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Abstract: This paper proposes a model to determine the optimal investment time for 

energy storage systems (ESSs) in a price arbitrage trade application under conditions of 

uncertainty over future profits. The adoption of ESSs can generate profits from price 

arbitrage trade, which are uncertain because the future marginal prices of electricity will 

change depending on supply and demand. In addition, since the investment is optional, an 

investor can delay adopting an ESS until it becomes profitable, and can decide the optimal 

time. Thus, when we evaluate this investment, we need to incorporate the investor’s option 

which is not captured by traditional evaluation methods. In order to incorporate these 

aspects, we applied real option theory to our proposed model, which provides an optimal 

investment threshold. Our results concerning the optimal time to invest show that if future 

profits that are expected to be obtained from arbitrage trade become more uncertain, an 

investor needs to wait longer to invest. Also, improvement in efficiency of ESSs can 

reduce the uncertainty of arbitrage profit and, consequently, the reduced uncertainty 

enables earlier ESS investment, even for the same power capacity. Besides, when a higher 

rate of profits is expected and ESS costs are higher, an investor needs to wait longer. Also, 

by comparing a widely used net present value model to our real option model, we show 

that the net present value method underestimates the value for ESS investment and 

misleads the investor to make an investment earlier. 
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1. Introduction 

Nowadays, in the era of energy shortage, the development of energy storage systems (ESSs) has 

been highlighted because they can allow current and/or future power grids to operate more efficiently 

and can maximize its economic value [1,2]. In an electrical power grid, utility firms generate 

electricity continuously and balance electricity demand and supply. However, the demand for 

electricity fluctuates a lot over time and the generation capacity has to be set to the highest level of 

demand for maintaining electricity supply stability. This costs a huge investment in excess generators. 

For this reason, utility firms have been eager to lower the peak time demand and attract off-peak time 

consumption instead. Nowadays, incorporation of ESSs enables accomplishing such demand-smoothing 

by allowing customers to store electricity during off-peak times and use it during peak times. Besides, 

the reserve capacity enables arbitrage trade by selling during peak time unconsumed electricity which 

has been stored during off-peak times, which would be another source of profit. Also, the integration 

of renewable energy sources such as wind and solar provides generator stability, and support for 

frequency regulation, for spinning reserve capacity, for transmission and distribution, and for voltage 

including reactive power compensation allow grid reliability. For all these benefits of ESS utilization, 

several studies have recently investigated if investment in ESSs is economically viable or not [1,3], 

and extensive efforts have been made to evaluate economic profitability of ESSs [1,4–6].  

However, two very important aspects have been disregarded in this investment evaluation, which 

are a firm’s options and the uncertainty of future profits. Despite its many benefits, if the investment is 

not profitable at a certain point in time, the firm will not invest and rather wait until the cost of the ESS 

decreases or the profit from the ESS will increase. In other words, the utility firm has decision 

flexibility in its investment, which can be called an option. Moreover, the firm faces uncertainty in the 

profit structure. Specifically, in an arbitrage trade that profits by selling electricity at a high price 

during peak time which has been charged at a low price, the market prices are determined by demand 

and supply in a market which is affected by many uncertain factors, therefore, the future profits from 

the trade will be uncertain as well. Moreover, even though the electricity price pattern for the same 

time period every year might be similar, we need to note that the price values might be different and 

the profits from the trade are uncertain. For example, the price pattern in March 2014 may be similar to 

that in March 2015, but the value of the former may be not exactly the same as the value of the latter. 

Therefore, the consideration of uncertainty is inevitable. However, previous studies fail to discuss 

these two factors simultaneously. Some studies related to evaluation of ESS investment like [1,3] did 

not take uncertainty into account. Also, even though the most recent research [2] emphasizes the 

importance of unavoidable uncertainty, an option to determine when to invest is not considered.  

State-of-the-art economics literature in the general economic analysis area has suggested a novel 

approach for investment evaluation under uncertainty and decision flexibility conditions [7–10], which 

is a real option approach. The reason that this approach is important is that the results obtained when 

using a real option method and classical investment evaluation methods, such as net present value (NPV) 

method and internal rate of return (IRR), are significantly different when a firm can determine when to 

invest under uncertainty conditions. Compared to classical methods, the real option theory is 

considered more accurate when a firm has an option to delay investment, because it can capture the 

value of the postponement which is called decision flexibility. In our problem, ESS investment is not 
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an obligation but an option to a firm, because the firm can delay the ESS investment in order to 

maximize profits. Besides, the real option theory has an advantage of being able to give an optimal 

time to invest, in contrast to classical methods. Therefore, in this paper, we applied the real option 

theory to obtain a more accurate investment evaluation and optimal time. In energy areas, the real 

option approach was recently applied in renewable energy, electricity markets, and power system 

evaluations [11–15], but not in energy storage investment.  

Thus, in this research we discuss how decision-making might be different under uncertainty  

and decision flexibility. We focus specifically on investment in the arbitrage trade application of ESSs. 

However, we need to note that the proposed model can be extended easily to other ESS applications. 

