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Abstract: In this paper we study the effects of variable viscosity and thermal conductivity 

on the heat transfer in the pressure-driven fully developed flow of a slurry (suspension) 

between two horizontal flat plates. The fluid is assumed to be described by a constitutive 

relation for a generalized second grade fluid where the shear viscosity is a function of the 

shear rate, temperature and concentration. The heat flux vector for the slurry is assumed to 

follow a generalized form of the Fourier’s equation where the thermal conductivity k 

depends on the temperature as well as the shear rate. We numerically solve the governing 

equations of motion in the non-dimensional form and perform a parametric study to see the 

effects of various dimensionless numbers on the velocity, volume fraction and temperature 

profiles. The different cases of shear thinning and thickening, and the effect of the exponent 

in the Reynolds viscosity model, for the temperature variation in viscosity, are also 

considered. The results indicate that the variable thermal conductivity can play an important 

role in controlling the temperature variation in the flow. 

Keywords: non-linear fluids; variable viscosity; variable thermal conductivity; coal slurry; 

non-Newtonian fluids 
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1. Introduction 

In fossil fuel combustion applications, coal particles are generally transported to the combustion 

chamber via either pneumatic or hydraulic transport [1,2]. In certain cases, coal-water slurry is even 

heated prior to testing and use [3]. Coal slurries exhibit non-Newtonian flow characteristics. Theoretical 

modeling of these processes requires a complete understanding of all the phenomena involved, requiring 

constitutive modeling of the various components along with the usual balance laws. Transport properties 

such as the viscosity and the thermal conductivity for these complex fluids are important parts of the 

formulation. To model the behavior of such non-linear fluids, one can use either statistical theories or 

continuum theories, in addition to the phenomenological/experimental approaches. Within the continuum 

mechanics approach, there are two distinct ways of studying these flows. In certain applications such as 

fluidization or gasification, one may represent the mixture as a mixture of two or more interacting 

continua; this is the multi-phase approach [2,4,5]. In this approach, more specific information such as 

particle distribution, particle velocity and temperature can be obtained. Alternatively one can model the 

complex mixture, using a single-phase approach, with a constitutive relation for the suspension as a whole. 

In this approach one only works with the equations of motion for the suspension and obtains information 

about the global characteristics of the suspension. This is the approach that we take in this paper. 

Many industrial fluids exhibit non-Newtonian behavior. These non-linear fluids, such as polymers, 

molten plastics, suspensions and slurries have been widely utilized in many manufacturing and 

processing industries and understanding their friction and heat transfer characteristics is becoming more 

important. Much work has been devoted to the study of non-Newtonian fluids for the best performance 

in practical applications [6–9]. Considerable efforts have been directed toward the measurement of 

viscous properties in isothermal systems. It has been established that the thermal conductivity of 

Newtonian fluids is shear rate independent while there could be a dependency on temperature. Unlike 

Newtonian fluids, however, it has been observed that many non-Newtonian fluids are affected by the 

temperature, shear rate, volume fraction, etc. Many of the experimental studies on the thermal 

conductivity of non-Newtonian fluids have been performed under static conditions [10,11]; very few 

studies have been conducted over a range of shear rates. Among these cases where the influence of shear 

rate on the thermal conductivity of viscoelastic polymer solutions is considered one can name Cocci and 

Picot [12], Chitrangad and Picot [13], Wallace et al. [14], Loulou et al. [15], Chaliche et al. [16],  

Shin [17], Lee and Irvine [1], and Kostic and Tong [18]. The results, however, have been contradictory.  

The way the thermal conductivity depends on temperature, shear rate, viscosity and volume 

concentration, is of practical significance in mathematical formulation and the numerical modeling. 

Chaliche et al. [16] showed that by using cone-and-plane systems, that thermal conductivity increases 

gradually with increasing shear rate, depending either on temperature or on polymer concentrations.  

A higher temperature or a lower concentration results in a higher thermal conductivity. Sohn and Chen [19] 

analytically studied the influence of shear-rate-dependent thermal conductivity upon the heat transfer 

characteristics of suspensions. Their theoretical study explained the increase of thermal conductivity by 

introducing the concept of micro-scale convection, which is induced by the rotation of particles in a 

shear flow. This concept is useful in understanding the mechanism of increasing thermal conductivity in 

suspensions. Charunyakorn et al. [20] numerically studied the heat transfer in a slurry using a  

micro-encapsulated phase-change material, with a shear-rate-dependent thermal conductivity.  
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Lin et al. [21] reported the measurements of thermal conductivity for two concentrated fruit juices as 

well as some of their rheological properties; their results indicate that the thermal conductivity increases 

as the shear rate increases for the shear-thinning juice concentrates, which also agrees with the results of 

previous research for polymer. They stated that the fluid structures become more aligned along the 

streamlines and thus more orderly owing to the shearing. Such orientation of the structures should 

necessarily affect the thermal conductivity in a similar manner through the impact of structural arrangement 

on the effective diffusivity [22]. Shin and Lee [23] proposed a new correlation for the shear-rate-dependent 

thermal conductivity of suspensions based on their experimental investigations. Their study shows that 

the thermal conductivity is also strongly related to the size of the dispersed particles. Many recent works 

have been devoted to investigating thermal conductivity of nanofluids [24–26]. 

The objective of the present paper is to study the heat transfer in the fully developed flow of a slurry, 

and explore the effects of shear-rate-dependent viscosity and thermal conductivity. The arrangement of 

the paper is as follows. In the next section, the governing equations of motion and heat transfer are 

provided. Section 3 focuses on the constitutive relations for the stress tensor and the heat flux vector. In 

Section 4, we describe the geometry of the problem and provide the derivation for the one-dimensional 

form of the governing equations, as well as the boundary conditions. In Section 5, we outline the 

numerical scheme we have applied. We also perform a mesh-independence study, and present a 

comparison between the numerical results and analytical results. In Section 6, the numerical results are 

presented through a parametric study by varying the dimensionless numbers. 

2. Governing Equations of Motion and Heat Transfer 

If the slurry is treated as a single component (phase) material (If the slurry is modeled as a  

multi-component material, then the governing equations should be given for all the components, and a 

multi-phase approach should be taken. This requires not only constitutive relations for each component, 

but also for the interactions among the components), then, in the absence of any electro-magnetic effects, 

the governing equations of motion are the conservation of mass, linear momentum, and energy equations: 

Conservation of mass: 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝐮) = 0 (1) 

where  is the density of the fluid; /t is the partial derivative with respect to time; div is the divergence 

operator; and u is the velocity vector. For an isochoric motion, 𝑑𝑖𝑣 𝐮=0. 

Conservation of linear momentum: 

𝜌
𝑑𝐮

𝑑𝑡
= 𝑑𝑖𝑣 𝐓 + 𝜌𝐛 (2) 

where b is the body force vector; T is the Cauchy stress tensor; and d/dt is the total time derivative, given 

by 
𝑑(.)

𝑑𝑡
=

𝜕(.)

𝜕𝑡
+ [𝑔𝑟𝑎𝑑(. )]𝐮. The balance of moment of momentum reveals that, in the absence of couple 

stresses, the stress tensor is symmetric. 

