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Abstract: Because of its strong inherent safety features and high outlet temperature, the 

modular high temperature gas-cooled nuclear reactor (MHTGR) is already seen as the 

central part of the next generation of nuclear plants. Such power plants are being 

considered for industrial applications with a wide range of power levels, and thus  

power-level control is an important technique for their efficient and stable operation. 

Stimulated by the high regulation performance provided by nonlinear controllers, a novel 

dynamic output-feedback nonlinear power-level regulator is developed in this paper based 

on the technique of iterative damping assignment (IDA). This control strategy can provide 

the L2 disturbance attenuation performance under modeling uncertainty or exterior 

disturbance, and can also guarantee the globally asymptotic closed-loop stability without 

uncertainty and disturbance. This newly built control strategy is then applied to the power-level 

regulation of the HTR-PM plant, and numerical simulation results show both the feasibility 

and high performance of this newly-built control strategy. Furthermore, the relationship 

between the values of the parameters and the performance of this controller is not only 

illustrated numerically but also analyzed theoretically. 

Keywords: modular high temperature gas-cooled reactor (MHTGR); power-level control; 

iteratively damping assignment; L2 disturbance attenuation 

 

1. Introduction  

After the severe nuclear accident at Fukushima, the safety issues of nuclear reactors have become 

much more significant than before. Because of its inherent safety characteristic and economic 

competitive power, the modular high-temperature gas-cooled reactor (MHTGR) is seen as the central 
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part of the next generation nuclear plant (NGNP). MHTGRs use helium as coolant and graphite as both 

moderator and structural material, and its fuel elements contain thousands of very small coated 

particles that are embedded in a graphite matrix. The coatings surrounding the particle kernel produce 

a robust fuel form by acting as the containment boundary for radioactive material. The crucial inherent 

safety feature is guaranteed by the low power density and the slim shape of the reactor core [1–3], 

which makes the MHTGR meet and exceed current nuclear standards in reliability, waste management 

and safety. Moreover, the MHTGR can provide heat for industrial process at temperatures from 700 to 

950 °C, which opens a door for a wider range of commercial applications than that of current light 

water reactors operating near 300 °C. Study on the MHTGR technology began in China at the end of 

the 1970s. A 10 MWth pebble-bed high temperature gas-cooled test reactor (HTR-10), which was built 

at Institute of Nuclear and New Energy Technology (INET) of Tsinghua University [4], achieved its 

criticality in December 2000 and full power level in January 2003. Six safety demonstration tests have 

also been done on the HTR-10, which have manifested both the inherent safety feature and the  

self-stabilizing features [5].  

Figure 1. Schematic structure of the HTR-PM power plant. 

 

Based upon the HTR-10, a high temperature gas-cooled reactor pebble-bed module (HTR-PM) 

project has then been proposed [6,7]. The HTR-PM plant consists of two pebble-bed one-zone module 

reactors of combined 2 × 250 MWth power, and adopts the operation scheme of two modules 

connected to one steam turbine/generator set. Here, the module is a nuclear steam supplying system 

(NSSS) composed of an MHTGR, a helical coiled once-through steam generator (OTSG) and some 

connecting pipes. The MHTGR and OTSG of one NSSS are arranged side by side and housed in 

independent steel pressure vessels, and the schematic view of the HTR-PM plant is illustrated in 

Figure 1. 
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It is exceedingly clear that safe, stable and efficient operation is a key requirement for the various 

industrial applications of the MHTGR power plants such as electricity production, process heat 

sources, etc. Power-level regulation is just one of the most significant techniques guaranteeing 

economic and stable control performance and is very meaningful for the operation of the MHTGR. 

The basic principle of the power-level control is generating the insertion and withdrawal speed signal 

of the control rods to regulate the plant power according to a demand signal based upon the 

measurement of the neutron concentration, coolant temperature, control rod positions, etc. Though the 

classical output feedback power-level control still dominates commercial nuclear power plant 

operation, due to the development of the current high speed industrial microprocessors, it is possible 

now to implement more modern control strategies for improving regulation performance, which has 

led to the development of a series of promising power-level controllers during the past two decades. 

Combining the features of both the static output feedback and the state feedback, Edwards et al. [8] 

developed the state feedback assisted classical controller (SFAC) which utilizes the state-feedback to 

modify the demand signal for an embedded classical output feedback controller, and is quite useful for 

the existing power plant implementation since it leaves the current classical feedback loop in place. In 

order for strengthening the robustness of the SFAC, the linear quadratic Gaussian regulation with loop 

transfer recovery (LQG/LTR) technique is then applied under the SFAC configuration [9,10]. Since 

the SFAC are essentially linear regulators which guarantees closed-loop stability only near the 

operating point, it is not suitable for those nuclear plants that should tightly follow the demand signal. 

Therefore, it is necessary to develop a nonlinear power-level controller with load-following ability. 

One way to design the nonlinear power-level control is based upon the system model. For example, 

Shtessel [11] designed a nonlinear power-level control strategy composed of a static state feedback 

sliding mode controller and a sliding mode state-observer for the TOPAZ II space nuclear reactor.  

