az;,])d
]:
s.t. 2b
U(O) = O/U(Tmterstationi) = 0,0 < v; < Vlimit (2b)
W < Whimit, [Cip1 — G| <1
The bi-level optimization model can be summarized as Equation (3a), and (3b):
min ES(CI‘,]‘) (33)
k p
Es(Cij) = X Mi( X Ei(Cij))
j=1 i=1
m
L T
Ez = ]gl a(i,j)d
s.t. k (3b)

Tp = Ts = Z Tmterstation i
i=1
min 4 L max
Tinterstationi < Tinterstation i < Tinterstationi

U(O) = O/U(Tmterstationi) =0,0< v; < Olim it
W < Wit |Cig,j — Cijj| <1

In the model above, the object Function (3a) is to solve the minimum energy consumption of
the entire route, and the decision variable in Equation (3a), and (3b) is the driving regime sequence
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Ci;j. Equation (2b) is the constraints and boundary conditions; the first two equations denote the
constraints on the energy consumption; the third and fourth equations denote the constraints on the
trip time; and the fifth equation denotes the constraints on the train speed. The last two inequalities
denote the constraints about the comfort of passengers.

3. Solution

Standard genetic algorithm (SGA) has many advantages in optimization, but premature
convergence usually happens in SGA when solving multi-peak value problems, which means the
optimal solution is easily trapped in local optima, and it cannot find the global optimal solution.
In order to overcome the premature convergence, the authors calculate the driving regime sequence
based on the multi-population genetic algorithm (MPGA). The basic idea of MPGA is to use a
plurality of sub-populations instead of a single population in the algorithm. Each sub-population
selects crossover and mutation independently based on SGA. Superior individuals can migrate
between sub-populations after preset generations in order to improve the average fitness value of
sub-populations and to ensure the genetic diversity. Figure 2 shows the structure of MPGA. There are
three sub-populations in Figure 2; each of them operates based on SGA. The dotted lines show the
migration track of superior individuals between sub-populations. Part of the best fitness individuals
from these three sub-populations finally constitute the quintessence population of MPGA.

|
|
I
Transport operator i Transport operator r o Transport operator :
| | |
4 A | 4
[ I
|
[ I
I
[ I
|
[ | I
B pees] GiA et SGA  |a—{——'
¥ y ¥
Optimal solution Optimal solution Optimal solution
in this population in this population in this population
¥
* Quintessence population L

Figure 2. Multi-population genetic algorithm structure diagram. Standard genetic algorithm: SGA.

3.1. Energy-Efficient Operation Strategy

The trip time and energy consumption of multiple interstations is determined by the order
and switching positions of the driving regime, which include maximum acceleration, coasting and
maximum braking. There are many feasible speed profiles that satisfy the constraints on trip
time and trip distance; each of them determines a driving strategy and the corresponding energy
consumption. The energy-efficient optimization is to find a driving strategy that costs the minimum
energy consumption on the condition that the total trip time is relatively constant.

14316



Energies 2015, 8, 14311-14329

Previous research [39] shows that the energy-efficient driving strategy in the interstation includes

acceleration, coasting and braking. Thomas [40] explained the optimal phases as follows.

Maximum acceleration and braking: The slower a train accelerates or brakes, the more time it
needs to come to a standstill. To obtain the same trip time with a lower acceleration or braking
rate, the train should accelerate to a higher speed, which consumes more energy. Therefore, the
maximum acceleration and braking must be the most energy efficient.

Coasting: During coasting, when no traction force and braking force are applied, the train only
rolls forward and consumes no energy. Thus, the earlier coasting can start, the more energy can
be saved.

As shown in Figure 3, S;, S3 denotes the switching position from acceleration to coasting, S;

denotes the switching position from coasting to acceleration and S, denotes the switching position
from coasting to braking.

v Speed/v

Coasting
Traction

Coasting

Position/s

Figure 3. Optimal driving strategy for interstations.

It is assumed that the total trip distance of multiple interstations is L; then, L is divided into

n sections, and the trip distance of each section can be expressed as S; = (sq,82,--+,sx). Each

section is short enough to allow only one driving regime, so there are n driving regimes, which
could be regarded as a driving regime sequence C; = (c1,¢,- -+ ,¢) for the entire route. Here, the
corresponding relations between the driving regimes are listed in Table 2.