Conservation of Energy: 

𝜌
𝑑𝜀

𝑑𝑡
= 𝐓: 𝐋 − 𝑑𝑖𝑣 𝐪 + 𝜌𝑟 (3) 
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where  is the specific internal energy; L is the gradient of velocity; q is the heat flux vector; and r is the 

specific radiant energy. Thermodynamical considerations require the application of the second law of 

thermodynamics or the entropy inequality. The local form of the entropy inequality is given by  

(see [27], p. 130): 

𝜌�̇� + 𝑑𝑖𝑣 𝛗 − 𝜌𝑠 ≥ 0 (4) 

where 𝜂(𝐱, 𝑡) is the specific entropy density; 𝛗(𝐱, 𝑡) is the entropy flux; and s is the entropy supply 

density due to external sources, and the dot denotes the material time derivative. If it is assumed that 

𝝋 =
𝐪

𝜃
 ; and 𝑠 =

𝑟

𝜃
 , where θ is the absolute temperature, then Equation (4) reduces to the  

Clausius-Duhem inequality: 

𝜌�̇� + 𝑑𝑖𝑣 
𝐪

𝜃
− 𝜌

𝑟

𝜃
≥ 0 (5) 

Even though we do not consider the effects of the Clausius-Duhem inequality in our problem, for a 

complete thermo-mechanical study, the Second Law of Thermodynamics must be considered [27–30]. 

To achieve “closure” for these equations, constitutive relations are needed for T, r, and q. In the next 

section we will discuss briefly the constitutive modeling issues. 

3. Constitutive Relations 

For a thermo-mechanical description of a problem, in addition to the balance laws, one requires 

constitutive relations for the stress tensor, the heat flux vector, the internal energy, and the radiation.  

The effects of radiation will be ignored in the present study. We will next briefly discuss the constitutive 

relations which we will use for the stress tensor and the heat flux vector. 

3.1. Stress Tensor  

Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume 

fraction of the coal particles, and the mean size and the size distribution of the coal, but also on the shear 

rate, since the slurry behaves as a shear-rate dependent fluid [31]. There are also studies which indicate 

that preheating the fuel (slurry) results in better performance [32,33]; as a result of such heating,  

the viscosity of the slurry changes. Constitutive modeling of these non-linear fluids, commonly referred 

to as non-Newtonian fluids, has received much attention [34]. 

In general, non-Newtonian fluids differ from Newtonian fluids in at least two ways: (1) they exhibit 

normal stress effects, such as rod-climbing and die-swell; and (2) they exhibit shear-thinning or  

shear-thickening which is the decrease or increase in viscosity with increasing shear rate, respectively. 

Both these phenomena introduce non-linearities into the equations. Among other differences one can 

name viscoelastic effects such as creep and relaxation or the presence of yield stress for some non-linear 

fluids. Perhaps the simplest model which can capture the normal stress effects (which could lead to 

phenomena such as ‘die-swell’ and ‘rod-climbing’, which are manifestations of the stresses that develop 

orthogonal to planes of shear) is the second grade fluid, or the Rivlin-Ericksen fluid of grade two [30,35]. 

We will use a modified form of the second grade fluid (See [36] for a review). 

In this paper we use the constitutive model given in [37] and advocated by Miao et al. [38,39], where: 
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𝐓 = −𝑝𝟏 + [𝜇0 (1 −
𝜙

𝜙𝑚𝑎𝑥
)
−𝜖

𝑒𝛾(𝜃0−𝜃)]𝛱
𝑚
2𝐀1 + 𝛼1𝐀2 + 𝛼2𝑨1

2 (6) 

where: 

Π =
1

2
tr 𝐀1

2  (7) 

is the second invariant of the symmetric part of the velocity gradient, 𝟏 is the identity tensor, and m is a 

material parameter. When m = 0 and there are no temperature or volume fraction effects, we recover the 

standard second grade fluid model, and when m < 0, the fluid is shear-thinning, and if m > 0, the fluid is 

shear-thickening [40]. Notice that m = n − 1, where n is the usual power-law exponent for the power-law 

fluid model. Also 𝜙 is the volume fraction: the function 𝜙 is an independent kinematical variable called 

the volume distribution or volume fraction function (related to concentration) having the property  

0 ≤ 𝜙(x, 𝑡) ≤ 𝜙𝑚𝑎𝑥 < 1. The function 𝜙 is represented as a continuous function of position and time; 

in reality, 𝜙 in such a system is either one or zero at any position and time, depending upon whether one 

is pointing to a particle or to the void space (fluid) at that location. Now, 𝜌 is related to 𝜌𝑓 (density of pure 

fluid) and 𝜙 through 𝜌 = (1 − 𝜑)𝜌𝑓. 𝜙𝑚𝑎𝑥 is the maximum crystal fraction in which flow can occur, 𝜃 is 

the temperature, 𝜃0 and 𝜇0 are reference values,  is a constant and 𝛼1 and 𝛼2 are material moduli, which 

are commonly referred to as the normal stress coefficients. In an important paper, Fosdick and  

Rajagopal [41] show that irrespective of whether 𝛼1 + 𝛼2 is positive, the fluid is unsuitable if 𝛼1 is 

negative. In particular, they showed that if it is assumed that 𝜇 > 0, 𝛼1 < 0, 𝛼1 + 𝛼2 ≠ 0 (*), which as 

many experiments have reported to be the case “for those fluids which the experimentalists assume to 

be constitutively determined by (4), at least sufficiently well as a second order approximation”  

([41], p. 147), then certain anomalous results follow. Fosdick and Rajagopal [41] proved a theorem 

which indicates that if (*)2,3 hold, then an unusual behavioral property, not to be expected for any 

rheological fluid occurs, namely, “that the larger the viscosity, keeping everything else fixed, the faster 

that initial data is amplified in motions which take place under strict isolation.” For further details on 

this and other relevant issues in fluids of differential type, we refer the reader to the review article by 

Dunn and Rajagopal [42]. The kinematical tensors A1 and A2 are defined through: 

{
 

 
𝐀𝟏 = 𝐋 + 𝐋

T

𝐀𝟐 =
𝑑𝐀𝟏
𝑑𝑡

+ 𝐀𝟏𝐋 + 𝐋
T𝐀𝟏

𝐋 = 𝑔𝑟𝑎𝑑𝐮

 (8) 

Equation (6) uses some of the ideas proposed by Gupta and Massoudi [31] who also provided a 

generalized form of a constitutive model for the second grade fluid by allowing the shear viscosity to be 

a function of temperature where 𝜇(𝜃) was given by the Reynolds viscosity model: 

𝜇(𝜃) = 𝜇0𝑒
−𝑀𝜃 (9) 

where 𝑀 = 𝛾(𝜃1 − 𝜃0) . This viscosity law was first proposed by Reynolds [43] in his theory of 

lubrication, where he deduced an empirical formula based on the experimental results of the viscosity of 

olive oil at different temperatures; this expression is oftentimes sued in lubrication processes.  

In the model described in Equation (6), the apparent viscosity is assumed to be a function of 

temperature and volume fraction, following the Einstein-Roscoe relation [44,45] (if ϵ = 2.5): 
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𝜇(𝜃, 𝜙) = 𝜇0 (1 −
𝜙

𝜙𝑚𝑎𝑥
)
−2.5

𝑒𝛾(𝜃0−𝜃) (10) 

Note that in Equation (6) we interpret p as the pressure of the fluid suspension which will be a function of 

the volume fraction and thus in a sense the model is a generalization of the second grade compressible-type 

fluid. That is, in this model, we are assuming that the presence of the particles affects the viscosity and 

the pressure of the fluid. In this paper, we will study the slurry flow in a channel, based on the assumption 

that the stress tensor for the fluid can be described by the constitutive Equation (6). This model 

incorporates into the second grade fluid model, a viscosity function which depends on the shear rate, 

temperature and volume fraction.  