The structure of this paper is as follows: in Section 2, we intensively investigate the literature 

regarding ESS investment and real option theory. Then, we develop a new model for ESS investment 

evaluation in Section 3. Based on the proposed model, simulation and analysis are executed to examine 

how the investment decision changes due to uncertainty, option and other important environmental 

factors in Section 4. Section 5 summarizes the major results, and provides implications for power 

system management and future research.  

2. Literature Review and Methodology 

An energy storage system (ESS) is a storage device which allows one to charge and discharge 

electricity in a very short time. Since it has lots of benefits in areas such as load-shifting, reliability, 

stabilization of power grids, utility firms have come to pay attention to the utilization of ESSs. 

Depending on the purpose of the ESS, its power and storage capacity specifications can be different, 

but basically ESS provides different types of profits by repeating charge and discharge during its 

lifetime. For example, Sandia Lab [16] reports that ESSs derive 26 benefits like energy time-shift, 

regulation, voltage service, reliability, facility upgrade deferral, asset utilization increment, loss 

avoidance, etc., for 17 application areas such as electric supply, ancillary service, grid system, end use, 

and renewable integration. Similarly, those kinds of benefits are categorized into bulk energy services, 

ancillary services, transmission infrastructure services, distribution services, and customer energy 

management services and stacked services [17]. Likewise, the benefit of ESSs can be grouped into 

energy market, voltage control, power flow management, restoration, commercial/regulatory, and 

network management [18]. Among those benefits, several recent studies have started to focus on 

energy arbitrage trade in an energy market [1,3,19,20], because an ESS could be actively used in a 

future grid environment like a smart grid. In this sense, [19] analyzed the arbitrage value using  

PJM data to investigate the impact of fuel prices, transmission constraints, efficiency, storage capacity, 

and fuel mix. Also, similar research for the New York and U.S. markets has been done in [1,3].  

Especially, [1] investigated the optimal policies of ESS storage capacity by applying internal rate of 

return (IRR) as an investment problem. In the stream of this research, in this paper we will discuss an 

evaluation model for price arbitrage trade that makes profits by selling electricity at a high price during 

peak times which has been charged at low price during off-peak times.  

However, investment decision making problems in the aforementioned literature have not focused 

on when is the optimal time to invest, but rather have focused on whether or not it is feasible only  

at a decision making time. While the latter is related to determining a yes or no decision, the former  



Energies 2014, 7 2704 

 

 

is a decision regarding now or later if it is not feasible now. This implies that the firm has an option or 

decision flexibility about determining the optimal investment time. For example, in case of ESS 

investment, a firm may estimate profits and costs, and then calculate a net present value discounting 

the future cash flows. Under a classical net present value (NPV) method, a firm should give up  

a project if the net present value of the project is less than 0. By contrast, a real option theory reflects 

on the idea that, since a firm can determine when to invest and wants to maximize their profits, the 

firm will compare the investment values at a certain time and at the other time and then will choose  

a more profitable time. Of course, it is very clear that this approach is more realistic. Besides, we need 

to note that more important thing in investment is the fact that uncertainty is not ignorable or sometimes 

it is very crucial because it causes the decision flexibility, as described in economics literature [7]. 

However, only few studies about uncertainty in ESS investment became discussed [2,21]. In the case 

of price arbitrage trade, since the market price is determined by supply and demand which are 

uncertain, a firm encounters uncertain future cash flows from the utilization of ESS. In this 

environment, our proposed model in this paper will consider both uncertainty and option to determine 

an optimal investment time of the ESS for price arbitrage trade, by applying a novel evaluation method 

which is a real option approach.  

The real option theory has been widely used to quantify decision flexibility under uncertainty ([22–25]). 

References [22,25,26] showed that a real option approach is very appropriate to model valuation of  

a project under uncertainty. In [7] the authors pointed out the similarities between the investment 

opportunities and perpetual American options, and found that the existence of opportunity costs can 

influence decision-making behavior. In the case of ESS investment, future cash flow from price 

arbitrage trade is not fixed and is uncertain over time. Also, a utility firm has an option for ESS 

investment, because it does not necessarily have to invest right now and can wait and delay the 

investment. Because losing the option to wait could expose the investor under a potential loss of 

money [27,28], it is commonly agreed in financial economics that no exercise of investment should 

take place unless its net profits at least compensate for the loss of “value of waiting” [29]. In contrast, 

a classical investment evaluation method, net present value (NPV) method, cannot capture the loss of 

value of waiting. For this reason, several recent papers such as [11–15,21] in the energy area have 

studied these topics. Nevertheless, real option model for ESS investment has not been paid attention 

yet. Therefore, in this paper, we develop a valuation model for arbitrage trade in order to determine 

when to optimally invest while considering uncertainty and decision flexibility. Then, we study the 

impacts of several important factors such as efficiency of discharging and volatilities as in [1,21]. 