The other way is to use the soft-computing methods such as the artificial neural network [12], fuzzy  

set [13,14] and genetic algorithm [15]. However, the performances of these intelligent controllers are 

usually determined by their training samples which are very expensive or not possible to be obtained. 

The theory of nonlinear power-level control of nuclear reactors is still under development, and there is 

still no mature controller design approach. 

Generalized Hamiltonian system (GHS) theory is a promising control design method for nonlinear 

systems, whose basic idea is adding dissipative terms to a given dynamic system through feedback in 

order for the asymptotic closed-loop stability [16]. Both the energy shaping (ES) [17] and the 

interconnection and damping assignment passivity based control (IDA-PBC) [18] are effective GHS 

approaches which have been already applied to those mechanical [19], electromechanical [20] and 

power systems [21–23]. However, these two methods usually result in solving a set of complicated 

partial differential equations, which limits their application to the complex process systems such as the 

nuclear reactors. Stimulated by this and the need of designing nonlinear power-level regulation 

strategy for the MHT-GRs, a novel dynamic output-feedback power-level controller based on iterative 

damping assignment (IDA-PLC) is presented for the MHTGRs in this paper. The IDA-PLC is 

composed of a nonlinear state-feedback power-level regulator and a state observer. The regulator is 

realized by adding damping terms iteratively through state-feedback, and the observer just adopts the 

well-built dissipation based high-gain filter (DHGF) [24,25]. The IDA-PLC is an L2 disturbance 

attenuator when there exist exterior disturbances or modeling uncertainties, and it guarantees the 
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globally asymptotic closed-loop stability if there is no disturbance and uncertainty. The IDA-PLC is 

then applied to the power-level control of the NSSS of the HTR-PM plant, and numerical simulation 

results show not only the feasibility of this newly-built MHTGR power-level control strategy but also 

the relationship between its performance and its parameters. 

The rest part of this paper is organized as follows: both the nonlinear state-space model and the 

problem formulation are given in Section 2. Section 3 presents the iterative design of the  

state-feedback power-level regulator. In Section 4, the DHGF is applied to the state-observation of the 

MHTGR, and the performance of the entire dynamic output-feedback power control strategy formed 

by both the state feedback regulator and the observer is analyzed theoretically. Simulation results with 

discussion will be given in Section 5, and some conclusions are drawn in Section 6. 

2. Nonlinear State-Space Model and Problem Formulation 

2.1. Nonlinear State-Space Model 

The dynamic model of the MHTGR can be written as [26,27]: 
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(1)

where nr is the relative nuclear power; cr is the relative concentration of delayed neutron precursor; β is 

the fraction of delayed fission neutrons; Λ is the effective prompt neutron life time; ρr is the reactivity 

provided by the control rods; λ is the effective radioactive decay constant of the delayed neutron 

precursor; αc and αr are respectively the reactivity coefficients of the fuel and reflector temperatures; P0 

is the rated reactor thermal power; Tc is the average fuel temperature; Td is the average temperature of 

the helium inside the pebble-bed; Td is the temperature of the helium entering into the pebble-bed; Tc,m 

and Td,m are initial equilibrium values of Tc and Td respectively; Tr is the reflector temperature; Ωcd and 

Ωcr are respectively the heat transfer coefficient between the fuel and helium in the pebble-bed and that 

between the fuel and reflector inside the riser; Mp is the mass flowrate times the heat capacity of the 

helium inside the primary loop; μc and μd are respectively the total heat capacities of the fuel or helium 

inside the pebble-bed; Gr is the differential reactivity worth of the control rod, and zr is the rod speed 

signal generated by the corresponding power-level control strategy.  

To obtain the state-space model for power-level control design, the deviations of the actual values 

of nr, cr, Tc, Td, Tdin, Tr and ρr from their equilibrium values, i.e., nr0, cr0, Tc0, Td0, Tdin0, Tr0 and ρr0 are 

respectively defined as: 
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(2)

Moreover, we define: 

 Td c r r rδ δ δ δ δT T n cx  (3)

 Tdin rδ δT Tw  (4)

and: 

r ru G z  (5)

Then, the nonlinear state-space model for power-level control design can be written as: 
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and: 

   T1 0 3x c xh x  (10)

It is noted that the heat capacity of the reflector of the MHTGR is so large that δTr changes very 

slowly and its amplitude is also very small. Moreover, δTdin reflects the influence of the other parts of 

the MHTGR to the reactor core dynamics. Therefore, it is quite reasonable to view w defined in 

Equation (4) as the disturbance. 
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2.2. Problem Formulation 

Here, define the evaluation signal of System (6) as: 

 ζ ζ x  (11)

where the vector-valued function ζ is smooth. Then the concept of L2 disturbance attenuator is 

introduced as follows: 

Definition 1 [15]: consider nonlinear System (6) with evaluation Signal (11). Control input u is said 

to be an L2 disturbance attenuator if there is a semi-positive smooth function V(x) such that following 

γ-dissipation inequality is satisfied: 

     2 22

2 2

1

2
V Q   x x w ζ  (12)

where Q(x) is a semi-positive function; ||·||2 is the Euclidean norm, and here γ is a positive scalar called 

the L2 gain from disturbance w to evaluation signal ζ. 