The thermodynamics and stability of second grade fluids have been studied in detail by Dunn and 

Fosdick [46]. They show that if the fluid is to be thermodynamically consistent in the sense that all 

motions of the fluid meet the Clausius-Duhem inequality and that the specific Helmholtz free energy of 

the fluid is a minimum in equilibrium, then {
𝜇 ≥ 0
𝛼1 ≥ 0

𝛼1 + 𝛼2 ≥ 0
 

3.2. Heat Flux Vector  

The classical theory of heat conduction, first proposed by Fourier [47,48] and later generalized by 

Duhamel (see [49]) assumes that the constitutive relation for the heating flux h is a linear function of the 

temperature gradient 𝒉 = 𝐊(𝜃, 𝐅)∇𝜃, where 𝜃 is the temperature, F is the deformation gradient, and K 

is the thermal conductivity tensor. Fourier was the first person [50] to state that heat conduction depends 

on the temperature gradient and not on the temperature difference between the two adjacent parts of a 

solid body, where: 

𝐪 = −𝑘∇𝜃 (11) 

where for more complex materials k is considered as an effective or modified form of the thermal 

conductivity [51]. In general, k can also depend on concentration, temperature, etc., and in fact, for 

anisotropic material, k becomes a second order tensor. For complex materials, such as polymers and 

granular materials, whether stationary or in motion, the thermal conductivity of the material is assumed 

to depend on parameters such as volume fraction, particle size, shear rate, etc. [1,52,53]. 

In heat transfer studies of suspensions, composites, porous and granular materials one needs to know 

a priori whether the material is a porous one with a second phase interspersed in it, or whether the 

material is an assembly of distinct particles with the interstices filled with a gas or a liquid [54,55]. In 

general, as Batchelor [56] points out: “Most of the bulk properties of two-phase systems about which one 

would like to be able to make predictions are ‘transport’ properties; that is to say, they represent the 

ability of the material as a whole to transfer some conservable quantity, such as heat, mass, electric, or 

momentum, in response to an imposed gradient of intensity of that conservable quantity.” From the 

continuum mechanics perspective, these transport properties are modeled as parts of the constitutive 

relations for the stress tensor, heat flux vector, etc. 

Recently, Massoudi [57,58] assumed that the heat flux vector q for a density-gradient-dependent fluid 

can be given by: 
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𝐪 = 𝐪(𝜃, 𝐠, 𝜌,𝐦, 𝐮, grad 𝐮) (12) 

where u is the velocity;  is the temperature;  is the density [𝜌 = (1 − 𝜑)𝜌𝑓 ]; 𝐠 = grad𝜃  and  

𝐦 = grad 𝜌. Then frame-indifference implies 𝐪 = 𝐪(𝜃, 𝐠, 𝜌,𝐦, 𝐃). This is a generalization of a case 

presented in Bowen ([59], p. 161) for a compressible heat conducting viscous fluid. That is, the density 

gradient (or volume fraction gradient) plays a role, not only in the distribution of the materials, but also 

in the way in which it influences the heat conduction. Massoudi [57,58] then showed that a general 

representation for the heat flux vector given by Equation (12) is: 

𝐪 = 𝑎1𝐠 + 𝑎2𝐦+ 𝑎3𝐃𝐠 + 𝑎4𝐃𝐦+ 𝑎5𝐃
2𝐠 + 𝑎6𝐃

2𝐦 (13) 

where a1 – a6 are scalar functions of the appropriate invariants of the tensor and vector terms. It can be 

seen that (i) when 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 = 𝑎6 = 0 , and 𝑎1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝑘 , then we recover the 

standard Fourier’s Law, 𝐪 = −𝑘∇𝜃, and (ii) when 𝑎1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝑘, and 𝑎2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we have 

𝐪 = −𝑘∇𝜃 + 𝑎2∇𝜙 (14) 

Interestingly, Soto et al. [60] showed that based on molecular dynamics (MD) simulations of inelastic 

hard spheres (IHS), the basic Fourier’s law has to be modified for the case of fluidized granular media, 

similar to Equation (14). It is noted that Wang [61] also derived a general expression for the heat flux 

vector for a fluid where heat convection is also important; he assumed that 𝐪 = 𝐟(𝜃, ∇𝜃, 𝐯, 𝐋, 𝑋) where f 

is a vector-valued function, 𝜃 the temperature, ∇𝜃 is the gradient of temperature, v the velocity vector, 

L its gradient, and X designates other scalar-valued thermophysical parameters. A simplified form of 

Equation (13) was used in a recent study by Yang et al. [62]. In general, this method is very difficult (If 

we assume that q can depend explicitly on the temperature gradient, concentration gradient, etc., then 

clearly the problem would become more non-linear. An example of this type of constitutive relation is a 

power-law type model suggested by Rodrigues and Urbano [63], where 𝐪 = −𝑘∇𝜃 = −|∇𝜃|𝜔−2∇𝜃 where 

1 < 𝜔 < ∞ . When 𝜔 = 2 , the above equation reduces to the usual Fourier’s law) as it requires 

knowledge of the various coefficients in Equation (14) and in the absence of many physical experiments, 

the only option is to do a parametric/numerical study. This was the case in [62]. In the present study, we 

take a different, and perhaps a more practical approach, namely we use the results of experiments to 

obtain correlations for the shear-dependent thermal conductivity. 

Based on the experimental data of Lee and Irvine [1] we obtain an expression for the thermal 

conductivity which depends on the shear rate and temperature: 

𝑘 = (𝑐1𝜃
3 + 𝑐2𝜃

2 + 𝑐3𝜃 + 𝑐4)Π
𝑚 2⁄ + 𝑐5𝜃

3 + 𝑐6𝜃
2 + 𝑐7𝜃 + 𝑐8 (15) 

When the values of the constants are chosen as follows: 

𝑐1 = −2.33 × 10
−8, 𝑐2 = 2.65 × 10

−6, 𝑐3 = −8.52 × 10
−5, 𝑐4 = 0.00103, 

𝑐5 = 9 × 10
−6, 𝑐6 = −0.001065, 𝑐7 = 0.04085, 𝑐8 = 0.107,𝑚 = 1 

then Equation (15) agrees well with the figure of thermal conductivity vs. shear rate for CMC 5000-wppm 

solution at 𝜃 = 50 ℃, 40 ℃, 30 ℃, 20 ℃ in Lee and Irvine [1]. When 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 𝑐6 =

𝑐7 = 0, 𝑐8 = 𝑘 , the correlation for thermal conductivity reduces to the case for constant thermal 

conductivity. In this paper, we will use Equations (11) and (15) for the thermal conductivity. In the next 

section, we will discuss a simple boundary value problem. 
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4. Geometry and the Kinematics of the Flow 

We consider the fully developed flow of a slurry (a suspension of solid particles in a fluid) 

characterized by Equation (6) in a heated channel driven by a pressure gradient along the channel  

(see Figure 1). The two plates are at y = 0 and y = H. We assume that the constitutive equations for the 

stress tensor and the heat flux vector are given by Equations (6) and (11). The volume fraction,  

velocity and temperature profiles are assumed to have the form: 

𝜙 = 𝜙(𝑦), 𝐮 = 𝑢(𝑦)𝐞𝒙, 𝜃 = 𝜃(𝑦) (16) 

 

Figure 1. Schematic representation of the flow. 