3. Valuation Model  

In this section, we develop a valuation model for when an energy storage system (ESS) is utilized 

for the purpose of arbitrage trade. As described in [1], the energy storage system can be characterized 

in terms of storage and power capacity, efficiency, and loss. Herein, storage capacity is the maximum 

amount that a storage device can hold and power capacity is the rate at which energy can be stored in 

and discharged out. Efficiency implies round trip efficiency and depth of discharge and the loss of 

energy is incurred due to technology limitations. However, in our model, both efficiency and loss can 

be comprehensively referred to as efficiency from the perspective of charging and discharging.  
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If energy storage system is installed, electricity can be stored in it during some time period and then 

the stored electricity will be discharged into a market. To model this arbitrage trade, let us assume π(߬) is the marginal price function, and ܳ(߬) is the function of amount of electricity or the power 

capacity. Also, let us assume that the ESS operator charges from time ஼ܶௌ to ஼ܶௌ +  .during H hours ܪ

Then, the stored electricity will be sold from ஽ܶௌ  to ஽ܶௌ +  However, to charge ܳ(߬) amount of .ܪ

electricity, the operator has to pay π(߬) at an instant time. Therefore, the total cost which should be 

paid is ׬ π(߬)ܳ(߬)்಴ೄାுఛୀ்಴ೄ d߬. Similarly, the operator of ESS could make profits, ׬ π(߬)ܳ(߬)்ವೄାுఛୀ்ವೄ d߬, 

but he cannot sell the full amount of electricity because of losses. Therefore, we address efficiency 

parameter ߟ and the profits from selling will be ׬ π(߬)ܳ(߬)்ವೄାுఛୀ்ವೄ d߬. Then, net revenue for each day 

could be given, similarly to [3], as follows:  ܴ(ݐ) = නߟ ವೄାுఛୀ்ವೄ்(߬)ܳ(߬)ߨ ݀߬ − න ಴ೄାுఛୀ்಴ೄ்(߬)ܳ(߬)ߨ ݀߬ (1)

Also, we can assume the power capacity constant, i.e., ܳ(ݐ) = 1	MW, because a utility firm invests 

in a fixed ESS capacity. In addition, the benefits provided by the invested ESS are also dependent on 

the storage capacity. If we invest in a power capacity of 1 MW, the charging and discharging capacity 

cannot exceed the amount of 1 MW multiplied by H, which is a storage capacity. Thus, collecting 

terms with the assumption gives us: ܴ(ݐ) = ܳ ቊߟන ವೄାுఛୀ்ವೄ்(߬)ߨ d߬ − න ಴ೄାுఛୀ்಴ೄ்(߬)ߨ d߬ቋ  (2)

Herein, let us define an arbitrage profit function ܲ(ݐ) as:  ܲ(ݐ) = නߟ ವೄାுఛୀ்ವೄ்(߬)ߨ ݀߬ − න ಴ೄାுఛୀ்಴ೄ்(߬)ߨ ݀߬ (3)

Before developing a model, we need to note that the future value for the profits is uncertain. 

Because the marginal price (ݐ)ߨ is determined by market mechanism, it is quite challenging to predict, 

which makes the arbitrage profit function P(t) uncertain. To introduce the influence of this market 

uncertainty, we assume that firm’s future arbitrage profit P(t) follows a Geometric Brownian Motion 
(GBM) on over time, which is the continuous-time formulation of the random walk:  ݀ܲ(ݐ) = ݐ݀(ݐ)ܲߤ + ௧ܤ݀(ݐ)ܲߪ  (4)

where:  dܤ௧ = the increment of a standard Wiener process; ߤ = the mean-drift of expected future change; ߪ = the volatility of a random walk.  

This GBM setting is the standard setting in real option theory as a good approximation for 

uncertainty [7,10,23,24,30]. The parameters ߤ ∈ ℜାand ߪ ∈ ℜାreflect the nature of the profit flow. 

The degree of uncertainty (ߪ), called volatility, represents how much the profit flow changes over 

time. Also, mean-drift implies the level of increment of the profit cash flow over time. Herein,  

we also assume for the convergence like [7,26], where r is the risk-adjusted discount factor.  

+ℜ

r<μ
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From the above models and assumptions, we can now derive how much profit can be made after an 

ESS investment. The utility firm makes profit Ψ(ݐ଴) at time ݐ଴ during the lifetime D of ESS, starting 

from time  to time . Also, this investment causes a sunk cost and ܫ ∈ ℜା . Such an 

investment’s net present value (NPV) to the firm after adoption of ESS is: Ψ(ݐ଴) = ܧ ቈܳන ௧బା஽௧బݐ݀௥(௧ି௧బ)ି݁(ݐ)ܲ − ቉ܫ = (଴ݐ)ܲܳ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ − (5) ܫ

