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Abstract: Energy is crucial in supporting people’s daily lives and the continual quest for 
human development. Due to the associated complexities and uncertainties, decision makers 
and planners are facing increased pressure to respond more effectively to a number of 
energy-related issues and conflicts, as well as GHG emission mitigation within the multiple 
scales of energy management systems (EMSs). This quandary requires a focused effort to 
resolve a wide range of issues related to EMSs, as well as the associated economic and 
environmental implications. Effective systems analysis approaches under uncertainty to 
successfully address interactions, complexities, uncertainties, and changing conditions 
associated with EMSs is desired, which require a systematic investigation of the current 
studies on energy systems. Systems analysis and optimization modeling for low-carbon 
energy systems planning with the consideration of GHG emission reduction under 
uncertainty is thus comprehensively reviewed in this paper. A number of related 
methodologies and applications related to: (a) optimization modeling of GHG emission 
mitigation; (b) optimization modeling of energy systems planning under uncertainty; and  
(c) model-based decision support tools are examined. Perspectives of effective 
management schemes are investigated, demonstrating many demanding areas for enhanced 
research efforts, which include issues of data availability and reliability, concerns in 
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uncertainty, necessity of post-modeling analysis, and usefulness of development of 
simulation techniques. 

Keywords: optimization; GHG emission mitigation; energy systems; planning; uncertainty 
 

1. Introduction 

Energy is important in supporting people’s daily lives and the continual quest for human 
development [1]. In the past decades, the demand for various energy resources, in both sufficient 
quantities and satisfactory structures, has been increasing worldwide, along with population expansion, 
economic development and living standard improvement. At the same time, the depletion of 
conventional fossil fuels, the limitations of new energy resources/technologies, as well as public 
concerns over energy-induced environmental issues (particularly GHG emission) have greatly 
weakened society’s capabilities for addressing potential risks and impacts associated with our energy 
supply [2–5]. Although the “energy crisis” of the 1970s may not return soon, there is international 
consensus regarding the fact that energy resources can no longer be produced and consumed without 
addressing the issues of sustainability and a variety of associated problems. Thus, planners and decision 
makers are facing increased pressure to respond more effectively to a number of energy-related issues 
and conflicts, as well as GHG emission mitigation within multiple scales of energy management 
systems (EMSs). This quandary requires a focused effort to resolve a wide range of issues related to 
EMSs, as well as the associated economic and environmental implications. Consequently, effective 
planning of EMSs with the consideration of GHG emission mitigation has been a priority for  
energy-related and environmental professionals, as well as regulatory agencies [6,7]. 

An EMS contains many processes such as energy exploration and exploitation, conversion and 
processing, production and consumption, importation and exportation, as well as the associated GHG 
emissions. These processes are undergoing many dramatic changes stemming from regulation 
implementation, regional/community development, and economic expansion, which would collectively 
result in significant effects on energy activities and the associated socio-economic and environmental 
implications [8]. In addition, the processes are generally complicated with a number of economic, 
technical, environmental, legislative and political factors. Such factors and their interactions are 
fraught with uncertainties that cannot be expressed as deterministic values or in a single format [9–11]. 
The uncertainties have multiple dimensions and layered features, and are thus complex by nature. Such 
dynamics and uncertainties may lead to a variety of complexities in EMSs decision-making activities. 
Moreover, a number of regional and global environmental issues are closely connected with energy 
activities, calling for synthetic management of energy resources, activities and the resulting 
environmental issues. The development of effective systems analysis approaches under uncertainty to 
successfully address the above interactions, complexities, uncertainties, and changing conditions is 
desired, which require a systematic investigation of the current studies on energy systems. Therefore, 
in this paper, a large number of systems analysis and optimization modeling for GHG emission 
mitigation and energy systems planning under uncertainty will be discussed in Section 2, advanced 
mathematical programming methods will be presented in Section 3, and decision supporting tools 
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based on optimization will be discussed in Section 4, followed by a summary discussion and 
conclusions in Section 5.  

2. Deterministic Optimization Modeling 

Optimization is considered as an effective tool for identifying optimal strategies within complex 
management systems. Conventionally, a large number of deterministic models were used for both 
energy systems planning and the associated GHG emission mitigation. These methods posed solid 
basis for the development of inexact optimization. Particularly, due to the complexities co-existing 
within energy activities and GHG emission problems, many optimization models were developed in 
these two areas. 