Using Equation (16), the conservation of mass is automatically satisfied. Substituting Equation (6) 

into Equation (2), the momentum equations are obtained in x and y directions: 

−
𝜕𝑝

𝜕𝑥
+
𝑑

𝑑𝑦
(𝜇0 (1 −

𝜙

𝜙𝑚𝑎𝑥
)
−2.5

𝑒𝛾(𝜃0−𝜃) |
𝑑𝑢

𝑑𝑦
|
𝑚 𝑑𝑢

𝑑𝑦
) = 0 (17) 

∂

∂y
(−𝑝 + (2𝛼1 + 𝛼2) (

𝑑𝑢

𝑑𝑦
)
2

) − (1 − 𝜙)𝜌𝑓𝑔 = 0 (18) 

The pressure p is assumed to depend on the volume fraction (For example, as an engineering 

approximation, it is sometime assumed that the overall pressure drop in a pneumatic conveying system 

has two components: one is the pressure drop due to the gas alone and another one is the pressure drop 

due to the presence of the solid particles (see [46], p. 172). That is, ∆𝑝𝑐𝑜𝑛𝑣𝑒𝑦𝑖𝑛𝑔 𝑙𝑖𝑛𝑒 = ∆𝑝𝑔𝑎𝑠 + ∆𝑝𝑠𝑜𝑙𝑖𝑑𝑠 

where it is assumed that the ∆𝑝𝑠𝑜𝑙𝑖𝑑𝑠 is related to the gas pressure through a parameter 𝜔 where 𝜔 is 

based on material properties, such as density, and systems parameters such as the loading ratio, etc.): 

𝑝 = 𝑔(𝑥) + 𝑓2𝜙 (19) 

where we assume 𝑔(𝑥) = 𝑓1𝑥; where 𝑓1  and 𝑓2 are constants; and 𝑓1, 𝑓2 < 0. 

With these assumptions Equations (17) and (18) become: 

𝑑

𝑑𝑦
(𝜇0 (1 −

𝜙

𝜙𝑚𝑎𝑥
)
−2.5

𝑒𝛾(𝜃0−𝜃) |
𝑑𝑢

𝑑𝑦
|
𝑚 𝑑𝑢

𝑑𝑦
) = 𝑓1 (20) 

𝑑

𝑑𝑦
(−𝑓2𝜙 + (2𝛼1 + 𝛼2) (

𝑑𝑢

𝑑𝑦
)
2

) − (1 − 𝜙)𝜌𝑓𝑔 = 0 (21) 

For the balance of energy (Equation (3)), the specific internal energy 𝜀 is related to the specific 

Helmholtz free energy through (see [46]): 
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𝜀 = 𝜓 + 𝜃𝜂 = 𝜀(𝜃, 𝐀𝟏, 𝐀𝟐 ) (22)  

where 𝜓 is specific Helmholtz free energy; 𝜂 is the specific entropy. With Equation (16) it follows that: 

𝑑𝜀

𝑑𝑡
= 0 (23) 

Also, the specific radiant energy, r, is assumed to be negligible. The energy equation becomes: 

𝜇0 (1 −
𝜙

𝜙𝑚𝑎𝑥
)
−2.5

𝑒𝛾(𝜃0−𝜃) |
𝑑𝑢

𝑑𝑦
|
𝑚+2

− 𝑑𝑖𝑣 𝐪 = 0 (24) 

where the first term is a measure of viscous dissipation (see [64]). Substituting Equation (15) into 

Equation (11) and we have: 

𝑑𝑖𝑣 𝐪 = −[𝑐1𝜃
3 + 𝑐2𝜃

2 + 𝑐3𝜃 + 𝑐4]
𝑑2𝑢

𝑑𝑦2
𝑑𝜃

𝑑𝑦
− [3𝑐1𝜃 + 2𝑐2𝜃 + 𝑐3]

𝑑𝑢

𝑑𝑦
(
𝑑𝜃

𝑑𝑦
)
2

− [3𝑐5𝜃
2

+ 2𝑐6𝜃 + 𝑐7] (
𝑑𝜃

𝑑𝑦
)
2

− [(𝑐1𝜃
3 + 𝑐2𝜃

2 + 𝑐3𝜃 + 𝑐4)
𝑑𝑢

𝑑𝑦
+ 𝑐5𝜃

3 + 𝑐6𝜃
2 + 𝑐7𝜃 + 𝑐8]

𝑑2𝜃

𝑑𝑦2
 

(25) 

To solve the governing equations, we need two boundary conditions for the velocity field and two 

boundary conditions for the temperature, and one boundary condition for the volume fraction. At the 

two walls we apply the no-slip boundary condition for the velocity [5], and we impose constant values 

for the temperature: 

at 𝑦 = 0 {
𝑢 = 0
𝜃 = 𝜃0

 (26) 

at 𝑦 = 0 {
𝑢 = 0
𝜃 = 𝜃1

 (27) 

where 𝜃1 > 𝜃0. We also assume an integral condition for the volume fraction, where the integral value 

of the volume fraction over the cross section is constrained to be a constant: 

∫ 𝜙𝑑𝑦
𝐻

0

= 𝑁𝜙 (28) 

where 𝑁𝜙 is a measure of the amount of particles in the system. 

In order to non-dimensionalize the equations, we introduce the following dimensionless parameters: 

�̅� =
𝑦

𝐻
, �̅� =

𝑢

𝑉
, �̅� =

𝜙

𝜙𝑚𝑎𝑥
, �̅� =

𝜃 − 𝜃0
𝜃1 − 𝜃0

 (29) 

where H is the distance between the two walls; V is a reference velocity; 𝜃0 and 𝜃1 are the temperature 

of the lower and upper walls respectively. 

The dimensionless forms of the governing equations are: 

𝑑2�̅�

𝑑�̅�2
=

𝑀

𝑚 + 1

𝑑�̅�

𝑑�̅�

𝑑�̅�

𝑑�̅�
−

2.5

𝑚 + 1

1

1 − �̅�

𝑑�̅�

𝑑�̅�

𝑑�̅�

𝑑�̅�
+

𝐵1
(1 − �̅�)−2.5

1

𝑒−𝑀�̅�(𝑚 + 1)|�̅�′|𝑚
 (30) 

𝐵2
𝑑�̅�

𝑑�̅�

𝑑2�̅�

𝑑�̅�2
=
𝑑�̅�

𝑑�̅�
+ 𝐵4(1 − �̅�) (31) 
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𝐵3(1 − �̅�)
−2.5𝑒−𝑀�̅� |

𝑑�̅�

𝑑�̅�
|
𝑚+2

+ 𝐹1(�̅�) (
𝑑2�̅�

𝑑�̅�2
𝑑�̅�

𝑑�̅�
+
𝑑�̅�

𝑑�̅�

𝑑2�̅�

𝑑�̅�2
) + 𝐹2(�̅�)

𝑑�̅�

𝑑�̅�
(
𝑑�̅�

𝑑�̅�
)

2

+ 𝐹3(�̅�) (
𝑑�̅�

𝑑�̅�
)

2

+ 𝐹4(�̅�)
𝑑2�̅�

𝑑�̅�2
= 0 

(32) 

where: 

𝐹1(�̅�) = 𝑅1(�̅� + 𝑇)
3 + 𝑅2(�̅� + 𝑇)

2 + 𝑅3(�̅� + 𝑇) + 𝑅4 

𝐹2(�̅�) = 3𝑅1(�̅� + 𝑇)
2 + 2𝑅2(�̅� + 𝑇) + 𝑅3 

𝐹3(�̅�) = 3𝑅5(�̅� + 𝑇)
2 + 2𝑅6(�̅� + 𝑇) + 𝑅7 

𝐹4(�̅�) = 𝑅5(�̅� + 𝑇)
3 + 𝑅6(�̅� + 𝑇)

2 + 𝑅7(�̅� + 𝑇) + 1 

(33) 

𝑀 = 𝛾(𝜃1 − 𝜃0), 𝐵1 = 𝑓1
𝐻

𝜇0
|
𝐻

𝑉
|
𝑚+1

, 𝐵2 =
2(2α1 + α2)

𝑓2𝜙𝑚𝑎𝑥
(
𝑉

𝐻
)
2

, 𝐵3 =
𝜇0𝑉

2

𝑐8(𝜃1 − 𝜃0)
|
𝑉

𝐻
|
𝑚

, 𝐵4

=
𝜌𝑓𝑔𝐻

𝑓2
, 𝑇 =

𝜃0
𝜃1 − 𝜃0

 
(34) 