Remark 1: from Inequality (12), when w ≡ O:  

    2

2

d 1
0

d 2

V
Q

t
   

x
x z  (13)

Based upon Inequality (13), it is clear that if   | 0x x V x     satisfies x→0 as t→∞, then 

from Lasalle’s invariance principle, the system is asymptotic stable. After introducing the concept of 

L2-disturbance attenuator, the problem to be solved in this paper is given as follows: 

Problem 1: how to design an L2-disturbance attenuator for System (6) with evaluation Signal (11)? 

That is to say, how to design a power-level controller for the MHTGR with L2-disturbance  

attenuation performance? 

3. Power-Level Control Based on Iterative Damping Assignment 

As we have discussed above, instead of the classical control design techniques that try to impose 

some predetermined dynamic behavior—usually through nonlinearity cancellation and high gain, the 

control design based on feedback dissipation is an ever increasing predominance of control techniques. 

However, the existing feedback dissipation approach such as energy shaping (ES), interconnection and 

damping assignment passivity based control (IDA-PBC) and etc. usually need System (6) to satisfy the 

following matching condition: 

   T H h x g x  (14)

where H is a semi-positive function called Hamiltonian function. Moreover, the control design by the 

existing feedback dissipation approach certainly leads to solve a set of partial differential equations. 

From Equations (8,10), the dimensions of vectors h and g imply that matching Condition (14) 

cannot be satisfied here. Furthermore, solving partial differential equations may also lead to intensive 

complexity. Thus, in this section, the damping assignment is performed by state-feedback iteratively. 

In the following, the concept of feedback dissipation is firstly introduced. The power-level control 

(PLC) is then designed through the approach of iterative damping assignment (IDA). Finally, the 

closed-loop stability and L2-disturbance attenuation performance of the IDA-PLC are both verified. 
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3.1. Introduction to the Concept of Feedback Dissipation Control 

To introduce the concept of the feedback dissipation control, the concept of the dissipative system 

is firstly given as follows: 

Definition 2: consider the following nonlinear autonomous system: 

 χ ω χ  (15)

where nR   and ω(O) = O. If there exists a smooth function Γ(·): Rn→R+ = [0, ∞) called 

Hamiltonian function so that inequality is satisfied: 

    0
 

 


χ ω χ
χ

  (16)

Then System (15) is said to be a dissipative system corresponding to Hamiltonian function Γ. 

Moreover, if Inequality (16) holds strictly, then System (15) is strictly dissipative. After introducing 

the dissipative system, the concept of the generalized Hamiltonian realization is given as follows: 

Definition 3: System (15) is called to have a generalized Hamiltonian realization (GHR) if there is a 

suitable subsets of Rn such that System (15) can be expressed as: 

    χ T χ χ  (17)

where 
T


 

    χ
,and n nT R   is called the structure matrix. Moreover, if structure matrix T can be 

written as: 

      T χ J χ R χ  (18)

with skew-symmetric J and symmetric nonnegative definite R. 

Remark 2: if the structure matrix of System (15) can be represented as Equation (18), then it is 

dissipative. Moreover, if symmetric matrix R is strict positive definite, then System (15) is strict dissipative. 

From Definition 2, system dissipation means shrinkage of a given Hamiltonian function. However, 

not all of the dynamic systems are dissipative for a given Hamiltonian function, it is reasonable to 

force a system to be dissipative by the means of feedback. This leads to the definition of feedback 

dissipation control given as follows: 

Definition 4: consider the following nonlinear system: 

   
 
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



χ ω χ ζ χ υ

θ η χ


 (19)

where nR   is the system state vector; pR   is the control input; mR   is the system output, and 

ω(O) = O. For a given Hamiltonian function Γ(χ), feedback control υ is called a feedback dissipation 

control if Inequality (20) is satisfied: 

        0





     
z

z ω z ζ z υ
z

  (20)

If Inequality (20) is strictly satisfied, then υ is called a strict feedback dissipation control. If υ = υ(χ), 

then it is a state-feedback dissipation control. If υ = υ(θ), then it is called an output-feedback 
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dissipation control. Finally, in order for the closed-loop stability analysis, the concepts of zero-state 

detectability and observability are introduced as follows: 

Definition 5 [15]: consider nonlinear System (19), and System (19) is called zero-state detectable if 

θ ≡ O and υ ≡ O ( 0t  ) implies: 

 lim
t

t


z O  (21)

Moreover, this system is called zero-state observable if θ ≡ O and υ ≡ O implies z(t) ≡ O for 0t  . 