Table 2. Definition for driving regimes.

Number Driving Regimes  Value

1 Traction 1
2 Coasting 2
3 Braking 3

The driving regime sequence C; must follow the constraint as follows:

The first driving regime for an interstation must be “1” (Traction), the last one for an interstation
must be ”3” (Braking).
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*  Considering the comfort of passengers, traction and braking are not allowed to directly switch
to each other. The change of the driving regimes must follow the rules listed in Table 3 [41] in
order to limit the jerk, in which ”,/” donates the change is allowed, ” x” donates the change is
forbidden.

* Also considering the comfort of passengers, the driving regime change times for an interstation
must follow the constraints in Table 4. according to the operation experience. Specially, the
maximum change time in Table 4. is empirical value and the value will be sensibly adjusted for
interstations which contain steep slopes, low speed limits and other special conditions.

Table 3. Rules for the change of the driving regimes.

Driving Regime Traction Coasting Braking

Traction v Vv X
Coasting Vv Vv Vv
Braking X v Vv

Table 4. Constraints for the driving regimes’ change times.

Number Distance (m) Maximum Change Times

1 0-1000 3
2 1000-3000 5
3 3000-5000 7

As shown in Figure 4, the final speed of each section V;, trip time T; and energy consumption E;
can be calculated according to the driving regime C;, the trip distance S; and the initial speed V;_;.
The final speed of the section “i”
total trip time and energy consumption of the interstation can be obtained when the driving strategy
is determined for all sections. Both the energy consumption reduction and the computing time of the

algorithm will be influenced by the value of S;. On the one hand, a smaller value of S; may leads to a

will be iterated as the initial speed of the section “i + 1”. Then, the

larger energy consumption reduction, because the driving regime could be more changeable; on the
other hand, a smaller value of S; means more variables in the algorithm, which will lead to longer
computing. In this paper, S; is 50 m in order to keep the balance of the two sides.

_ Speed profile

| —— ==

Distance

S.

|

=
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
+
|
|
| 3
1

|
|
|
|
|
|
|
|
!
|
|
1
|
|
|
|
|
+
|
|
|
1

Figure 4. Calculation model.

In order to ensure the accuracy of the results, a section should be divided into small subsections
for calculation. It is assumed that there are m subsections in the i-th section; the trip distance of
each subsection is d. The final speed v(;;), trip time f(; ;; and energy consumption ¢; ;) of each
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subsection can be calculated according to the initial speed v(; ;_1), trip distance d and driving regime
C;. In addition, with the consideration of the number of commuters, the mass of the train for each
interstation M; varies with different interstations. In this paper, the authors define M; as a random
variable obeying a normal distribution. Thus, the probability distribution of M; can be expressed as
Equation (4), in which p can be defined as Equation (5). In Equation 5, Mmax denotes the full load
mass of the train, and M, denotes the empty mass of the train.

) =~ exp(~ 2 @
n= (Mmax + ]\/Imm)/2 (5)

Here, t(z‘,j)/ e(i,j) of each subsection are firstly calculated. Here, in this paper, the acceleration for
the traction process is considered to be varied with the traction force. The acceleration for the braking
process is considered to be a constant.

When the driving regime in the i-th section is acceleration, traction force is used to speed up the
train and overcome resistance (Equation (6)):

T _ b 8
Qi) = i) + (WG + WG+ @58
V(i) = \/06,j-1)" 2434 ©
o= |03 T 03—
i) = [26) T 6D gy,
_ T
€ij) = ”(i,j)d

Then, the final speed V;, trip time T; and energy consumption E; of the i-th section can be
calculated. The final speed V; of the section is the final speed v(; ;) of the last subsection. The trip
time of the section is the sum of subsections (Equation (7)).

Vi= O(i,n)
T, = t
l jgl G0 @)
Ei= Y eij
j=1

Similarly, when the driving regime in the i-th section is coasting or braking, the final speed V;,
trip time T; and energy consumption E; of the i-th section can be calculated according to the above
method.

When the driving regime in the i-th section is coasting, the acceleration varies with the basic
resistance and gradient resistance. The train is without traction, so the E; is zero (Equations (8)
and (9)).