2.1. Optimization of Energy Systems Planning 

Over the recent decades, a number of optimization models were developed for aiding in the 
planning of EMSs under multiple scales [12–28]. The models were widely used for supporting an 
optimum allocation of energy resources, technologies and relevant services under one or several 
administrative objectives. For example, Sharma et al. proposed a method for the optimal design of a 
compressed air storage and power generation system [29]. Kavrakoğlu developed a dynamic linear 
programming model for the planning of energy systems at a national scale [30]. Smith proposed a 
linear optimization model for the planning of New Zealand’s energy supply and distribution 
system [31]. In view of the close relationships between economic development and energy 
consumption in Pakistan, Riaz proposed an optimization approach resulting from the joint 
consideration of a set of production models for five typical energy industries in this country [32]. In 
order to facilitate the management of energy activities within a free-market economy in a given region, 
a linear optimization model was proposed by Schulz and Stehfest [33]. Samouilidis et al. made a 
thorough evaluation of the modelling approaches for electricity and energy systems planning [34]. It 
was based on two linear optimization models, including a global energy system model and an 
electricity generation subsystem model. Wene and Rydën discussed the adoption of a linear 
programming model for the planning of community-scale energy systems [35]. Groscurth and Kümmel 
developed a linear optimization model for evaluating industrial energy-saving potentials in several 
developed countries such as Germany, USA, The Netherlands and Japan [36]. Kahane made a 
thorough review on optimization modeling for the management of various energy systems [14]. Kaya 
and Keyes proposed a multi-level controlling and optimization approach to support the efficient 
operations of heat and power cogeneration systems [15]. Tiris et al. developed a linear optimization 
model and a multi-attribute value model to coordinate long-term interactions among energy, the 
economy, and the environment in Turkey [37]. Arivalagan et al. presented a mixed integer linear 
programming (MILP) model to identify economically optimum energy mixes in a processing 
industry [38]. Schoenau et al. developed a model for identifying optimum strategies in small-scale 
energy systems [18]. Lehtilä and Pirilä proposed a bottom-up energy system optimization model for 
supporting the formulation of policies related to sustainable energy utilization [39]. For optimally 
identifying heat and power generating strategies in an industrial factory, a MILP model was proposed 
by Bojiæ and Stojanoviæ [40]. As stated by Henning, MODEST was developed based on linear 
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programming to minimize the capital and operating costs of energy supply and demand [41]. Heyen 
and Kalitventzeff proposed an optimization methodology to improve energy-utilization efficiencies in 
processing industries [42]. Farag et al. attempted to develop integrated, reliable, and cost-effective 
approaches for identifying optimal plans and meeting future energy demands in several utilities [43]. 
In order to identify the optimum technology and resource mixes for the design of energy-conscious 
buildings, a numerical multivariate optimization procedure was adopted by Peippo et al. [19].  
El-Sayed proposed a linear optimization model for the management of energy systems at multiple 
scales [44]. In order to identify optimization solutions for energy and production in many industries,  
a global, multi-objective optimization methodology was proposed by Santos and Dourado [45].  
A genetic-algorithm based solution method was also proposed. In order to determine an economically 
optimal energy supply structure based on biomass, a MILP model was proposed by Nagel [46]. 
Yokoyama and Ito proposed an optimization model for supporting the structural design of energy 
systems as well as their associated long-term operations [47]. Drozdz developed a linear optimization 
model for the management of geothermal utilization and conversion [21]. Due to the multiplicity of 
criteria for judging decision alternatives related to energy management, Koroneos et al. advanced a 
multi-objective optimization model. It was then applied to a real-world case in Lesvos Island, 
Greece [48]. Ostadi et al. developed a nonlinear programming approach for identifying optimal energy 
consuming patterns/schedules within a typical manufacturing factory [49]. Considering that energy 
consumption is a very important quality index in most of the manufacturing industries in China, an 
energy optimization model was developed for minimizing energy consumption based on an energy 
prediction model and genetic algorithm [27]. Beck et al. proposed a modeling approach for supporting 
the optimal planning of energy networks through combining global optimization and agent-based 
modeling tools [50]. The approach was demonstrated through a case study of regional electricity 
generation management in South Africa. Bujak proposed a mathematical model to determine optimal 
energy consumption quotas for a set of boilers [51]. The model was then applied to multiple-scale steam 
systems that had a group of liquid- or gas-fired shell boilers. 