3.2. Design of the Power-Level Control Based on Iterative Damping Assignment 

Firstly, we adopt the following the state transformation: 
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and then reactor Dynamics (6) can be rewritten as: 
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(26)

and: 

   T1 0 3z c zh z  (27)

In the following, the iterative damping assignment for system (23) is done through state-feedback 

dissipation step by step: 
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Step 1: 

Define:  
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and then reactor dynamics can be rewritten as: 
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We can see from the first equation of Equation (29) that it already has the form like a GHR. Next, 

we shall do like this iteratively. 
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Step 2: 

Based on coordinate Transformation (28), define: 
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From Equations (28,30), the reactor dynamics can be transformed to: 

     
     

22 2 2 2 2 4 2

2 2 2 2 2 2

,

,

H

u

     


  

ξξ J R ξ p P z w

z f z g z G z w



  
(33)

where: 

 T2 1 2 3  ξ  

 
22 2
31 2

2 2
c d2 2 2

H
 

 
  ξ

 

cd
1

2 cd c 0
1

c 0

0 0

0

0 0

P

P


 







 
   
  

J
 

 
 

1
c d cd p

1
2 c d cd cr

1

2 0 0

0 0

0 0

M  

   
 







 
 

  
 
  

R
 

T1
2 0 0    p

 

   
 

T11
d p d 0 cd p

2 1 1
c cr r r0 3

2 0 4

0

M P M

n z

  
   



 

 
  

  
P z

 

     
 

11 2 1
r0 3 4 4 3 5 c 2 4

2

3 5

n z z z z z z z

z z

   



        
  

f z
 

   T2 r0 3 0n z g z
 

 
r

4
2

0

0 0

z



 
 
 
 

G z  
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Step 3: 

Based on Equation (33), we choose the feedback control u as: 

       

 

 

2
1 2 2c c c 04

r0 3 c 2 3 5 2 4 r0 3 2 3
r0 3 c

2
c cd cd cr 4

1 3 c 2 3 1 1 2 2 3 3
c c r0 3

4 5

2 Pz
u n z z z z z z n z z z

n z

z
z z z z D z D z D z

n z

z z v

    
   

   
 

  

 

                
 

         
  


z

 

(34)

where: 

cd pcd cd
1 1 2 1

0 c d

22 M
D C C C

P

 
  


     (35)

cd cd cr
2 1 2

d c

D C C
  


 


    (36)

2 0
3

c

1C P
D

 
   (37)

where v is the compensation term to be designed for guaranteeing the dissipation or stability 

characteristics of the closed-loop system, and here both κ and σ are given positive scalars. 

Substituting control law Equation (33) to Equation (34), we can obtain: 

     
 5 3 5

H v

z z z

     


 




ξξ J R ξ p P z w

 
(38)

where: 

 T1 2 3 4   ξ  (39)

 
22 2 2
31 2 4

c d2 2 2 2
H

  
 

   ξ  (40)

cd
1

cd c 0
1 1 1

c 0
1 1

0 0 0

0 0

0 0

0 0 0

P

P


 

  
 



  

 

 
  
 
  

J  (41)

 
 

1
c d cd p

1
c d cd cr

1

2 0 0 0

0 0 0

0 0 0

0 0 0

M  

   
 









 
 

   
 
  

R  (42)

 T0 0 0 1p  (43)
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   
   

T11 1
d p d 0 cd p d p 1

1 1
c cr r r0 3 42

2 0 4 2

0

M P M M C

n z p

   
   

 

 

 
  

  
P z

z
 (44)

     1 1 1
42 r 4 c cr 2 c 3 c r 2 r0 3 .p z C z z n z             z  (45)

From Equations (28,30), the coordinate transformation from z to ξ	can be expressed as: 

 
cd

3 3 1
0

4 4 1 1 2 2 c 2 3 5

, 1,2 ,

2
,

.

i iz i

z z
P

z C z C z z z z






  

  

  

       

(46)

Moreover, from Equations (22,46), it is clear that the transformation from x to ξ is: 

 

 

cd
3 3 1

0

4 r0 3 4 1 1 2 2 c 2 3 5

, 1,2 ,

2
,

.

i ix i

x x
P

n x x C x C x x x x






  

  

  

        

(47)

Under coordinate x, feedback law Equation (34) can be written as: 

          

 

 

2
1 2c c

r0 3 4 c 2 3 5 r0 3 2 4 r0 3 2

2
r0 3 42c 0 c cd cd cr

3 1 3 c 2 3 1 1 2 2
c c c

3 3 r0 3 4 5

2
u n x x x x x n x x x n x x

n x xP
x x x x x D x D x

D x n x x x v

   
  

    
 

   

 

 
         


 

       
 

        

x

 

(48)

The following Proposition 1, which is the first main result of this paper, gives the condition so that 

feedback law Equation (34) is an L2 disturbance attenuator corresponding to a given evaluation signal. 