Before undertaking the ESS investment, the firm has the option to exercise the investment or just 

wait. As a result, the real option value reflects more accurately the value of an exercise opportunity by 

considering a value of option to wait than the standard NPV does ([31]). The real option value at ݐ଴ 

can be described by the standard real option expression. The value function which could be gained by 

investing in the ESS is given as follows:  ܸ(ݐ଴) = ஹ௧బ்ݔܽ݉ ା(ܶ)݁ି௥(்ି௧బ)൧ߖൣܧ  (6)

where , reflecting the essence of an option. The firm hopes to maximize its real option 

value at  by selecting the optimal exercise time T in the future. By definition, there is no obligation 

to exercise an option, and the value of option to wait is always non-negative. For example, if the 

standard NPV is negative at , the NPV method recommends to give up the investment forever, while 

the ROT method suggests that a firm should not invest at the time , but rather wait until an optimal 

time , which may be an ‘infinite wait’ implying the optimal time . The investor will 

postpone the adoption of ESS until optimal the time ܶ obtained by comparing the value Ψ(ܶ) for all 

time ܶ ∈ ሾݐ଴,∞ሿ in order to maximize profits. 

The above stochastic dynamic programming problem for a firm could be solved in the similar way 

to American call option pricing. We represent the firm’s value as . Hence as shown in [7], in the 

continuation region, the Bellman equation is: ݐ݀(ܲ)ܸݎ = (ܸ݀)ܧ  (7)

Using Ito’s Lemma, the Bellman equation becomes:  12ߪଶܲଶܸ"(ܲ) + (ܲ)ᇱܸܲߤ − ܸݎ = 0  (8)

where ܸ"(ܲ) = డమ௏డ௉  and ܸᇱ(ܲ) = డ௏డ௉. 

In addition, ܸ(ܲ) should satisfy the following boundary conditions: ܸ(0) = 0  (9)ܸ(ܲ∗) = ܳܲ∗ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ − ܫ  (10)߲ܸ(ܲ∗)߲ܲ = ܳ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ  (11)

Condition (9) implies that the client has profits when P = 0. Conditions (10) and (11) are the value 

matching and smooth pasting conditions coming from optimality. From differential Equation (8), 

 and  should satisfy the following quadrature equation: 

0t Dt +0

)0,max(XX =+

0t

0t

0t

0tT ≥ ∞=T

)(PV

01 <β 12 >β
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ߚ)ߚଶߪ12 − 1) + ߚߤ − ߛ = 0  (12)

The general solution for Equation (8) must take the form ܸ(ܲ) = ܽଵܲఉభ + ܽଶܲఉమ	, where ܽଵ and ܽଶ 

are constants to be determined. Also: 

ଵߚ = 12 − ଶߪߤ + ඨ ଶߪߤ + ଶߪݎ2 > 1, ଶߚ = 12 − ଶߪߤ − ඨ ଶߪߤ + ଶߪݎ2 < 0 (13)

However, the boundary condition enforces us to take . To satisfy the condition (9), we must have  ܽଶ = 0. Thus, the general solution must have the form ܸ(ܲ) = ܽଵܲఉభ. 

With a smooth pasting and a value matching condition, the value function results in: 

ܸ(ܲ) = ൞ ܽଵܲఉభ ݂݅ ܲ < ܲ∗ܳܲ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ − ܫ ݂݅ ܲ ≥ ܲ∗  (14)

where: ܲ∗ = ݎ)ଵߚ − ଵߚ)(ߤ − 1)(1 − ݁ି(௥ିఓ)஽)ܳ ܫ  (15)

ܽଵ = (ܲ∗)ଵିఉభ 1 − ݁ି(௥ିఓ)஽ߚଵ(ݎ − (ߤ  (16)

ଵߚ = 12 − ଶߪߤ + ඨ ଶߪߤ + ଶ (17)ߪݎ2

Here, the threshold, P*, is an optimal ESS investment threshold. Also, the term ܽଵܲఉభ, given in the 

upper part in the	ܸ(ܲ), represents the value of decision flexibility that a firm may have. In other 

words, when a firm’s profit flow at time t is lower than the investment threshold (ܲ∗), the firm will not 

invest in an ESS by having the traditional net present value 0 and holding the value of decision 

flexibility to adopt the ESS,	ܽଵܲఉభ. Herein, we need to note that if a firm estimates the ESS investment 

by a traditional NPV method, the payoff does not include the value of flexibility. The bottom of the 

value function can be interpreted as follows: when the firm’s profit is so high (higher than the 

threshold), the firm will determine to start operation of ESS after paying the investment cost I and 

obtain the benefit of ESS, ܳܲ1−݁−(ߤ−ݎ)ߤ−ݎܦ −  Furthermore, compared to the current status of profit, the .ܫ

optimal investment time can be estimated from the given threshold. For example, the firm can start to 

invest immediately if the profit level has reached the optimal threshold. Otherwise, the firm needs to 

wait until it reaches the threshold. We need to note that it is possible how long the firm should wait on 

average. In the case of the proposed model as derived here, the expected waiting time can be 

calculated by equation ܧ(ܶ) = ݈݊( ௉∗௉(଴)	)/(ߤ − ଵଶ  .), where ܲ(0) is profits at the current time [32]	ଶߪ

  

1β
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4. Experiments and Analysis under Uncertainty  

In this section, we analyze changes of optimal ESS investment strategies, when future marginal 

price and corresponding profits are uncertain. Then, we compare the optimal time and firm’s values 

derived by a suggested real option model and values by a traditional NPV method.  