_ b 8
agj) = (@) + @G + @f;)8
0j) = /P -1 + 20,
i = 260 U6 fa,
e(ij) =0
Vi= Ungi,m)
T, = Z t(i,j) )
j=1
E; =0
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When the driving regime in the i-th section is braking (Equations (10) and (11)):

by = |06~ v(i/ffl)/a(i]) (10)
) =
Vi= U(i,m)
m
Ti= ¥t (11)
j=1
Ei=0
The basic resistance, gradient resistance and curve resistance are calculated as follows.
wp = a+ bo + cv? (12)
wg =i (13)
600
we = % (14)

In Equation (12), a, b and c are empirical constants that vary with the vehicle type. In
Equation (13), i denotes the value of the gradient. In Equation (14), R denotes the curve radius.
Therefore, there is a driving regime sequence C; = (c1,¢2,- -+ ,¢y), which corresponds a trip
time sequence T; = (Ty, Tp,- -+, Ty) and an energy consumption sequence E; = (E1,Ez, -+, En).
n
Additionally, the corresponding total trip time is T;= ) T;. The total energy consumption is
i=1

n
Es= ) E;. Therefore, the optimization problem can be formulated to obtain one driving regime
i=1
sequence with minimum energy consumption on the condition that the total trip time is relatively
constant.
There are constraints on trip time and constraints on speed in the optimization model mentioned

above, so the optimization model for the MPGA is as follow:

min obj = Es + |Ts — T¢| - « + num - 3 (15a)
k P
Es(Cij) = ¥ M;(X Ei(Cij))
j=1 i=1
- v T d

s.t. (15b)

k
Tp =Ts = L. Tinterstation i
i=1
min ' . max
interstation i S Tmterstatlonz S Tinterstationi
Z)(O) = OIU(Tinterstation i) = 0,0 < v; < Uit

W < Wi, |Cign,j — Cij| <1

In the model above, the first equation denotes the optimality criterion, in which num denotes
the times that the speed does not satisfy the speed constraints in the speed profile, & denotes the
penalty coefficient of time in the objective function and 3 denotes the penalty coefficient of speed
in the objective function. o should be a very large number in order to ensure that the trip time is
relatively constant. 3 is also very large because the speed profile must satisfy the speed constraints.
In this way, individuals that do not satisfy the constraints will get large fitness values, and finally,
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they are eliminated. The following six equations denote the constraints on energy consumption, trip
time, train speed and the constraints about the comfort of passengers.

3.2. Minimum Trip Time and Maximum Trip Time

According to Equation (1a), and (1b), the scheduled trip time for interstations must be longer
than the minimum trip time and shorter than the maximum trip time. Here, a speed profile is drawn
following the following steps, which must cost the minimum trip time.

*  During the traction process, the speed profile is calculated with maximum traction force. The
speed in the right ends of the speed limit sections is the maximum value that the train can get in
the position, and the traction speed profile is drawn with maximum acceleration from the right
end of each speed limit section. Therefore, the speed profile contains the maximum speed value
the train can get in the corresponding position.

e During the braking process, the speed profile is calculated with maximum braking force. The
speed in the left ends of the speed limit sections is the maximum value that the train can reach,
and the braking speed profile is drawn with the maximum deceleration from the left end of each
speed limit section. The train speed cannot exceed this braking speed profile, otherwise the train
speed must exceed the speed limits at some position, which is not expected.

¢ The train speed cannot exceed the speed limit in any position according to the operation
requirements.

Speed

Speed limit 1

Speed limit 2

Distance

Figure 5. Speed profile with minimum trip time.

Therefore, the speed profile above must cost the minimum trip time. According to the
bidding documents of the Beijing Changping subway line signal system engineering special technical
requirements, the maximum trip time can be calculated as Equation (16).

Tmax =k- Tmin (16)
In this paper, the value of kis 1.2.

3.3. Algorithm
This problem is solved based on MPGA, and the process is as follows: Step 1: Initialize the initial

data, including track limited speed, track slope value and train parameter value.

Step 2: Generate the initial population. Here, the authors use real code, describing the driving
regime sequence by an individual (cy, ¢y, - - - , cn); the gene C; denotes a driving regime.

Step 3: Train operating calculations for calculating the total trip time T; and total energy
consumption E; with the given driving regime sequence according to Equations (6)—(11).
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Step 4: Fitness calculation. The fitness function is the objective function of the optimization
Model 3a,3b. Ts and E; are inserted into the fitness function, and the fitness value of each individual
is calculated.