Proposition 1: choose the evaluation signal as: 

   
 

T1
H

 
 ξ ξ ξ x

x p ξ  (49)

where ξ, H and p is determined by Equations (40,43,47), respectively. If the compensation term  

v satisfies: 

   
 

Tv K H


  ξ ξ ξ x
x p ξ  (50)

where K is a given positive scalar, then feedback law composed of Equations (48,50) is an L2 

disturbance attenuator corresponding to evaluation signal Equation (49). Moreover, the L2 gain can be 

adjusted by feedback gain K. Moreover, if there is no disturbance, i.e.: 

w O  (51)

then the closed-loop system is globally asymptotically stable. 
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Proof: based on the above discussion, it is so clear that differentiating Hamiltonian function 

Equation (40) along the trajectory given by Equations (6,48,50) is equivalent to that along the 

trajectory given by Equations (38,50). Then, we can derive that: 

         
               
       

               

 
       

T

T T T T T

T 2 2 T

2

T T T T
2

2

22 2 2

2

2 2 22 2 2

2

1 1

1

2

1 1

2

H H H v

H H H H K H H H

H H K H

H H H H H

K

H H K

 


 

  

  


       
        

    

         



 
       

 


ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξR M z

ξ ξ J R ξ p P z w

ξ J ξ ξ R ξ ξ pp ξ ξ P z w

ξ R ξ ξ P z w

w P z ξ ξ R ξ ξ P z P z ξ

w

ξ ξ w  

(52)

where: 

     TM z P z P z  (53)

From Equation (42) and Inequality (52), we can properly choose the values of κ and γ such that 

inequality is satisfied: 

     

2 21
H H 


   ξ ξR M z

ξ ξ  (54)

where τ is a small positive scalar. Based upon Inequalities (52,54), we have: 

   22 2 2

2

1

2
H K      ξ w  (55)

By the use of Inequality (55) and Definition 1, we can easily see that the feedback law composed of 

Equations (48,50) is an L2 attenuator of system Equation (6) corresponding to evaluation signal  

Equation (49). Moreover, from Inequality (55), the L2 gain from disturbance w to evaluation signal ζ is: 

2L
K




  (56)

which means that the influence of w to ζ can be effectively reduced by choosing a large K or a large σ. 

In the following, we shall prove the globally asymptotic closed-loop stability when Condition (51) is 

satisfied. It is clear that if Equation (51) holds, we have: 

             
 

 

T T T T

2 2 2
4

2
0

H H H H H K H H

H K

H

 

       

   

   

ξ ξ ξ ξ ξ ξ

ξ R

ξ R

ξ ξ J ξ ξ R ξ ξ gg ξ

ξ

ξ



 

(57)

where: 

 
 

1
c d cd p

1
c d cd cr

1

2 0 0 0

0 0 0

0 0 0

0 0 0

M

K

  

   
 









 
 

   
 
  

R  (58)
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From Equations (40,57,58), state-vector x asymptotically converges to the set defined as: 

   x ξ x O  (59)

Based upon coordinate Transformation (47), set Ξ is equivalent to: 

 1 1 2 3 r0 4 50, 0x x x n x x      x  (60)

Moreover, from Equations (6,7), for 1x   , it is quite clear that: 

 lim
t

t


x O  

which manifests that the closed-loop system is globally asymptotically stable if w ≡ O. This completes 

the proof of this proposition. 

Remark 3: based on Inequality (57) and Equation (58), when there is no disturbance, the closed-loop 

system is still globally asymptotically stable even if K = 0. That is to say, feedback law Equation (34) 

with v = 0 is enough to guarantee the globally asymptotic closed-loop stability in case of w ≡ O. 

Remark 4: from Equations (40,43,47), it is easily to see that: 

     4 r0 3 4 1 1 2 2 c 2 3 5n x x C x C x x x x         x x  (61)

and: 

     4 r0 3 4 1 1 2 2 c 2 3 5v K K n x x C x C x x x x               x x  (62)

Substituting Equation (48) to Equation (62), we can get the total feedback control law, i.e., 

          

 

 

2
1 2c c

r0 3 4 c 2 3 5 r0 3 2 4 r0 3 2

2
r0 3 42c 0 c cd cd cr

3 1 3 c 2 3 1 1 2 2
c c c

3 3 r0 3 4 5

2
u n x x x x x n x x x n x x

n x xP
x x x K x x D x D x

D x K n x x x

   
  

    
 

   

 

 
         


 

       
 

      


x

 

(63)

where:  

K K    (64)

cd pcd cd
1 1 2 1

0 c d

22 M
D KC C C

P

 


  


     (65)

cd cd cr
2 1 2

d c

D C KC
  


 


    (66)

It can be easily seen from Equation (63) that the function of this control law is realized through 

feeding back all the state-variables. Since only x1 and x3, i.e., δnr and δTd can be obtained through 

measurement, it is quite necessary to design a convergent state-observer for the implementation of this 

newly-built power-level control strategy. 
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4. Dynamic Output-Feedback Power-Level Control Strategy 

In this section, for the implementation of the nonlinear state-feedback power-level controller 

Equation (63), the corresponding state-observer is designed firstly. Based on this observation strategy, 

the dynamic output-feedback power-level control law is developed. Through theoretical analysis that 

will be given in this section, this control strategy can provide power-level regulation function for the 

MHTGR with the performance of L2 disturbance attenuation. 

4.1. Observation Strategy 

The dissipation-based high-gain filter (DHGF) is an asymptotic state-observer for nonlinear 

systems, which has been proved to satisfy the separation principle. The DHGF is firstly introduced in this 

sub-section, and then a DHGF is designed for MHTGR dynamics Equation (6) without disturbances. 