4.1. Data Description  

Before conducting experiments to investigate the impact of important factors and comparing our 

model to NPV evaluation, we need to examine the characteristics of uncertainty. Therefore, we use 

data of locational marginal price (LMP) to estimate volatility of geometric Brownian motion. We 

collected the data for capital zone of NYISO in a day-ahead market from 2012 to 2013. As described 

in Section 3, the arbitrage profit function ܲ(ݐ) is assumed to follow geometric Brownian motion to 

address uncertainty. Therefore, based on the data set, the volatility as a proxy for uncertainty level is 

estimated in this section.  

To estimate the volatility of the arbitrage profit function, first, we derive a minimum value and a 

maximum value among the averages of four consecutive hours during a day. Note that, in the latter 

section, we also estimate volatilities for the case of three and five consecutive hour operation policies. 

Then, for the time period having the minimum prices, ESS will charge electricity to a capacity level 

and, for the time having the maximum prices, it will discharge at a rate of loss, ߟ. The difference 

between two time periods can be calculated. Then, we calculate averages of those differences monthly. 

The value of the difference is shown in the following figure and we can recognize the data is very 

volatile over time.  

Figure 1. The fluctuation of arbitrage profit.  

 

From the data set for an arbitrage profit function, it is necessary to estimate volatility. For the 

parameter estimation, we applied the continuous method corresponding to a continuous rate of return, 

which can be computed as follows: ܴ݁௜ = ݈ ݊ ൬ ௜ܲ௜ܲିଵ൰  (18)
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For the transformed data, the log-returns of arbitrage profits, we compute the average value of  

the returns, ܴ݁തതതത = ଵ௡ ∑ ܴ݁௜௡௜ୀଵ , where n is the number of returns. The standard deviation is used to 

estimate volatility and it is annualized as follows: 

ߪ = ඩݐ݀√1 1݊ − 1෍(ܴ݁௜ − ܴ݁തതതത)ଶ௡
௜ୀଵ  (19)

Then, basic statistics for computed log-return data are given in the following table. 

Table 1. Descriptive statistics for log-return. 

Data Mean 

95% Confidence 
interval for mean Std. 

deviation 
Minimum Maximum Skewness Kurtosis

Lower 
bound 

Upper 
bound 

Statistic 0.0191 −0.1465 0.1848 0.38306 −0.95 0.57 −0.588 0.600 
Std. Error 0.07987 – – – – – 0.481 0.935 

The property of geometric Brownian motion is that logarithm of return follows a normal 

distribution. Therefore, we checked the normality of our data using the SPSS software. As shown in 

Table 2, the data tested by the Komogorov-Smirnov and Shapiro-Wilk methods shows the data set 

follows normal distribution at the significant level of 0.05. Also, we could check how the data are 

scattered along with the mean from Figure 2. 

Table 2. Test of normality for log-return. 

Tests of Normality 

Variable 
Kolmogorov-Smirnov a Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Arbitrage 0.134 23 0.200 * 0.941 23 0.188 

* This is a lower bound of the true significance; a Lilliefors Significance Correction. 

Figure 2. Normal plot for log-return. 
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4.2. The Impact of Uncertainty and Mean Drift  

The impact of uncertainty could be important in investment decisions as described in [2,7]. 

Therefore, in this section, we investigate the impact of uncertainty which is represented by volatility. 

Also, the effects of mean-drift and ESS cost as an investment sunk cost on optimal threshold are 

studied. To run the simulation, we use the parameters in the following table.  

Table 3. Parameters for numerical examples. 

Parameters Values 

 0.1 
 0.01 

 1.32 
I 1000 
D 10 

Before discuss the impact of uncertainty, we want to figure out the relationship between uncertainty 

and the properties of the ESS. From the data set and methods described in the previous subsection, the 

volatilities for different efficiency levels can be calculated. The efficiency level is related to the 

technical specification of the ESS. For example, depth of discharge may differ for different ESS 

manufacturers. The Sandia Lab report shows that the depth of discharge ranges from 0.8 to 1 and the 

round trip efficiency varies from 0.8 to 0.94, depending on ESS supplier [17]. Due to this technical 

limitation of ESSs, it cannot fully discharge the charged electricity. For example, it can charge only 

80% of charged and stored electricity. However, the level of efficiency becomes higher in accordance 

with ESS technology development and the efficiency could reach to the level of near 1 in the future. 

For this reason, we conduct our experiments and do sensitivity analysis, while using the efficiency 

level from 0.8 to maximally 1. Herein, note that efficiency level of 1 is used as a reference of 

maximum efficiency level and it is very challenging to technically achieve the level.  