𝑅1 =
𝑉

𝐻

𝑐1
𝑐8
(𝜃1 − 𝜃0)

3, 𝑅2 =
𝑉

𝐻

𝑐2
𝑐8
(𝜃1 − 𝜃0)

2, 𝑅3 =
𝑉

𝐻

𝑐3
𝑐8
(𝜃1 − 𝜃0), 

𝑅4 =
𝑉

𝐻

𝑐4
𝑐8
, 𝑅5 =

𝑐5
𝑐8
(𝜃1 − 𝜃0)

3, 𝑅6 =
𝑐6
𝑐8
(𝜃1 − 𝜃0)

2, 𝑅7 =
𝑐7
𝑐8
(𝜃1 − 𝜃0) 

(35) 

Now, 𝐵1 is a measure of the effect of the pressure gradient along the flow direction compared to the 

viscous effects; 𝐵2 represents the ratio of the normal stress differences to the force caused by the pressure 

in the y direction; 𝐵3 is a measure of viscous dissipation; 𝐵4 is the ratio of the gravity to the pressure 

gradient; 𝑇 is a reference temperature representing the ratio of the upper wall temperature to the lower 

wall temperature; and 𝑅1~𝑅7 represent the dimensionless forms of the coefficients in Equation (15). 

The dimensionless forms of the boundary conditions are: 

at �̅� = 0 {
�̅� = 0
�̅� = 0

 (36) 

at �̅� = 1 {
�̅� = 0
�̅� = 1

 (37) 

∫ �̅�𝑑�̅�
1

0

= 𝑁 (38) 

where N is an average value of �̅� integrated over the cross section (an input to the problem). 

5. Numerical Scheme 

Numerical results are obtained by solving the governing Equations (30)–(32) together with the 

boundary conditions Equations (36)–(38) using finite difference method. The three equations need to be 

integrated simutaneously for the three unknowns: velocity, volume fraction, and temperature. We apply 

the Newton Raphson’s method. Multiplying both sides of Equation (30) by 
𝑑�̅�

𝑑�̅�
, and then substituting 

Equation (31) into (30) we obtain: 
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𝑑�̅�

𝑑�̅�
+ 𝐵4(1 − �̅�)

=
𝑀𝐵2
𝑚+ 1

𝑑�̅�

𝑑�̅�
(�̅�′)2 −

2.5𝐵2
𝑚 + 1

1

1 − �̅�

𝑑�̅�

𝑑�̅�
(�̅�′)2 +

𝐵1𝐵2
(1 − �̅�)−2.5

�̅�′

𝑒−𝑀�̅�(𝑚 + 1)|�̅�′|𝑚
 

(39) 

�̅�𝑗 − �̅�𝑗−1

ℎ
+ 𝐵4(1 − �̅�𝑗) =

𝑀𝐵2
𝑚 + 1

�̅�𝑗 − �̅�𝑗−1

ℎ
(𝑢�̅�

′)
2
−
2.5𝐵2
𝑚 + 1

1

1 − �̅�𝑗

�̅�𝑗 − �̅�𝑗−1

ℎ
(𝑢�̅�

′)
2

+
𝐵1𝐵2

(1 − �̅�𝑗)
−2.5

𝑢�̅�
′

𝑒−𝑀�̅�𝑗(𝑚 + 1)|𝑢�̅�
′|
𝑚 

(40) 

where 𝑢�̅�
′ =

�̅�𝑗−�̅�𝑗−1

ℎ
 

We first assume initial guesses for the velocity, volume fraction and temperature to start the iteration. 

The value of the volume fraction at point j, �̅�𝑗, can be obtained using the Newton’s method through the 

following scheme: 

�̅�𝑗_𝑛𝑒𝑤 = �̅�𝑗 −
𝐹𝜙

𝐹𝜙
′  (41) 

where: 

𝐹𝜙 =
�̅�𝑗 − �̅�𝑗−1

ℎ
+ 𝐵4(1 − �̅�𝑗) −

𝑀𝐵2
𝑚+ 1

�̅�𝑗 − �̅�𝑗−1
ℎ

(𝑢�̅�
′)
2

+
2.5𝐵2
𝑚+ 1

1

1 − �̅�𝑗

�̅�𝑗 − �̅�𝑗−1
ℎ

(𝑢�̅�
′)
2
−

𝐵1𝐵2

(1 − �̅�𝑗)
−2.5

𝑢�̅�
′

𝑒−𝑀�̅�𝑗(𝑚 + 1)|𝑢�̅�
′|
𝑚 

(42) 

𝐹𝜙
′ =

1

ℎ
− 𝐵4 +

2.5𝐵2
𝑚 + 1

1

1 − �̅�𝑗

(𝑢�̅�
′)
2

ℎ
(
�̅�𝑗 − �̅�𝑗−1

1 − �̅�𝑗
+ 1) +

2.5 𝐵1𝐵2𝑢�̅�
′

𝑒−𝑀�̅�𝑗(𝑚 + 1)|𝑢�̅�
′|
𝑚 (1 − �̅�𝑗)

1.5
 (43) 

and �̅�𝑗 is replaced with �̅�𝑗_𝑛𝑒𝑤 in the next step until it satisfies the convergence criterion: 

|
�̅�𝑗_𝑛𝑒𝑤 − �̅�𝑗

�̅�𝑗_𝑛𝑒𝑤
| < 𝑒𝑟𝑟1 (44) 

With the new values of volume fraction at each point, the velocity is simply calculated through: 

�̅�𝑗 =
1

2
{�̅�𝑗+1 + �̅�𝑗−1 − ℎ

2 [
𝑀

𝑚 + 1

�̅�𝑗 − �̅�𝑗−1
ℎ

𝑢�̅�
′

−
2.5

𝑚 + 1

1

1 − �̅�𝑗

�̅�𝑗 − �̅�𝑗−1
ℎ

𝑢�̅�
′ +

𝐵1(1 − �̅�𝑗)
−2.5

𝑒−𝑀�̅�𝑗(𝑚 + 1)|𝑢�̅�
′|
𝑚]} 

(45) 

The solution of temperature follows a similar procedure as the volume fraction while: 

�̅�𝑗_𝑛𝑒𝑤 = �̅�𝑗 −
𝐹𝜃
𝐹𝜃
′  (46) 

where: 
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𝐹𝜃 = 𝐵3(1 − �̅�𝑗)
−2.5

𝑒−𝑀�̅�𝑗|𝑢�̅�
′|
𝑚+2

+ 𝐹1(�̅�𝑗) (𝑢�̅�
′′
�̅�𝑗 − �̅�𝑗−1

ℎ
+ 𝑢�̅�

′
�̅�𝑗+1 − 2�̅�𝑗 + �̅�𝑗−1

ℎ2
)

+ 𝐹2(�̅�𝑗)𝑢�̅�
′ (
�̅�𝑗 − �̅�𝑗−1

ℎ
)

2

+ 𝐹3(�̅�𝑗) (
�̅�𝑗 − �̅�𝑗−1

ℎ
)

2

+ 𝐹4(�̅�𝑗)
�̅�𝑗+1 − 2�̅�𝑗 + �̅�𝑗−1

ℎ2
 

(47) 

𝐹𝜃
′ =

𝑑𝐹𝜃

𝑑�̅�𝑗
 (48) 

With all the values of velocity, volume fraction and temperature obtained through Newton iteration, 

we then check if the results (in the current step) have converged compared to the previous step by: 

√𝑚𝑎𝑥𝑢
2 +𝑚𝑎𝑥𝜙

2 +𝑚𝑎𝑥𝜃
2 < 𝑒𝑟𝑟2 (49) 

where: 