Consider the following nonlinear dynamic system: 

   
 

  




ς ψ ς χ ς μ

η φ ς  (67)

where nR   is the state-vector; mR  is the system output; pR  is the control input and  

vector-valued functions ψ, φ and χ are all smooth.  

Suppose that the state-observer corresponding to System (67) takes the form as: 

    Oˆ ˆ ˆ  ς ψ ς χ ς μ F τ  (68)

where ˆ nR   is the state-observation, n m
OF R   is the gain matrix of the observer,  

   ˆ ˆ   τ η η φ ς φ ς  (69)

and: 

 ˆ ˆη φ ς  (70)

Moreover, we define the observation error as: 

ˆ υ ς ς  (71)

and then it is clear that the dynamics of the observation error can be written as: 

   Oˆ ˆ,  υ Ψ υ ς F η η  (72)

where: 

     ˆ ˆ,  Ψ υ ς φ ς φ ς  (73)

The following Lemma 1 guarantees not only the convergence of State-observer (68) but also the 

stability of the closed-loop system composed of Dynamics (67), a stabilizer μ and Observer (68): 

Lemma 1 [24,25]: Consider nonlinear system Equation (67) with State-observer Equation (68), and 

here suppose that:  

 μ Φ ς  (74)
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is a state-feedback control law for System (67). Moreover, assume that observation error dynamics 

Equation (72) with its output defined as Equation (69) is zero-state observable, and there exists a 
smooth function    O : 0,mR R    , which satisfies: 

  T

OT  
   

τ
τ B

υ
 (75)

and is only minimal at point τ = O. Then state-observer Equation (68) is convergent and dynamic 

output feedback controller: 

 
      O

ˆ

ˆ ˆ ˆ ˆ

 


  

μ Φ ς

ς ψ ς χ ς Φ ς F τ  
(76)

is also an asymptotic stabilizer if:  

O

1


F B  (77)

where ϑ is a small enough positive scalar. The State-observer (68) with its gain matrix satisfying 

Equation (77) is called the dissipation-based high gain filter (DHGF). 

Proof: See References [24,25]. 

4.2. Design and Analysis of the Dynamic Output-Feedback Power-Level Control Strategy 

From the above discussion, it is natural for us to design the state-observer for System (6) as: 

       O
ˆ ˆ ˆ ˆu     x f x g x K h x h x  (78)

where f(·) and g is respectively defined by Equations (7,8), output function h(·) is determined by 

Equation (10), and control law u(·) is given by Equation (63). Based on Equations (63,78), the 

corresponding dynamic output feed-back controller can be written as: 

 
       O

ˆ

ˆ ˆ ˆ ˆ

u u

u




      


x

x f x g x K h x h x  (79)

where functions f(·), g, h(·) and u(·) respectively have the same meaning with those in Equation (78). 

Moreover, it is clear that the corresponding observation error dynamics of Equation (78) is: 

   e Oˆ, y  e f e x K e G x w  (80)

where: 

ˆ e x x  (81)

     ˆ ˆ,  f e x f x f x  (82)

and: 

       Te 1 0 3ˆy e c e   e h e h x h x  (83)

Following Proposition 2, which is the second main result in this paper, gives a sufficient condition 

for dynamic output feedback controller Equation (79) to be an L2 disturbance attenuator. 
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Proposition 2: dynamic output feedback controller Equation (79) is an L2 disturbance attenuator for 

System (6) if the gain matrix KO satisfies: 

O

1


K L  (84)

where: 
T

1 0 0 0 0

0 0 1 0 0

 
  
 

L  (85)

where ε is a small enough positive scalar. Furthermore, if there is no disturbance, i.e., Condition (51) holds, 

then control strategy Equation (79) is a globally asymptotic stabilizer, and Observer (78) is also convergent. 

Proof: Define: 

   2 2
O 1 0 3

1

2yH e c e e  (86)

and it is clear that function HO (·) is only minimal at ey ≡ O. It is also easily to derive that: 

   

 

 

T T

O OT

TT

1 0 3

T

1 0 3

1 0 0 0 0
0 0 0

0 0 1 0 0

y y

y

H H

e c e

e c e

    
   
       

  
       

 

e e
L L

e e

e  

(87)

which means that Condition (75) is satisfied.  

Substituting ey ≡ O and w ≡ O to observation error dynamics Equation (80), and we have: 

 
  

1
d cd 2

1
2 c cd cr 2

1 1
5 r0 3 c 2 4

4

5 5

0 ,

,

0 ,

0,

.

e

e e

e n x e e

e

e e

 

  

   







 

 


  

    



  




  

(88)

which is equivalent to: 

 
 5 r0 3 4

4

5 5

0, 1,2,3 ,

0,

0,

.

ie i

e n x e

e

e e





  


  



  


  

(89)

Since the value of x3 can be arbitrarily given, it is easily to see from Equation (89) that: 

y  
 

 

e O
e O

w O
 (90)

which means that observation error Dynamics (80) under Condition (51) is zero-state observable with 

its output defined as ey. Since state-feedback control Equation (48) is a globally asymptotic stabilizer if 



Energies 2012, 5                    

 

 

1799

Condition (51) is satisfied, it can be seen from Lemma 1, Equations (86,87,90) that control strategy 

Equation (79) is still a globally asymptotical stabilizer and Observer (78) is convergent under 

Condition (51). 