Therefore, we investigated how the efficiency affects uncertainty level of arbitrage profit. As shown 

in Table 4 and Figure 3, as the efficiency level becomes higher, volatility decreases. Also, the uncertainty 

level might be related to operation duration. In this experiment, we have computed the data into three 

cases, 3 h, 4 h and 5 h operations. In other words, we assume that a firm charges for 3, 4 and 5 h and 

then discharges electricity for the same amount of time. For those three scenarios, when we compare 

volatilities, we found that the volatility increases as operation duration becomes longer. Conclusively, 

our results show that, as ESS gets more efficient and operation duration are shorter, volatility becomes 

lower, which implies that uncertainty of profits from arbitrage trade is reduced. 

Table 4. Efficiency, operation duration and volatility. 

Efficiency 1 0.95 0.9 0.85 0.8 

Volatility (3 h) 1.320071 1.358877 1.408915 1.475845 1.569939 
Volatility (4 h) 1.32695 1.370017 1.426318 1.503024 1.613711 
Volatility (5 h) 1.340524 1.389001 1.453371 1.542958 1.676337 

r
μ
σ
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Thus far, we have investigated the relationship between uncertainty and characteristics of  

ESSs such as efficiency and operation policy. From now, we analyze the impact of uncertainty on  

the optimal investment time or threshold.  

Figure 3. Efficiency and volatility for different operation time. 

 

Proposition 1. (Optimal investment time and Uncertainty). The threshold for an ESS investment is 

increasing in increasing volatility. Simply, more uncertain arbitrage profit makes it more difficult for 

the investor to invest in an ESS. Besides, this implies that if the efficiency of an ESS increases,  

the launch of the ESS will be expedited even for the same power capacity. 

Since the optimal investment time is given in the form of ܲ∗ = ఉభ(௥ିఓ)(ఉభିଵ)(ଵି௘ష(ೝషഋ)ವ)   we examine ,ܫ	

the relationship between volatility (ߪ) and the threshold (ܲ∗). To verify this property described in 

Proposition 1, we take derivative of ܲ∗ with respect to volatility (ߪ). This leads to: ߲߲ߪ ܲ∗ = ଵߚ߲߲ ܲ∗ ߪଵ߲ߚ߲ = ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ܫ ߪଵ߲ߚ߲ ଵߚ߲߲ ൬ ଵߚଵߚ − 1൰ 

= − ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ܫ ൬ ଵߚ1 − 1൰ଶ ߪଵ߲ߚ߲  

(20)

This result is dependent of 
డఉభడఙ , so let us check the sign as follows. First, let  ܷ(ߚ௜) = ଵଶ ߚ)ߚଶߪ − 1) + ߚߤ − ߚ߲ܷ߲ :from Equation (12) and take a derivative ݎ ߪ௜߲ߚ߲ + ߪ߲ܷ߲ = 0, for ݅ = 1,2 (21) 

Herein, derivatives are evaluated at ߚଵ and ߚଶ. And we know 
డ௎డఉ > 0 at ߚଵ and 

డ௎డఉ < 0 at ߚଶ since ܷ 

is quadratic, ߚଵ > 1 and ߚଶ < 0. Moreover, 
డ௎డఙ = ௜ߚ)௜ߚߪ	 − 1) 	> 0 for i = 1,2. From these inequality 

conditions, we have:  ߲ߚଵ߲ߪ < 0 and ߪଶ߲ߚ߲ > 0  (22)
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Besides, since 
(௥ିఓ)(ଵି௘ష(ೝషഋ)ವ)ொ ܫ	 > 0, the derivative is:  ∂∂σܲ∗ == − ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ܫ ൬ ଵߚ1 − 1൰ଶ ߪଵ߲ߚ߲ > 0 (23)

This result implies that the optimal time to invest in an ESS increases in increasing volatility as 

explained in Proposition 1. The more volatile the arbitrage profit becomes, the higher the threshold 

that is expected, which causes the delay of investment. For this result, we have run simulations for 

different volatilities, from 0.2 to 2.2, and the result is shown in Figure 4. The threshold increases 

drastically, when volatility increases. Furthermore, when we consider the relationship between 

uncertainty and efficiency of ESS, we can notice that since uncertainty becomes smaller as efficiency 

increases, higher efficiency might enables earlier investment. 

Figure 4. Uncertainty and optimal investment time. 

 

Next, let us discuss the impact of mean drift and ESS cost on investment time.  

Proposition 2. (Optimal investment time, mean drift and ESS cost). The threshold for an ESS 

investment is increasing in increasing mean drift and ESS cost. This implies that when a higher rate of 

return is expected in the future, the investor is more likely to wait. Also, if the ESS cost is higher,  

the investor needs to wait longer.  