A number of large-scale modeling systems were also developed and then applied to many locations 
across the World. For instance, the Brookhaven Energy System Optimization Model (BESOM) was 
used to identify the optimal mixing patterns of energy resources, technologies and investments in 
accordance with the minimum system cost [35,52–54]. The Time-stepped Energy System Optimization 
Model (TESOM) was proposed as a consecutive BESOM-type optimization modeling system for 
supporting energy management [55]. The Market Allocation Model (MARKAL) was developed as a 
large-scale, technology-oriented energy-activity analysis model [5,56–65]. Multiple Energy System of 
Australia (MENSA) was developed to identify the optimal combinations of demand- and supply-side 
technologies with the objective of the lowest economic cost [66–68]. The Energy Flow Optimization 
Model (EFOM) was established as an engineering-oriented bottom-up model for energy management 
systems planning and was widely used in European countries [54,69–76]. There were also a number of 
software packages, such as Long-range Energy Alternatives Planning System (LEAP), New Earth 21 
Model (NE21), National Energy Modeling System (NEMS) and Energy 2020, which were developed 
to evaluate environmental and economic effects of energy activities [77–84]. Papagiannis et al. applied 
LEAP2006 to a number of European countries [85]. Based on MARKAL, Jiang et al. estimated future 
consumptions of natural gas in three Chinese cities: Beijing, Guangzhou and Shanghai [86]. Nguyen 
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examined the economic and environmental impacts of power production and capacity expansions in 
Vietnam [87,88]. The production of synthetic natural gas from wood in a Swiss methanation plant was 
effectively assessed through the adoption of MARKAL by Schulz et al. [89]. In Japan, Endo employed 
MARKAL to analyze the market penetration of fuel cell vehicles [90]. The MARKAL model was also 
successfully applied to a number of countries and regions for identifying sustainable development 
strategies and policies in South Africa, India, US, and European countries [60,91–119]. Silversides 
investigated biomass consumption patterns in a number of provinces of Canada, and evaluated their 
effects on forest management practices [120]. Huang et al. comprehensively investigated public policy 
discourse, energy systems planning methods, as well as relevant measures towards sustainable energy 
development in Canada [121]. In order to maximize bio-energy production from Lake Winnipeg, 
Cicek et al. evaluated various policies and technologies related to biomass harvesting in 
Manitoba [122]. Liebig et al. estimated GHG contributions and the mitigation potentials of various 
agricultural practices in several province of western Canada [123]. For examining the effects of 
fertilizer management on external energy inputs and GHG emissions, a grazing experiment was 
conducted in Brandon, Manitoba [124].  