Next, we shall prove that control law Equation (79) is still an L2 disturbance attenuator even if w ≠ O. 

Define the extended Hamiltonian function for the closed-loop system composed of Equations (6,79) as: 

       O, y yH H H


 
ξ ξ x

x e ξ e  (91)

where functions H(·) and HO(·) are determined by Equations (40,86), respectively. Differentiating 

Equation (91) along the trajectory given by Equations (6,79), we can derive that: 

   
   

 
              

             

      

       

Oˆ

T T
O e O

T2 2 2 T T T
O O e

2T

2

2

T T
O

2

,

ˆ ˆ,

ˆ,

1
ˆ

1

y yu u

e y yu u

y e y

y

y

H H H

H H u u H

H K H H H

H u u

H H

 












 

                

           

        

        

  


x

x ξ ξ xx

ξ ξ eR

x ξ ξ x

ξ e

x e ξ e

ξ g ξ x x e f e x K e G x w

ξ P z ξ G x e w e f e x

g ξ x x e

w P z ξ G x e    
              

   

           

          

2 22 2 2

2

2
T T T

O2 2

2T
O e 2

2222 2 2 T T
O22 2

2 T T
O e2

1

2

1
ˆ

1
ˆ,

1 1

2

1
ˆ ˆ,

y

e y y

y

y e y

H K

H H H u u

H

K H H H

H u u H

  





  








   

            

 

 
         

 
            

ξ R

ξ e x ξ ξ x

ξ ξ eR

x ξ ξ x

ξ w

P z ξ G x e g ξ x x

e f e x e

w ξ P z ξ G x e

e g ξ x x e f e x  

(92)

where matrices L and M are respectively defined by Equations (53,85). 

From Inequality (92), by properly choosing the values of positive scalars κ, γ and ε, it is easy to 

guarantee that inequalities: 

          22 T T
O 12 2

1
yH H H 


     ξ ξ eR

ξ P z ξ G x e  (93)

          2 T T
O e 22

1
ˆ ˆ,y e yH u u H 

 
          x ξ ξ x

e g ξ x x e f e x  (94)

where θ1 and θ2 are both small positive scalars. 

From Inequalities (92–94), we find that: 

   22 2 2

2

1
,

2yH K     x e w  (95)

where θ =θ1 + θ2. Based upon Inequality (95) and Definition 1, it is now quite clear that dynamic 

output feedback control strategy Equation (79) with observer gain Equation (84) and a small enough ε 

is still a L2 disturbance attenuator in case of w ≠ O. This is completes the proof of Proposition 2. 
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5. Simulation Results with Discussion 

To show the feasibility and performance of the dynamic output feedback power-level control law 

determined by Equations (7,8,10,63,79) this newly developed controller is applied to the power-level 

regulation of a NSSS of the HTR-PM plant in this section. The influence of the controller parameters 

to the control performance is also illustrated and analyzed. 

5.1. Description of the Numerical Simulation 

The numerical simulation model is developed based on Visual C++. Since the height-to-diameter 

ratio of the HTR-PM reactor is nearly 4, the classical point kinetics model is not suitable for building 

the simulation code of the reactor core. By dividing the active core region into 10 parts vertically, a 

nodal neutron kinetics model and its thermal-hydraulic model are utilized to establish the simulation 

code [27]. The adopted OTSG model is just the classical moving boundary model [28]. The schematic 

view of the dynamic model of the NSSS for numerical simulation is shown in Figure 2. Furthermore, 

the model of the steam turbine and that of the electrical generator are also included in the simulation 

code [29]. The numerical simulation of this paper was done by the use of this simulation code. 

Figure 2. Schematic view of the dynamic model of the NSSS. 
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5.2. Simulation Results 

In the simulation, the following two case studies are done to show the feasibility and performance 

of newly-built dynamic output-feedback power-level control law Equation (79): 

Case A (large power drop): power-level changes linearly from 100% to 50% in 5 minutes; 

Case B (large power lift): power-level changes linearly from 50% to 100% in 5minutes. 

From Equations (31,32,37,63,65,66), it is clear that since scalars C1 and C2 are so small that the 

influence of the value of K  to the control performance is much weaker than that of σ. Therefore, in 

this study, we only check the influence of parameters σ and ε to the control performance.  

Figure 3. Dynamic responses in Case A of (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature and (d) control rod speed signal with different σ 

and constant ε. 
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Figure 3. Cont. 
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Figure 3. Cont. 
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In the numerical simulation, K  is set to be 10.0, and control parameter σ and observation parameter 

ε are set to be different values respectively. 

Case A: In this test, the power demand signal decreases down from 100% to 50% linearly with a 

speed of 5%/min. Corresponding to the power demand drop, both the error between the actual and the 

demanded power-levels and that between the actual and the referenced values of average coolant 

temperature become larger than before. These error signals stimulate the power-level controller to 

insert the control rod in order to weaken these two error signals. If scalar ε = 0.01 and σ adopts 

different values, then the responses of the relative nuclear power, average fuel temperature, average 

helium temperature and control rod speed generated by power-level controller Equation (79) during the 

transition period are all illustrated in Figure 3. If scalar σ = 0.01/Λ and ε is set to different values, then 

the corresponding dynamic responses of these concerned process variables are shown in Figure 4. 