First, we try to verify the impact of mean drift:  ߲ߚଵ߲ߤ = − ଶߪ2 + 2 ቀ1 − ଶටቀ1ߪଶቁߪߤ2 − ଶቁଶߪߤ2 + ଶߪݎ8 =
ଶටቀ1ߪଵߚ − ଶቁଶߪߤ2 + ଶߪݎ8 < 0 (24) 
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ߤ߲߲ ܲ∗ = ଵߚ߲߲ ܲ∗ ߤଵ߲ߚ߲ = ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ܫ ߤଵ߲ߚ߲ ଵߚ߲߲ ൬ ଵߚଵߚ − 1൰ 

= − ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ܫ ൬ ଵߚ1 − 1൰ଶ ߤଵ߲ߚ߲ > 0 
(25) 

Besides, the derivative with respect to investment sunk cost (I) is simply derived as follows: ߲߲ܫ ܲ∗ = ݎ) − 1)(ߤ − ݁ି(௥ିఓ)஽)ܳ ൬ ଵߚଵߚ − 1൰ > 0 (26)

For two derivations, we can obtain the results described in Proposition 2. Interestingly, we found 

that if arbitrage profits increase, it is more beneficial to wait for a while. This result might seem 

counterintuitive. However, it could be interpreted that because the higher expected profits during the 

lifetime of a ESS could be made if we wait as longer as possible, an investor needs to wait. However, 

in practice, the investor could invest in ESSs repeatedly after obsolescence, which can change this 

result. For the second result in Proposition 2, it is quite intuitive that increased ESS cost will make the 

investor wait longer. From simulation, we have Figure 5 describing Proposition 2.  

Figure 5. (a) Mean drift and optimal investment time; (b) ESS cost and optimal investment time. 

(a) (b) 

4.3. Decision Making by Real Option and Net Present Value (NPV) and Comparison 

As mentioned in many studies, the impact of uncertainty on the investment decision is not ignorable 

and is sometimes quite critical. This is also reported in ESS literature as well. Reference [2] found that 

the probabilities of the futures can influence the optimal ESS sizing problem and emphasized the 

importance of addressing uncertainty in decision making. In addition to uncertainty, we considered a 

firm’s option to wait. Therefore, in this section we examine how results differ by comparing a classical 

method to our proposed model.  

The traditional net present value (NPV) method which has been widely used can also provide a way 

to evaluate an ESS investment. However, the NPV cannot capture a value of decision flexibility,  

i.e., when to invest in an ESS. The NPV method only determines whether or not to invest in ESSs. 

Thus, in this subsection, we examine what happens if we do not consider the decision flexibility by 
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comparing the strategies by NPV and a real option theory (ROT). By comparing profit cash flows 

before and after introducing ESS from the NPV perspective, we can derive the optimal threshold 

(ܲ∗ே௉௏) for ESS investment as follows:  

ேܸ௉௏(ܲ) = ቐ 0 ݂݅ ܲ < ேܲ௉௏∗ܳܲ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ − ܫ ݂݅ ܲ ≥ ேܲ௉௏∗  (27)

From the value function (27), an investment threshold by NPV is derived from:  ܳܲ 1 − ݁ି(௥ିఓ)஽ݎ − ߤ − ܫ = 0 (28)

Therefore, we have: ܲ∗ே௉௏ = ݎ) − 1)ܳ(ߤ − ݁ି(௥ିఓ)஽) (29) ܫ

Proposition 3. ESS investment feasible region determined by NPV ( ேܲ௉௏௙௘௔) is always larger than that by 

ROT ( ோܲை௙௘௔). This implies that an investor should wait longer than expected. 

ோܲை௙௘௔ = ሼܲ|ܲ ≥ ோܲை∗ } ⊂ ேܲ௉௏௙௘௔ = ሼܲ|ܲ ≥ ேܲ௉௏∗ } 
The previous results gives us: ܲ∗ே௉௏ = ݎ) − 1)ܳ(ߤ − ݁ି(௥ିఓ)஽) (30) ܫ

ܲ∗ோை = ܲ∗ = ݎ)ଵߚ − ଵߚ)ܳ(ߤ − 1)(1 − ݁ି(௥ିఓ)஽) ோைܲ∗ே௉௏∗ܲ(31) ܫ = ଵߚ)ଵߚ − 1) (32)

since 
ఉభ(ఉభିଵ) > 1, ܲ∗ோை > ܲ∗ே௉௏. 

Proposition 3 implies that the traditional method is always less strict than the real option theory. 

Through simulations, we evaluate a firm’s values using NPV and ROT, and derive the corresponding 

optimal thresholds. As shown in Figure 6, the firm’s value by ROT is higher than its value by NPV, 

and the threshold by NPV (ܲ∗ே௉௏ =151.6) is smaller than the threshold by ROT (ܲ∗ோை = 1773.8). 

Also, the feasible region where a firm can invest is on the right-hand side of the dotted lines. This 

result implies that, for example, if profit cash flow is 1000, then the ESS investment decision is 

appropriate from the NPV perspective, while it is inappropriate from the ROT perspective. For this 

particular range of arbitrage profit, the NPV suggests ESS introduction, but the ROT recommends a 

firm to wait for a while and to invest later. Also, we can find that the threshold by ROT is 11.8 times 

the threshold by NPV, which indicates the importance of volatility and optionality. In other words, 

consideration of option under uncertainty gives a significantly different decision.  
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Figure 6. Comparison of ROT and NPV for large volatility. 