𝑚𝑎𝑥𝑥 = max
𝑗=1,2,…,𝑛

|
�̅�𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − �̅�𝑗

𝑙𝑎𝑠𝑡

�̅�𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 | , 𝑥 = 𝑢, 𝜙, 𝜃 (50) 

To apply the integral condition given by Equation (38), the volume fraction values are integrated 

using the composite Simpson’s rule: 

𝑁𝑒𝑠𝑡 = ∫ �̅�𝑑�̅�
1

0

≈
ℎ

3
[�̅�(�̅�0) + 4�̅�(�̅�1) + 2�̅�(�̅�2) + 4�̅�(�̅�3) + 2�̅�(�̅�4) + ⋯+ �̅�(�̅�𝑛)] (51) 

where ℎ =
1

𝑛
 with the domain split up in n subintervals equally. This estimated value is then used to 

correct the initial guess of the volume fraction for the next iteration by �̅�𝑗_𝑛𝑒𝑤 = �̅�𝑗 + ∆�̅�𝑗, where: 

∆�̅�𝐽 =
3

ℎ(3𝑛 − 3)
(𝑁 − 𝑁𝑒𝑠𝑡) (52) 

until the iteration finally satisfies the criterion: 

|
𝑁𝑒𝑠𝑡 − 𝑁

𝑁𝑒𝑠𝑡
| < 𝑒𝑟𝑟3 (53) 

We also performed a mesh-independence study to make sure the results are obtained independent of 

the mesh size. The tolerance values also change as the mesh is refined: 

𝑒𝑟𝑟1 = 1 × 10
−8ℎ, 𝑒𝑟𝑟2 = 1 × 10

−4ℎ, 𝑒𝑟𝑟3 = 1 × 10
−4ℎ (54) 

We can see from Figure 2 that the numerical scheme can be considered to be independent of the mesh 

size. Considering Figure 2a which shows some minor deviations in the velocity profiles when  

ℎ = 0.1, 0.05, we choose ℎ = 0.02 in the current study.  
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Figure 2. (a) velocity profiles (b) volume fraction profiles (c) temperature profiles under 

different mesh sizes.𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵2 = 0.01, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 

𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 0.02,−0.02, 0.01, 2.3, −9, 11 

Also, in order to verify the accuracy of the numerical scheme we attepmt to find an analytical solution 

for the governing equations by testing a limiting case (an idelaized or special case) where  

𝑚 = 0,𝑀 = 0, 𝐵1 = −2, 𝐵2 = 0, 𝐵3 = 50, 𝐵4 = 0, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = 0. The solution is: 

{
 
 

 
 �̅� =

1

2
𝑋1𝑦

2 −
1

2
𝑋1𝑦

�̅� = 𝑁

�̅� = −
1

24
𝑋2𝑋1

2(2�̅�4 − 4�̅�3 + 3�̅�2 − �̅�) + �̅�

 (55) 

where 𝑋1 =
𝐵1

(1−𝑁)−2.5
, 𝑋2 = 𝐵3(1 − 𝑁)

−2.5. The analytical solutions are compared with the numerical 

solution with the same values of the dimensionless numbers and mesh size of 0.02. The two solutions 

are plotted together in Figure 3. It is clear that the numerical solution coincide with the analytical 

solution, verifying that the numerical scheme with the mesh size of 0.02 is capable of providing  

good results. 
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Figure 3. (a) velocity profiles (b) volume fraction profiles (c) temperature profiles from the 

analytical and numerical solutions. 𝑚 = 0,𝑀 = 0, 𝐵1 = −2, 𝐵2 = 0, 𝐵3 = 50, 𝐵4 = 0, 

𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = 0. 

6. Results and Discussion 

We will now look at the effects of m, M, 𝐵1, 𝐵2, 𝐵3, 𝐵4 by changing their values within a designated 

range as shown in Table 1.  

Table 1. Designated values of the dimensionless numbers and parameters. 

m M B1 B2 B3 B4 R1 R5 

−0.6, −0.3, 

0, 0.3 

0.1, 0.7, 

1.2, 1.5 

−0.5, −1.5,  

−2, −3 

0, 0.01, 

0.02, 0.05 

0, 10,  

25, 50 

0.05, 0.1, 

0.2, 0.3 

0, −0.1, 

−0.3, −0.8 

0, 0.1,  

2.5, 4 

The representative values of other dimensionless numbers and parameters will be shown below the 

following figures when we discuss the effects of each parameter. 
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6.1. Effect of m 

Figure 4 shows the effect of the power- law exponent m on velocity, volume fraction and temperature. 

It can be seen that the index m has major effects on the velocity distribution.  

 

Figure 4. (a) Effect of m on the dimensionless velocity distribution. (b) Effect of m on the 

volume fraction distribution. (c) Effect of m on the temperature distribution. 𝑀 = 1, 𝐵1 = −2,  

 𝐵2 = 0.01, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 0.02, −0.02, 0.01, 2.3, −9, 1. 

It is evident from Figure 4a that the velocity increases as the exponent m becomes larger. When the 

fluid is shear-thickening (m > 0), it moves faster and produces a larger velocity gradient in the flow 

domain. This behavior is a common feature of shear-thickening fluids as shown for example in  

Figure 3.3 of Chhabra and Richardson [65]. In these situations, the center-line velocity, when compared 

to the center-line velocity for a Newtonian fluid (m = 0), is higher for a shear-thickening fluid (𝑚 > 0) 

than for a shear-thinning fluid (𝑚 < 0). We also observe a similar phenomenon in Figure 4a,b depicts 

the volume fraction distribution, which is almost not affected by m. The exponent m also has some minor 

influence on the temperature profile, which can be seen in Figure 4c. The slope of the temperature profile 

slightly changes towards a constant value as the value of m becomes more negative. 
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6.2. Effect of M 

Figure 5a displays the effect of M, the exponent in the Reynolds viscosity model, on the velocity 

profile. While M affects the velocity profilel significantly, it seems it has little influence on the 

temperature as shown in Figure 5c, where it is noticed that the viscous term (1 − �̅�)−2.5𝑒−𝑀�̅�𝛱𝑚/2 

decreases when the value of M increases. This conforms to the results in Figure 5a where velocity 

becomes larger as M increases, due to a smaller viscosity. Figure 5b also shows that a larger M leads to 

a greater gradient of volume fraction only in the region near the upper wall. The greater velocity gradient 

causes the volume fraction to vary in a broader range. Such difference in the four curves of volume 

fraction is more evident at the upper wall where the temperature is higher than most of the flow domain. 

When M approaches zero, the temperature is changing almost linearly from the lower wall to the upper one. 

 

Figure 5. (a) Effect of M on the dimensionless velocity distribution. (b) Effect of M on the 

volume fraction distribution. (c) Effect of M on the temperature distribution.  

𝑚 = −0.3, 𝐵1 = −2, 𝐵2 = 0.01, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 

−0.02, 0.01, 2.3, −9, 11. 
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6.3. Effect of 𝐵1 = 𝑓1
ℎ

𝜇0
|
ℎ

𝑉
|
𝑚+1

 

Recall that 𝐵1 represents a measure of the effects of the pressure gradient compared to the viscous 

effects . The pressure gradient in the x direction is the driving force in this problem. We find that when 

𝐵1 is more negative, the fluid flows faster everywhere, which is evident in Figure 6a. When 𝐵1 is close 

to zero, there is very limited movement of the fluid. As the absolute value of 𝐵1 increases, the velocity 

of the fluid increases rapidly. Also Figure 6b shows that the gradient of volume fraction is greater in the 

region near the upper wall corresponding to the greater velocity gradient. When 𝐵1 approaches zero, the 

volume fraction is almost the same everywhere. The gradient of temperature is affected by 𝐵1 in a similar 

manner to the case of variable m and M. 