Case B: As the power demand signal rises linearly from 50% to 100% in 5 minutes, the error 

signals in the nuclear power and the average helium temperature cause the power regulator to generate 

positive speed control action and lift the control rod to reduce this error. The computed responses of 

reactor process variables corresponding to control action Equation (79) are illustrated in Figures 5 and 6. 

Figure 4. Dynamic responses in Case A of (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature and (d) control rod speed signal with constant σ 

and different ε. 
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Figure 4. Cont. 
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Figure 4. Cont. 
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5.3. Discussion 

From Figures 3 and 4, the load decrease leads both δnr and δTd to be positive and increasing, which 

drives the power-level controller to give a negative control rod speed signal. Inserting the control rods 

leads to the decreases of both the nuclear power and fuel temperature. The closed-loop system comes 

into an equilibrium state if the positive reactivity caused by the decrease of the fuel temperature nearly 

cancels the negative reactivity caused by the rod insertion. The generation of the control rod speed 

signal is driven by the variations of both the nuclear power and average coolant temperature obtained 

from measurement. These two variation signals lead state-observer Equation (78) to give a convergent 

observation of the state-variations which then cause state-feedback power-level control Equation (63) 

to generate the speed signal of control rods. Also from Figure 3, we can see that the steady regulation 

error is smaller if controller parameter σ is larger. Actually, from Equation (56), it is clear that a larger 

σ can result in a larger L2 gain from the disturbance to the evaluation signal, which means that the 

closed-loop system is more robust to both the modeling uncertainty or exterior disturbances. Thus, a 

smaller steady control error reflects that the closed-loop system has a stronger ability to sustain the 

disturbances. However, from Proposition 2, to maintain the L2 disturbance attenuation property of 

state-feedback law Equation (56), it is necessary to set parameter ε to be a small enough positive 

scalar. This can be clearly seen from Figure 4 that scalar ε is larger, the L2 disturbance attenuation 

performance of the closed-loop is weaker. 

Figure 5. Dynamic responses in Case B of (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature and (d) control rod speed signal with different σ 

and constant ε. 
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Figure 5. Cont. 
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Figure 5. Cont. 
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Moreover, from Figures 5 and 6, the load increase causes the decrease of δnr and δTd, which results 

in the generation of a positive speed signal of control rods. The withdrawal of the control rods then 

causes increases of both the nuclear power and the fuel temperature. Similarly with the case of load 

drop, the closed-system come to the steady state if the negative reactivity caused by the increase of the 

fuel temperature nearly cancels the positive reactivity induced by withdrawing the control rods. 

Moreover, it is clear from Figures 5 and 6 that the control performance is also deeply influenced by the 

values ε and σ. The reason is the same as that given in the above paragraph. 

Finally, from the theoretical analysis and numerical simulation, dynamic output-feedback control 

strategy Equation (79) is feasible for the power-level regulation of the MHTGRs. The L2 disturbance 

attenuation performance of this newly-built control law is guaranteed by choosing the values of both 

parameters ε and σ to be small enough. With comparison to the power-level controller presented  

in [29], the transition periods of both the fuel and coolant temperatures caused by the newly-built 

controller in this paper is much smaller than those corresponding to the controller in [29]. This is just 

an instance for the fact that dynamic output feedback control is stronger than static output feedback 

control, and this is also the key improvement of the work in this paper relative to that in [29]. 

Figure 6. Dynamic responses in Case B of (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature and (d) control rod speed signal with constant σ 

and different ε. 
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Figure 6. Cont. 
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Figure 6. Cont. 
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6. Conclusions 

Power-level control is a crucial technique for guaranteeing operation stability and efficiency of the 

MHTGRs. Since the dynamics of the MHTGR are nonlinear and modern state-feedback power-level 

control has the potential of improving closed-loop stability and control performance, it is necessary to 

develop a nonlinear power-level control technique for the MHTGR-based nuclear plants. Stimulated 

by this, a novel nonlinear dynamic output-feedback power-level controller has been given, and the two 

key techniques of developing this control strategy are respectively the iterative dissipation assignment 

(IDA) given in Section 3 and the DHGF-based observer design technique given in Section 4. This 

power-level control strategy can guarantee the L2 disturbance attenuation performance, and has 

analytic expressions with clear physical meaning. Moreover, there is a clear relationship between the 

controller parameters and the regulation performance. Both simulation results and theoretical analysis 

have shown that the performance of this newly developed power-level controller can be satisfactory 

high with large enough σ and ε. The results given here have shown the theoretic feasibility of this 

newly-developed power-level control law. For engineering implementation of this control strategy for 

the MHTGR such as the reactors of HTR-10 or HTR-PM, the future study lies in verifying the 

performance of this control strategy on the hardware-in-loop simulation platform proposed in [30]. 
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