 

Moreover, depending on the environment, the level of uncertainty may change and the decision 

might differ. Therefore, we investigate the change of investment thresholds and the difference. When 

volatility is decreased to 0.013, the threshold becomes 169.9 and 151.7. The threshold by ROT is  

1.12 times the threshold by NPV, as shown in Figure 7. When we compare results for small and large 

volatility, the difference between two thresholds significantly decreases as volatility is reduced. 

However, for both cases, value functions and thresholds given by ROT are always larger than the value 

functions and thresholds by NPV as explained in Proposition 3. 

Figure 7. Comparison of ROT and NPV for small volatility. 

 

In addition, let us discuss how much the firm’s value changes, as we do not consider the firm’s 

option to wait. Table 5 shows the percentage of the option value that is not captured by the NPV 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

14000

Arbritrage profit

F
ir
m

’s
 v

a
lu

e

Firm’s value with and without Option

 

 
ROT (with option)
NPV (without option)

ROTNPV

0 50 100 150 200 250
0

100

200

300

400

500

600

700

Arbritrage profit

F
ir
m

’s
 v

a
lu

e

Firm’s value with and without Option

 

 
ROT (with option)
NPV (without option)

NPV

ROT

14,000 

12,000 

10,000 

F
ir

m
’s

 v
al

u
e 

8000 

6000 

4000 

2000 

0 



Energies 2014, 7 2716 

 

 

approach, compared to the ROT. Experiments were conducted for three different factors like volatility, 

mean drift and ESS cost. Uncaptured values that are lost by applying the NPV approach are from 0 to 

174.65%. This result implies that a firm might underestimate an ESS investment.  

Table 5. Percentage of investment value uncaptured by NPV. 

 ࣆ

 

0.2 0.6 1.0 

I I I 

500 1000 1500 500 1000 1500 500 1000 1500 

0.01 0.00 16.48 0.00 4.27 109.48 30.00 18.92 174.65 60.87 
0.015 0.00 16.38 0.00 4.54 102.45 29.56 18.86 162.33 59.01 
0.02 0.00 16.62 0.00 4.86 96.56 29.25 18.86 151.74 57.35 
0.025 0.00 17.16 0.02 5.23 91.63 29.09 18.91 142.58 55.89 
0.03 0.00 17.99 0.18 5.66 87.51 29.07 19.01 134.63 54.61 
0.035 0.00 19.12 0.56 6.15 84.10 29.20 19.17 127.70 53.50 

5. Conclusions and Further Study 

This paper proposes a model to determine the optimal investment time for energy storage systems 

in application of price arbitrage trade under conditions of uncertainty over future profits. In previous 

literature discussing ESS investment evaluation, two aspects, an option of a firm and uncertainty of 

profits, have not been paid attention. Despite the many benefits, if the investment is not profitable at a 

certain point in time, the utility firm would not invest and wait until the cost of the ESS would 

decrease or profits from an ESS would increase. Also, the profits obtained from operating an ESS and 

trading electricity are uncertain. Therefore, we suggest a real option model considering these two 

important factors to determine when the optimal investment time is. Then, we analyze the investment 

with respect to several characteristics of uncertainty. Our model provides an optimal threshold to 

invest in an ESS so that a firm can start to invest as soon as the profit level has reached the optimal 

threshold. Otherwise, the firm needs to wait until it reaches to the threshold.  

Our results about the optimal time to invest show that as profits obtained from arbitrage trade 

become more uncertain, an investor needs to wait longer. Also, improvement of efficiency in the ESS 

can reduce the uncertainty of arbitrage profit and, consequently, the reduced uncertainty enables earlier 

ESS investment, even for the same power capacity. Besides, when an expected rate of profits and ESS 

costs are higher, an investor needs to wait longer. Finally, our analyses show that a classical net 

present value method and a real option method, which is proposed in this paper, give significantly 

different results. The comparison of a real option approach and a net present value method shows that 

the net present value method underestimates the value of ESS investment and suggests an investment 

time 1.12 times to 11.8 times earlier than the optimal time. It is also found that the uncaptured value by 

a net present value method is up to 174.65 percent, which is too large to be ignored.  

As an extension of this research, the multi-purpose operation of ESSs can be considered. As 

described in [16,17], ESSs have 17 application areas such as electric supply, ancillary service, grid 

system, end use, renewables integration, etc. However, for example, a portion of ESS capacity can be 

used for arbitrage trade and the rest can be applied to ancillary service. Or, for different time periods, 

σ
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different services can be provided depending on profitability over time. For our model to be more 

realistic and practical, the assumption of Geometric Brownian motion can be substituted by more 

sophisticated models, such as mean reverting process model and autoregressive conditional 

heteroskedasticity (ARCH) model. Moreover, in practice, a firm can invest in ESS repeatedly after 

obsolescence, while our model assumes one time investment. Because repeated investment maximizes 

profit and the future cost of ESS is expected to decrease, the results could be different. Also, uncertain 

cost can be another extension of this research. In the case of Li-ion batteries, the cost is decreasing and 

is expected to reach to half of current cost within several years. Taking the cost uncertainty into 

account may lead to different investment times.  
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