2.2. Optimization of GHG Emission Mitigation 

At the same time, a number of optimization modeling methods were proposed for supporting  
the management of GHG emission mitigation particularly through the adoption of renewable 
energies [54,125–143]. In the middle of the 1970s, Duff (1975) presented an optimization model to 
design solar thermal energy systems in accordance with the minimum system cost [144]. Leledakis et al. 
evaluated the potential distribution of renewable energy resources for reducing GHG emissions in the 
region of the Cyclades, a Greek island group in the Aegean Sea [145]. Alidi (1988) argued that the 
utilization of wood residues as a renewable energy source would probably be limited by two major 
problems (i.e., (a) the high cost of transportation due to their high volume with respect to their energy 
content, and (b) the stochastic generation of these materials) and would not definitely lead to GHG 
emission reduction [146]. In order to further support the management of wood residues as an energy 
source, he proposed a dynamic optimization model. As an effective method for investigating the role of 
renewable energy resources for mitigating GHG emissions within many EMSs in Australia, the  
so-called Australian Energy Policy System Optimization Model (AEPSOM) was used by Islam [125]. 
Bose and Anandalingam presented a goal programming model to reflect multiple objectives of 
sustainable energy development, which was then applied to the city of Delhi, India [147]. Lehtilä and 
Pirilä used an optimization model to support energy-policy formulation for GHG emission mitigation 
in Finland [39]. Martins et al. developed a multi-objective, linear programming model for power 
generation planning and demand management to reduce GHG emissions [148]. Watson and Ter-Gazarian 
presented an optimization system to study operational and economic impacts for incorporating 
renewable power source utilization and GHG emission reduction within a large-scale electricity 
grid [149]. Badin and Tagore proposed an analysis framework to evaluate costs and impacts that might 
result from the incremental production, storage, transport, and use of different fuels or energy carriers 
that could reduce GHG emissions [150]. Özelkan et al. proposed a linear quadratic programming 
model for addressing aggregated multi-criteria decision making problems in order to maximize 
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hydroelectric power generation and to minimize GHG emissions [151]. Gopalakrishnan et al. proposed 
an optimization model for the management of stand-alone energy systems that consisted of windmills, 
diesel generators and power storage equipment [152]. In order to dramatically reduce the costs of 
energy storage within hybrid energy-storage systems, a time-dependent model of a stand-alone, solar 
powered, battery-hydrogen hybrid energy storage system was developed by Vosen and Keller [153]. 
Based on a bottom-up procedure, an energy-module network, and a dynamic programming method, 
Bojiæ proposed an optimization modeling system for supporting the management of renewable 
energies and reduce the usage of high-carbon fuels [154]. Suganthi and Williams developed an 
optimization model to determine optimum allocation of renewable energies among a number of  
end-users in India [155]. Iniyan and Sumathy developed an Optimal Renewable Energy Mathematical 
(OREM) model for renewable energy source utilization and GHG emission mitigation in India [156]. 
Kong et al. adopted a linear programming model to deal with planning problems of the combined 
cooling, heating and power production systems for minimizing the associated cost and GHG  
emissions [157]. Chinese et al. proposed a nonlinear optimization approach for assessing technical and 
economic feasibility of various renewable-energy-based GHG reduction schemes in northeastern 
Italy [24]. Kélouwani et al. developed a dynamic simulation-optimization model for supporting the 
management of stand-alone renewable energy systems with hydrogen storage equipments  
(RESHS) [158]. In order to investigate efficient ways for green electricity and heat supply in rural 
Japan, Nakata et al. developed an optimization modeling system [159]. In order to identify the desired 
renewable energy options for electricity generation, Dudhani et al. proposed an optimization allocation 
model. The model was formulated based on linear programming [160]. Dufo-López et al. presented a 
genetic-algorithm-based optimization model for supporting the management of a hybrid renewable 
electrical system for reducing GHG emissions [161]. Zouliasand and Lymberopoulos employed the 
Hybrid Optimisation Model for Electric Renewables (HOMER) to optimize the replacement of 
conventional technologies with the ones based on hydrogen and fuel cells in remote communities of 
Europe [162]. Based on artificial neural networks, Maøík et al. developed an optimization model to 
manage a number of energy resources and power generation technologies for supporting GHG 
emission mitigation [163]. 

More recently, Dalton et al. used an optimization modeling system to analyze the technical and 
financial viability of grid-only, renewable energy sources and grid/renewable hybrid power supply 
configurations for a large-scale grid-connected hotel in a subtropical costal area of Queensland, 
Australia [164–166]. Babu and Ashok proposed a nonlinear programming model for electricity  
loading management, renewable energy utilization, and GHG emission mitigation in India [167].  
Kamarudin et al. proposed an optimum hydrogen delivery network through the development of a mixed 
integer linear programming model and a GAMS-based solution algorithm [168]. Bernal-Agustín and 
Dufo-López employed HOMER for supporting the optimal design of hybrid systems that consisted of 
many components, such as a photovoltaic generator, batteries, wind turbines, hydraulic turbines and 
fuel cells under multiple administrative objectives [137]. Østergaard provided a thorough review on a 
series of criteria for the development of renewable energy systems and GHG emission reduction [143].  
Fong et al. used a robust evolutionary algorithm to identify optimal energy-conservation strategies 
within a centralized heating, ventilating, and air conditioning system [169]. An optimization model 
was proposed by Zhao and Burke for managing fuel-cell based energy systems to reduce GHG 
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emissions [170]. In order to optimally design a small-scale energy system for mitigating GHG 
emissions, Jewett et al. proposed a multi-phase, multi-component model based on simulation and 
optimization approaches [171]. A multi-agent system was presented by Lagorse et al. for supporting 
energy management with the consideration of several distributed power generation facilities that could 
lead to GHG emission reductions [172]. Andreassi et al. developed an optimization model for the 
management of power distribution systems to reduce GHG emissions [173]. As the basis for an 
environmental decision support system, Frombo et al. developed a linear programming model for the 
optimal allocation of biomass resources [174]. Chicco and Mancarella advanced an optimization 
model for the management of a small-scale, tri-generation system to maximize the combined 
production of electricity, heat, and cooling power under minimized GHG emissions [175].  
Chaturvedi et al. used a nonlinear programming model with time-varying acceleration coefficients for 
supporting power dispatchment among various economic sectors [176]. Ehsani et al. proposed a mixed 
integer linear programming model for the planning of power generation in a purely competitive 
market [177]. Morais et al. proposed a mixed integer linear programming model for optimally 
scheduling power generation technologies within a renewable micro-grid power system [178]. 