Step 5: Generate new population. First, the selected operator is stochastic universal sampling;
the crossover operator is discrete recombination; the mutation operator is real mutation. The insert
strategy is to replace the worst individual in the father generation, so it is ensured that the best
individual is always copiedinto the next generation. When satisfying the migration condition, a part
of the best individuals migrate into adjacent subpopulations. Thus, a new generation consisting of
new driving regime sequences is generated.

Step 6: Iteration number plus one. Make a judgment about whether the maximum iteration
number is reached. If it is, skip to Step 7; if not, returnto Step 3.

Step 7: Output the best driving regime sequence. T, Es and the speed profile with the given
driving regime sequence are calculated.

The algorithm flowchart is shown in Figure 6.

Track Data
Read Initial Data

|

Generate Initial

Train Data

i

Population
. | Train operating Train Operating
"1 calculations calculations
h 4
Fitness Traction Energy
calculation calculation ] | consumption

A 4

Generate new |
population [ +

selection

iteration
umber

atisfy the migration
condition

N
Out put the
best driving
mode sequence > New

population

Figure 6. Algorithm flowchart for the multi-population genetic algorithm (MPGA).
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4. Case Study

To illustrate the effectiveness of the proposed model and algorithm, a case study based on the
Beijing Changping subway line (Figure 7) is presented. The total Changping line covers a length of
21 km, consisting of seven stations and six interstations. The slope and curvature radius are variable
and the maximum speed limit is 100 km/h. The operation requirements are listed in Table 5.

Nanshao

Shahegaojiaoyuan

Shahe

Gonghuacheng

Shengmingkexueyuan Zhuxinzhuang

Xierqi

Figure 7. Beijing Changping subway line.

Table 5. Operation requirements of the Changping line.

Distance Tmax Tmin

Number Interstation (m) s) )
1 Xierqgi-Shengmingkexueyuan 5441 370 308
2 Shengmingkexueyuan-Zhuxinzhuang 2368 191 159
3 Zhuxinzhuang-Gonghuacheng 3800 247 206
4 Gonghuacheng-Shahe 2025 148 123
5 Shahe-Shahegaojiaoyuan 1964 143 119
6 Shahegaojiaoyuan-Nanshao 5358 379 316

The slope data, curvature radius data and speed limit data in this case are listed in Figures 8 and 9

and Table 6.

Figure 8. Slope data.
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Figure 9. Curvature radius data.

Table 6. Speed limit data.

Starting Position End Position Speed Limit Starting Position End Position Speed Limit
(m) (m) (km/h) (m) (m) (km/h)

0 4259 100 9901 10,548 86
4259 4960 86 10,548 10,758 100
4960 5196 100 10,758 11,528 84
5196 5356 76 11,528 11,671 100
5356 5740 100 11,671 11,816 73
5740 5933 91 11,816 13,730 100
5933 6872 100 13,730 13,962 74
6872 7550 79 13,962 20,956 100
7550 9901 100

4.1. Train Traction Calculation

In the case study, the train is configured with three motor cars and three trailer cars; the
characteristics of the train are listed in Table 7, in which W,,, denotes the total mass of the motor
cars, W; denotes the total mass of trailer cars, v denotes the speed of the train, z denotes the number
of service trains and i denotes the gradient value. In Table 7, the units of the force, mass and speed
are kilonewtons, ton and kilometers per hour, respectively. The profile of train traction, braking force

and basic resistance force is shown in Figure 10.

Table 7. Characteristics of the train.

Number Parameters Characteristics

1 Empty mass (T) 199

2 Full load mass (T) 311

3 Basic resistance (N) For(0) = (16.18+§)6%4(1)22v)wm " (7.65+§)b%2075'0)w, + [0.275+0.%305<z71)]v2
. L [ 310, if 0 < 36km/h

4 Tractive characteristic (kN) F(v) = { 310 —3.67- (v—36), if 0> 36km/h
. . [ 260, if v < 60km /h

5 Braking characteristic (kN) B(v) = { 260 —325- (v—60), if v > 60km/h
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Figure 10. The profile of traction force, braking force and basic resistance force.