 

Figure 6. (a) Effect of 𝐵1 on the dimensionless velocity distribution. (b) Effect of 𝐵1 on the 

volume fraction distribution. (c) Effect of 𝐵1  on the temperature distribution.  

𝑚 = −0.3,𝑀 = 1, 𝐵2 = 0.01, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 0.02,  

−0.02, 0.01, 2.3, −9, 11. 
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6.4. Effect of 𝐵2 =
2(2α1+α2)

𝑓2𝜙𝑚𝑎𝑥
(
𝑉

𝐻
)
2
 

Recall that B2 is a measure of the effecs of the ratio of the normal stress differences to the force 

caused by the pressure. Figure 7 indicates that B2 only has a significant effect on the volume fraction. It 

is clear from Equation (31) that 

𝑑�̅�

𝑑�̅�
= 𝐵2

𝑑�̅�

𝑑�̅�

𝑑2�̅�

𝑑�̅�2
+ 𝐵4(1 − �̅�) (56) 

Since the velocity gradient is not affected too much by 𝐵2, we can observe from Figure 7b that when 

𝐵2 is relatively large; �̅� has a larger value in the region close to the upper wall, thus 
𝑑�̅�

𝑑�̅�
 becomes more 

negative, which agrees with Equation (56). 

 

 

Figure 7. (a) Effect of 𝐵2 on the dimensionless velocity distribution. (b) Effect of 𝐵2 on the 

volume fraction distribution. (c) Effect of 𝐵2  on the temperature distribution.  

𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 0.02,  

−0.02, 0.01, 2.3, −9, 11. 
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6.5. Effect of 𝐵3 =
𝜇0𝑉

2

𝑐8(𝜃1−𝜃0)
|
𝑉

ℎ
|
𝑚

 

B3 is a measure of viscous dissipation. As we can see from Figure 8a,b B3 shows minor effects on 

the velocity and the volume fraction distributions. Recall that B3 only appears in the energy equation 

and its effect on velocity and volume fraction is indirect. Figure 8c shows that a larger B3 makes the 

temperature distribution more non-linear and helps develop thermal boundary layers adjacent to the 

walls. When B3 is close to zero, i.e. negligible viscous dissipation, the temperature variation is linear. 

 

Figure 8. (a) Effect of 𝐵3 on the dimensionless velocity distribution. (b) Effect of 𝐵3 on the 

volume fraction distribution. (c) Effect of 𝐵3  on the temperature distribution.  

𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵2 = 0.01, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3,  𝑅1~𝑅7 = −0.1, 0.02,  

−0.02, 0.01, 2.3, −9, 11. 

6.6. Effect of 𝐵4 =
𝜌𝑓𝑔𝐻

𝑓2
 

B4  is the ratio of the effect of gravity to the pressure gradient in the direction of gravity.  

When B2 = 0, we can obtain an analytical solution for the volume fraction from Equation (31), that is: 
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�̅� =
𝐵4(𝑁 − 1)

(𝑒𝐵4 − 1)
𝑒𝐵4𝑦 + 1 (57)  

When 𝐵4 is greater than 1, i.e., the effect of gravity is more evident, the volume fraction varies more 

non-linearly. When 𝐵4 vanishes, volume fraction is almost a constant around N. Figure 9a shows that 

the velocity profiles are also affected. The slope of the velocity profile near the lower wall becomes 

milder as 𝐵4 increases. The volume fraction is much larger with a larger 𝐵4 at the lower wall, and the 

viscosity is thus larger if we look at the viscous term (1 − �̅�)−2.5𝑒−𝑀�̅�𝛱𝑚/2. 

 

 

Figure 9. (a) Effect of 𝐵4 on the dimensionless velocity distribution. (b) Effect of 𝐵4 on the 

volume fraction distribution. (c) Effect of 𝐵4  on the temperature distribution.  

𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵2 = 0.01, 𝐵3 = 10, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅7 = −0.1, 0.02,  

−0.02, 0.01, 2.3, −9, 11. 

6.7. Effect of 𝑅1 =
𝑉

ℎ

𝑐1

𝑐8
(𝜃1 − 𝜃0)

3 and 𝑅5 =
𝑐5

𝑐8
(𝜃1 − 𝜃0)

3 

The two dimensionless numbers R1 and R5 represent the effects of the coefficients in Equation (15), 

based on the experimental correlations for the thermal conductivity. We only consider the effects of R1 

and R5 since they typically denote the highest (third) order effect of temperature. In order to elucidate 

the effects of R1 and R5 more evidently, the values of other parameters (i.e., R2~R4, R6, R7) are selected 
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to be zero so as to minimize or eliminate their effects. From Figure 10 and Figure 11, it is apparent that 

R5  influences the velocity, volume fraction and temperature profiles. Figure 10c indicates that the 

inclusion of R1  (i.e., when the thermal conductivity is dependent on the shear rate) causes the 

temperature to vary in a more non-linear fashion. Some differences can also be detected in the velocity 

profiles (Figure 10a). It can be observed that the value of the maximum velocity increases as R1 becomes 

more negative. 

 

 

Figure 10. (a) Effect of 𝑅1  on the dimensionless velocity distribution.  

(b) Effect of 𝑅1  on the volume fraction distribution. (c) Effect of 𝑅1  on the temperature 

distribution. 𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵2 = 0.01, 𝐵3 = 10, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 

𝑅2~𝑅4 = 0, 𝑅5 = 2.3, 𝑅6 = 𝑅7 = 0. 
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Figure 11. (a) Effect of 𝑅5 on the dimensionless velocity distribution. (b) Effect of 𝑅5 on 

the volume fraction distribution. (c) Effect of 𝑅5  on the temperature distribution.  

𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2, 𝐵2 = 0.1, 𝐵3 = 30, 𝐵4 = 0.1, 𝑇 = 1.5, 𝑁 = 0.3, 𝑅1~𝑅4 = 0,  

𝑅6 = 𝑅7 = 0. 

Figure 11 shows the important role that 𝑅5 plays in this problem. When 𝑅5 is small, the temperature 

in the interior of the flow domain is higher everywhere, with all the profiles being non-linear. If we 

consider the relationship between 𝑅5 and the thermal conductivity, we can see that when 𝑅5 increases, 

the thermal conductivity also increases. Thus, with a higher 𝑅5, heat conduction occurs at a higher rate 

throughout the flow, and the flow cools down from the upper wall temperature to the lower wall 

temperature. We also find that at 𝑅5 = 0, the temperature can vary in a fairly non-linear fashion and a 

thermal boundary layer develops near the plates. We should notice that when 𝑅5 vanishes (provided that 

the representative values of other 𝑅𝑥 are set to zero), the thermal conductivity becomes a constant. Thus 

the heat flux in such a case only depends on the temperature gradient. Figure 11a,b show that the velocity 

and the volume fraction are also dependent on the value of 𝑅5. When 𝑅5 increases, the fluid flows more 

slowly, and correspondingly, the volume fraction varies in a wider range with a larger gradient. 

6.8. Frictional Effects and Heat Transfer Rate at the Walls 

In addition to the above dimensionless numbers and parameters, two other quantities of interest are 

the skin friction coefficient and the Nusselt number. The skin friction coefficient is related to the shear 

stress at the walls and is defined by: 
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𝐶𝑓 ≡
𝜏𝑤
1
2
𝜌𝑉2

 
(58) 

where 𝜏𝑤 is the wall shear stress: 

𝜏𝑤 = 𝜇0 (1 −
𝜙

𝜙𝑚𝑎𝑥
)
−2.5

𝑒𝛾(𝜃0−𝜃) [(
𝑑𝑢

𝑑𝑦
)
2

]

𝑚 2⁄
𝑑𝑢

𝑑𝑦
|
𝑦=0

 (59) 

Now, 𝐶𝑓 can be written as: 

𝐶𝑓 = 𝐵
(1 − �̅�)−2.5

�̅�
𝑒−𝑀�̅� |

𝑑�̅�

𝑑�̅�
|
𝑚 𝑑�̅�

𝑑�̅�
 (60) 

where 𝐵 =
2𝜇0

𝜌𝑠𝜙𝑚𝑎𝑥𝑉
2 |
𝑉

𝐻
|
𝑚+1

. 