3. Inexact Optimization Modeling 

Optimization modeling was often based on a number of mathematical equations to represent a 
series of interactions between relevant system components, processes, and factors. In most of the 
conventional methods, the modeling parameters/coefficients were usually specified as deterministic. 
However, in realistic energy management systems, many parameters/coefficients as well as the 
irrelations may have uncertain natures with multiple dimensions and layers [9,10,179–183]. Over the 
past decades, the most common approaches for dealing with uncertainties in optimization modeling 
included interval, stochastic, and fuzzy-set-based methods as well as their hybrids [9–11,184–188]. 

3.1. Fuzzy Mathematical Programming 

Fuzzy mathematical programming (FMP) was derived through the incorporation of fuzzy set theory 
within conventional mathematical programming frameworks [189]. Normally, the FMP methods could 
be classified into two major categories: fuzzy flexible programming (FFP) and fuzzy parameter 
programming (FPP) [190]. In FFP, the flexibility in the constraints and fuzziness in the system 
objective, which were presented by fuzzy sets and denoted as “fuzzy constraints and goals”, were 
introduced into the conventional optimization models [191,192]; in FPP, fuzzy parameters were 
introduced into mathematical programming frameworks that could then be used to formulate various 
intermediate models based on the detailed specifications and analyses of the specific problem. The 
uncertain parameters were represented as fuzzy regions where they possibly lie and were regarded as 
possibility distributions [193]. A general linear programming model can be presented as follows: 

Min f CX=  (1a) 

subject to: 

AX B≤  (1b) 
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0X ≥  (1c) 

where ≤  is a fuzzy ≤  symbol. The decision maker can establish an aspiration level, f, for the value of 
the objective function he would like to achieve, and also each of the constraints can be modeled as 
fuzzy sets. Then, the above model becomes: 

CX f≤  (2a) 

AX B≤  (2b)

0X ≥  (2c) 
Then, according to the definition of fuzzy sets, a new decision variable λ could be introduced, and 

the above model can be transformed into: 

Max λ  (3a) 
subject to: 

( ) ( )1CX f f fλ+ + −≤ − − ⋅ −  (3b) 

( ) ( )1AX B B Bλ+ + −≤ − − ⋅ − ] (3c) 

0X ≥  (3d) 

0 1λ≤ ≤  (3e) 

where f − and f +  are the lower and upper bounds of the objective’s aspiration level, respectively; the 
flexibility in the constraints and fuzziness in the objective can be expressed as membership grades λ, 
which is the control variable corresponding to the degree (membership grade) of satisfaction for the 
fuzzy decision. 

On the other hand, fuzzy parameter programming (FPP) involves optimizing fuzzy objective 
functions subject to a fuzzy decision space delimited by constraints with fuzzy coefficients and fuzzy 
capacities. It uses fuzzy sets as coefficient values in the objective function and constraints, as well as in 
the right-hand side of constraints. A general FPP problem can be defined as follows:  

Min tf C X=  (4a) 
subject to: 

AX B≥  (4b) 

where tC  is the transpose of the n-dimensional fuzzy objective vector; A  represents the fuzzy 
constraint coefficient matrix; B  is the m-dimensional vector of fuzzy right-hand sides; f  is the fuzzy 
objective value; ≥  represents fuzzy inequality; and DX  is the set of admissible activity vectors X , 
with nX ∈ℜ , that fulfill all crisp constraints. There were a number of methods that could be used for 

solving FPP. One of the most general one could be presented as follows: let ( )t
jC c= , ( )  ijA a= , 

( )  iB b= , 1, 2, ...,i m= , 1, 2,...,j n= . For triangular fuzzy sets, fuzzy coefficients, jc , ija , ib  are 

characterized by triangular membership functions defined as: 
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A triangular fuzzy number can be denoted as ( )
~

, ,L M RC C C C= , where MC  is the central value 

(maximum grade of membership), L MC C−  is the left spread, and M RC C−  is the right spread. Based 

on the concept of a level set (α-cut levels), the triangular fuzzy number coefficients can be represented 
as ( ) ( ){ } ( ) ( ){ }, ,

j

L U
j j c j j jc c u c c cα α α α= = = . Thus, model (4) can be reformulated as follows: 