Figure 10 describes the traction force decreasing with the increase of train speed. This means
that the acceleration is larger when the train speed is low, and the maximum traction force cannot
support a large acceleration when the train travels at a high speed. Thus, in the traction process, the
acceleration can be described as Equation (17). Condition 1 means that when the traction force is able
to provide a large acceleration, the train acceleration is 0.8 m/s? (0.8 m/s? is the largest acceleration
value according to the operation requirement). Condition 2 means when the traction force is too
small to support the acceleration at 0.8 m/s?; the train will accelerate with the acceleration that the
maximum traction force can provide:

{ 0.8 , condition 1
a =

17
Fr(v) — For — Fgr — Fcr/M , condition 2 47

The authors simplify the acceleration as a constant in the braking process and fit the acceleration
value based on the train operation data of the Changping line. The operation data of braking are
listed in Table 8.

Table 8. Braking data of the Changping line.

Number Time (s) Speed Distance Acceleration

(m/s) (m) (m/s?)
1 358.8 18.32 5748 /
2 365 16.50 5857 —0.29
3 370 14.44 5934 —0.41
4 375 12.91 6002 —0.31
5 380 10.72 6061 —0.44
6 385 8.61 6109 —0.42
7 390 6.84 6148 —0.35
8 395 4.96 6182 —0.38
9 400 2.34 6196 -0.52
10 405.4 0 6202 —047

In the simulation case, the braking process is simplified as constant acceleration movements
according to the practical operational data. Additionally, the acceleration can be calculated according
to Equation (18). In this case, the average deceleration is — 0.39 m/s?.

Av

T At

(18)
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4.2. Simulation Results

The simulation parameters of MPGA are shown in Table 9:

Table 9. Simulation parameters of MPGA.

Number Simulation Parameters Value
1 Maximum number of generations 200
2 Number of individuals 100
3 Number of sub-populations 8
4 Generation gap 0.8
5 Mutation rate 0.008
6 Insertion rate 0.9
7 Migration rate 0.2
8 Migration intervals 20
9 Time penalty coefficient () 10,000,000

=
o

Time penalty coefficient (3) 10,000,000

Figure 11 describes the fitness result of applying MPGA. The fitness value is decreasing from the
first generation and soon keeps stable at the 117th generation, which reflects a good convergence.

Fitness value
9
x 10
3

25} .

1.5} .

0.5} .

0 1 1 | 1 1 1 L L 1
0 20 40 60 80 100 120 140 160 180 200

Generation

Figure 11. Fitness value.

The simulation results, which are shown in Table 10, show that the timetable is optimized (the
high level), and the energy consumption reduction is 6.16%. In Table 10, T}, denotes the practical trip
time, Ts denotes the optimal trip time, E, denotes the practical energy consumption and Es denotes
the optimal energy consumption.
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Table 10. Simulation results.

. Mass Tp Ts Ep Eg
Interstation ® ) ©) KW-h) (KW -h)
1 213 310 369 26.20 14.96
2 274 187 181 13.85 12.65
3 268 245 223 21.98 23.72
4 302 143 124 14.20 17.85
5 245 137 121 11.93 13.24
6 256 328 331 33.67 31.91
Total - 1350 1349 121.83 114.33
Energy saving (%) 6.16%

In addition, Figure 12 describes the optimization for the speed profile (the low level). The results
shows that this method can reduce the energy consumption efficiently by regulating the trip time for
multiple interstations on the condition that the total trip time is relatively constant.

90 T T T T

80+ .

o w}*\ H \ :

60

S \ /r Iy | J'\'\ I

a0} ]

Speed! (km/h)

30F s

20 - s
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0 0.5 1 15 2 2.5

Distance/ ( m2 x 10*

Figure 12. The optimal speed profile.

5. Conclusions

This paper proposes an energy-efficient approach to reduce the traction energy by optimizing
the train operation for multiple interstations. Both the trip time and driving strategy are considered
in the proposed optimization approach. A bi-level programming model of multiple interstations is
developed. The multi-population genetic algorithm is used to solve the problem.

Based on the operation data from the Beijing Changping subway line, a numerical example is
given to prove that the proposed method can reduce the energy consumption of multiple interstations
by 6.16%. Comparing this with the method that only optimizes the driving strategy with the fixed
trip time in the timetable, both the trip time and driving strategy are considered, which leads to a
better energy-efficient performance.
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