The Nusselt number is defined by: 

Nu ≡
𝜆𝐻

𝑘
=

𝑞𝐻

(𝜃𝑤 − 𝜃)𝑘
=

𝐻

(𝜃𝑤 − 𝜃)

𝑑𝜃

𝑑𝑦
~
𝑑�̅�

𝑑�̅�
 (61) 

where 𝜆 is the convective heat transfer coefficient of the fluid, 𝜃𝑤 is the temperature at the wall. In our 

problem 𝜃𝑤 is either 𝜃0 or 𝜃1 at the upper or the lower wall respectively. 

The values of 
𝑑�̅�

𝑑�̅�
, 
𝐶𝑓

𝐵
 and 

𝑑�̅�

𝑑�̅�
 at the upper (�̅� = 1) and lower walls (�̅� = 0) are given for various values 

of 𝑚,𝑀,𝐵1, 𝐵3 in Tables 2–5, to demonstrate the frictional effects and heat transfer at the walls. Table 2 

shows that a shear-thickening (𝑚 > 0)  fluid has a larger velocity gradient at both walls and a  

shear-thinning (𝑚 < 0)fluid has a smaller velocity gradient compared to a Newtonian fluid (𝑚 = 0). 

However, the frictional effect has a different trend. The skin friction coefficient near the lower wall is 

larger when the fluid is shear-thinning. �̅�′(0)  increases and �̅�′(1)  decreases when 𝑚  increases, 

indicating that the temperature variation is more non-linear for a shear-thinning fluid. A similar trend for 

�̅�′ and 𝜃′ can be observed in Table 3 when varying the value of M, while the skin friction coefficients 

have an opposite trend. Table 4 indicates that when 𝐵1(a measure of the pressure gradient) becomes more 

negative, the absolute value of the velocity gradient and the skin friction coefficient become larger at the 

upper and lower walls. For a given value of 𝑚,𝑀, and 𝐵3, �̅�′(0) increases and �̅�′(1) decreases when 𝐵1 

becomes more negative. It can be observed in Table 5 that varying 𝐵3 does not have a major influence 

on �̅�′ and 𝐶𝑓. The value of 𝜃′(0) increases and 𝜃′(1) decreases when the effect of viscous dissipation  

is larger. 

Table 2. 𝑀 = 1, 𝐵1 = −2, 𝐵3 = 10. 

𝑚  �̅�′(0)  �̅�′(1)  𝐶𝑓 𝐵⁄ (0)  𝐶𝑓 𝐵⁄ (1)  �̅�′(0) �̅�′(1)  

−0.6 0.1883 −0.6369 4.1923 −2.4930 1.2796 0.5923 

−0.3 0.3452 −0.8454 3.8831 −2.6550 1.3751 0.5319 

0 0.4553 −0.9291 3.7226 −2.7744 1.4412 0.4950 

0.3 0.5352 −0.9696 3.6277 −2.8686 1.4895 0.4691 
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Table 3. 𝑚 = −0.3, 𝐵1 = −2, 𝐵3 = 10. 

𝑀  �̅�′(0)  �̅�′(1)  𝐶𝑓 𝐵⁄ (0)  𝐶𝑓 𝐵⁄ (1)  𝜃′(0)  𝜃′(1)  
0.1 0.2686 −0.3164 3.2579 −3.2819 1.2722 0.6258 

0.7 0.3181 −0.6068 3.6670 −2.8412 1.3311 0.5724 

1.2 0.3605 −1.0436 4.0021 −2.5193 1.4063 0.5020 

1.5 0.3836 −1.4328 4.1794 −2.3314 1.4643 0.4468 

Table 4. 𝑚 = −0.3,𝑀 = 1, 𝐵3 = 10. 

𝐵1  �̅�′(0)  �̅�′(1)  𝐶𝑓 𝐵⁄ (0)  𝐶𝑓 𝐵⁄ (1)  𝜃′(0)  𝜃′(1)  
−0.5 0.0478 −0.1172 0.9730 −0.6656 1.1718 0.6931 

−1.5 0.2293 −0.5622 2.9161 −1.9954 1.2728 0.6025 

−2 0.3452 −0.8454 3.8831 −2.6550 1.3751 0.5319 

−3 0.6105 −1.4852 5.7876 −3.9417 1.7108 0.3427 

Table 5. 𝑚 = −0.3,𝑀 = 1, 𝐵1 = −2. 

𝐵3  �̅�′(0)  �̅�′(1)  𝐶𝑓 𝐵⁄ (0)  𝐶𝑓 𝐵⁄ (1)  𝜃′(0)  𝜃′(1)  
0 0.3457 −0.8395 3.8867 −2.6419 1.1970 0.6189 

10 0.3452 −0.8454 3.8831 −2.6550 1.3751 0.5319 

25 0.3442 −0.8537 3.8748 −2.6732 1.6515 0.3957 

50 0.3408 −0.8632 3.8478 −2.6940 2.1280 0.1589 

7. Concluding Remarks 

In this paper, we have suggesteed a new constitutive model for the heat flux vector with the thermal 

conductivity depending on the shear rate and temperature; we have studied the fully developed flow and 

heat transfer a of a slurry between two horizontal flat plates, where the upper plate is at a higher 

temperature. The fluid is assumed to be described by a constitutive relation for a generalized second 

grade fluid where the shear viscosity is a function of the shear rate, temperature and concentration.  

The heat flux vector for the slurry is assumed to follow a generalized form of the Fourier’s equation 

where the thermal conductivity k, is based on the experimental results of Lee and Irvine [1], where k 

depends on the temperature as well as the shear rate. We have performed a parametric study for various 

dimensionless numbers. The governing equations were solved using Newton’s method, and the effects 

of the dimensionless numbers and various parameters on the velocity, volume fraction and temperature 

profiles were discussed. The power-law exponent m has a major influence on the velocity. The exponent 

in the Reynolds viscosity model, M, also affects the velocity, since a larger value of M causes smaller 

viscosity. We also discussed the effects of the coefficients 𝑅1  and 𝑅5  in the correlation of thermal 

conductivity, which significantly affect the variation of the temperature. The frictional effects and the 

heat transfer rate at the boundaries are considered in terms of the skin friction coefficient and the Nusselt 

number. Finally we would like to discuss some of the limitations of our model and our formulation of 

the problem. As mentioned in the introduction, it is possible to model a suspension as a multi-phase fluid 

where the interaction effects can be studied. Since we have modeled the slurry as a single phase  

non-linear fluid, even though the concentration of the particles is introduced as a kinematical variable, 

we really are not studying a two-phase mixture composed of solid particles and a fluid. As a result many 

interesting phenomena such as particle clustering, particle agglomeration and the stability of the particle 
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motion are not studied here and is beyond the scope of the present study [66,67]. The multi-phase 

approach is necessary at higher volume fractions (see Johnson et al. [68,69] and Massoudi [2,4] or the 

book by Rajagopal and Tao [5]). As a result one can study the interesting phenomenon related to particle 

migration [70–73]. Another possible case of modeling flow of densely packed particles is normally 

referred to as flow of dry granular materials where the effects of interstitial gases or liquids are ignored 

and the dense suspension is modeled as granular materials. In general, one can use continuum mechanics, 

statistical mechanics, or numerical simulations to model granular materials [74,75]. 
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