1
Min  =  or n L U

j j jj
f c c x

=
⎡ ⎤⎣ ⎦∑  (5a) 

1
 or  or n L U L U

ij ij j i ij
a a x b b

=
⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦∑  (5b) 

0jx ≥  (5c) 

Model (5) is a deterministic LP model and can be solved using various combinations of the 
coefficients to obtain different values for fα  and ( )jx α . Then the optimal solution for each α value  

is defined as follows: ,  L Uf f fα α α⎡ ⎤= ⎣ ⎦ , and ( ) ( ),  ( )L U
j j jx x xα α α⎡ ⎤= ⎣ ⎦ . Thus, optimal solutions for  

fuzzy-parameter model formulated by (1) and (2) can be obtained as: ( ){ },f fα α=  and ( ){ }( , )j jx x α α= .
 

According to Bellman and Zadeh, Negoita et al., Dubois and Prade, and Inuiguchi et al., FMP could 
deal with the following three types of uncertainties: vagueness, ambiguity, as well as their combination 
(i.e., FMP with both vagueness and ambiguity) [194–197]. Moreover, there were many extensions of 
fuzzy set theory to other mathematical programming problems, leading to a number of hybrids, such as 
fuzzy linear programming, fuzzy robust programming, fuzzy dynamic programming, fuzzy multi-objective 
programming, fuzzy nonlinear programming, and fuzzy (stochastic) linear programming. Fuzzy linear 
programming (FLP) is a typical FMP method. Based on these method, there were a large number of 
applications to environmental and energy management and planning [198–206]. For example, Chen 
and Sheen introduced a generalized fuzzy mathematical model for energy-load management [207]. 
Kagan and Adams addressed the problems of electrical power distribution systems by planning under 
uncertainty through the formulation of a fuzzy mathematical model [208]. In order to examine the 
potentials energy savings and emission reduction for municipal energy systems, a set of three 
optimization models with high spatial and temporal disaggregation were adopted by Groscurth and 
Kress [209]. Borges and Antunes presented a fuzzy multi-objective linear programming approach for 
tackling the uncertainty and imprecision associated with the coefficients of an input-output  
energy-economy planning model [203]. Mavrotas et al. presented a fuzzy linear programming model, 
including both continuous and integer variables (which represent energy flows and discrete energy 
technologies, respectively) for supporting the planning of energy resources in buildings [204]. 
Mavrotas et al. proposed an optimization model to address uncertain parameters in the objective 
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function by introducing Triangular Fuzzy Numbers (TFN) into a general MILP modeling 
framework [210]. Sadeghiand Hosseini attempted to use FLP for the optimal management of the 
energy supply systems in Iran [76]. Mazur proposed a fuzzy nonlinear programming model in which a 
number of fuzzy constraints could be considered [211]. Nguene and Finger proposed an optimization 
modeling methodology based on fuzzy set theory and strategic choices for enabling decision makers to 
evaluate and identify optimal policies for energy allocations over different time horizons [212]. 
Martinsen and Krey introduced a series of fuzzy constraints to identify optimal strategies and 
compromising policies related to energy management by considering a number of contradictory targets 
such as minimized economic cost, minimized environmental impacts, and maximized energy-supply 
safety [213]. Bitar et al. used a fuzzy multi-objective mathematical programming model to analyze the 
tradoffs between the variations of system costs, the emissions of CO2, and the number of potential 
jobs, as well as the expansion options of thermoelectric power in a specific region [214]. 

3.2. Stochastic Mathematical Programming 

Stochastic mathematical programming (SMP) was developed by Beale [215]. Normally,  
SMP can be viewed as an extension of mathematical programming to decision problems whose 
coefficients/parameters are not known but can be represented as chances or probabilities. According to 
Li, the inherent uncertainties in a decision can manifest themselves throughout the model as stochastic 
elements in the constraint matrix, the RHS stipulations, and/or the objective coefficients [189]. The main 
advantage of SMP methods is that they do not simply reduce the complexity of programming 
problems; instead, they allow decision makers to have a complete view of the effects of uncertainties 
and the relationships between uncertain inputs and the resulting solutions [216–218]. Typically, SMP 
models can be replaced by suitable deterministic versions (named deterministic equivalents) and then 
solutions of the deterministic models can be extended to represent the stochastic solutions [219]. 
Among them, chance-constrained programming (CCP) was often used for reflecting the reliability of 
satisfying (or risks of violating) system constraints under uncertainty. The CCP methods do not require 
that all of the constraints be totally satisfied. Instead, they can be satisfied in a proportion of cases 
under given probabilities [220]. Also, the CCP methods are effective in dealing with uncertainties in 
elements of RHSs when their probability distributions are available [221]. CCP programming was first 
formulated by Charnes et al., and, thereafter, issues of CCP were widely investigated [222–236]. Also, 
two-stage stochastic programming and chance-constrained programming are the major two methods. 
Two-stage stochastic programming (TSP) is effective for optimization problems in which an analysis 
of policy scenarios is desired and the related data are mostly uncertain. Generally, when uncertainties 
of some elements in the right-hand sides (B) can be expressed as probabilistic distributions,  
chance-constrained programming (CCP) can be used to deal with them. In terms of uncertainties in B, 
consider a general stochastic linear programming (SLP) problem as follows: 

( )Max f C t X=  (6a) 

subject to: 

( ) ( )A t X B t≤  (6b) 
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0,  ,  1,2,...,j jx x X j n≥ ∈ =  (6c) 

where X is a vector of decision variables; A(t), B(t) and C(t) are parameter vectors with random 
elements defined on probability space T [222,224,226]. To solve this SLP model, an “equivalent” 
deterministic version can be defined. This can be realized by using a CCP approach, which consists of 
fixing a certain level of probability pi ∈ [0, 1] for each constraint i and imposing the condition that the 
constraint is satisfied with at least a probability of 1 − pi. The set of feasible solutions is thus restricted 
by the following constraints [224]: 

( ) ( ){ } ( ) ( )Pr | 1 ,  ,  1,2,...,i i i it A t X b t p A t A t i m⎡ ⎤≤ ≥ − ∈ =⎣ ⎦  (7) 

According to Huang et al., these constraints are generally nonlinear, and the set of feasible 
constraint is convex only for some particular cases, one of which is when aij (elements of Ai(t))  
are deterministic and bi(t) are random (for all pi values). Under this condition, constraint (7) 
becomes linear:  

( ) ,   ip
i iA b t i≤ ∀  (8) 

where ( ) ( )1ip
i i ib t F p−= , given the cumulative distribution function of bi (i.e., Fi(bi)), and the 

probability of violating constraint i (pi). The problem with (6b) can only reflect the case when A is 
deterministic. If both A and B are uncertain, the set of feasible constraints may become more 
complicated [227]. 

At the same time, one of the other SMP is TSP, which can be presented as: 

( )
1 1

Min 
m m

i i i iQ
i i

f C t X C X E DY
= =

⎡ ⎤= = + ⎢ ⎥⎣ ⎦
∑ ∑  (9a) 

subject to: 

( ) ( )A t X B t≤  (9b) 

0,  ,  1, 2,...,j jx x X j n≥ ∈ =  (9c) 

In the planning of EMSs under multiple scales, a number of methods based on SMP (particularly 
the TSP and CCP methods) were developed [237–240]. Craig et al. analyzed optimal investment 
strategies for energy conservation with the consideration of probability distributions for various energy 
prices [241]. Pena-Taveras and Cambel developed a stochastic nonlinear model for supporting optimal 
energy system design through the adoption of the Schumpeter Clock Model (SCM) and the Ising 
Model (IM) [242]. Bakirtzis and Gavanidou employed a stochastic dynamic programming method for 
facilitating the optimal management of power generation and battery storage in a small autonomous 
system with both conventional and unconventional energy resources [243]. Goumas et al. adopted 
several computational methods to provide a rigorous analysis for improving the decision-making 
process related to the optimum exploitation of geothermal energy resources [244]. Gamou et al. 
proposed an optimal unit-sizing method for energy cogeneration systems planning through employing 
continuous random variables for describing energy demands [245]. Falcão presented an optimization 
model for allocating mechanical and electrical equipment within an oscillating-water-column (OWC) 
wave power plant [246]. Beraldi et al. proposed a two-stage stochastic integer programming model for 
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the integrated optimization of power generation and trading [247]. Krey et al. used a stochastic 
programming technique to explicitly consider uncertainties associated with energy prices [248].  
A two-stage stochastic programming model for short- or mid-term cost-optimal electric power 
production planning was developed by Nürnberg and Römisch [249]. Krukanont and Tezuka proposed 
a TSP optimization model for supporting energy allocation in Japan [240]. Beraldi et al. proposed a 
two-stage stochastic integer programming model for integrated optimal management of power 
production and trading in order to reduce power shortage risks [247]. Kim et al. developed a TSP 
model for optimal designing hydrogen supply chains, which consisted of various activities such as 
production, storage and transportation [250]. Yang et al. proposed a new method for optimal 
transmission system expansion planning based on CCP with the consideration of several uncertain 
factors such as the locations and capacities of new power plants as well as demand growth [251].  
Arun et al. adopted a CCP approach for incorporating uncertain energy resources into a facility sizing 
and design system [252]. Based on CCP, Held et al. explored many effective policies on the utilization 
of fossil fuel and renewable energy resources in terms of economic investments [253]. 

3.3. Interval Mathematical Programming 

As an alternative approach to deal with uncertainty, interval analysis was advanced by Moore [254]. 
In interval analysis, the only information that is available for an inexact parameter is the lower and 
upper bounds that are insufficient for creating distribution or membership functions. Interval analysis 
was then extended into interval mathematical programming (IMP) (Huang et al., [255]). According to  
Huang et al. [256,257], the IMP improved upon the existing optimization methods with the following 
features: (a) it allowed uncertainties to be directly communicated into the optimization and solution 
processes;(b) it did not lead to more complicated intermediate models, and thus had relatively low 
computational requirements; and (c) it did not require distributional or membership information for 
model parameters since interval numbers were acceptable as uncertain inputs, which was particularly 
meaningful for practical applications because it was typically much more difficult for 
planners/engineers to specify a distribution than to define a fluctuation interval. According to  
Huang et al. [216–218], a general IMP model can be written as follows:  

Min f C X± ± ±=  (10a) 

subject to: 
A X B± ± ±≤  (10b) 

0X ± ≥  (10c) 

where { }m m
A R

×± ±∈ , { } 1m
B R

×± ±∈ , { }1 n
C R

×± ±∈ , { } 1n
X R

×± ±∈ , and R±  denotes a set of interval 

numbers. At the same time, an interactive solution algorithm has been developed to solve the above 
problem through analyzing the detailed interrelationships between parameters and variables and 
between the objective function and constraints. According to the algorithms proposed by Huang et al., 
solutions for model (10) can be obtained through a two-step method, where a submodel corresponding 
to f− (when the objective function is to be minimized) is first formulated and solved, and then the 
relevant submodel corresponding to f+ can be formulated based on the solution of the first submodel.  
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In detail, the first submodel can be formulated as follows (assume that bi

± > 0, and f± > 0): 
1

11 1
Min 

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (11a) 

subject to: 
1

11 1
| | ( ) | | ( ) ,  

k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i+ + − − − + +

= = +

+ ≤ ∀∑ ∑  (11b) 

0,  jx j± ≥ ∀  (11c) 

where xj
±, j = 1,2,...,k1, are interval variables with positive coefficients in the objective function, and  

xj
±, j = k1 + 1, k1 + 2,...,n, are interval variables with negative coefficients in the objective function. 

Thus, solutions of xj
−

opt (j = 1,2,...,k1) and xj
+

opt (j = k1 + 1, k1 + 2,...,n) can be obtained through solving 
submodel (11). Then the submodel corresponding to f+ can be formulated as follows (assume that  
bi

± > 0, and f ± > 0): 
1

11 1
Min 

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑  (12a) 

subject to: 
1

11 1
| | ( )  | | ( )   ,  

k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b j− − + + + − −

= = +

+ ≤ ∀∑ ∑  (12b) 

0,  jx j± ≥ ∀  (12c) 

opt 1,  1,2,...,j jx x j k+ −≥ =  (12d) 

opt 1 2,  1, 2,...,j jx x j k k n− +≤ = + +  (12e) 

Hence, solutions of xj
+

opt (j = 1,2,...,k1) and xj
−

opt (j = k1 + 1, k1 + 2,...,n) can be obtained through 
solving submodel (12). Thus, we can have the final solution of f±

opt = [f−opt, f+
opt] and  

xj
±

opt = [xj
−

opt, xj
+

opt]. 
Over the past decades, a number of methods were developed based on IMP. For instance, Jansson 

developed a self-validating method for solving linear programming (LP) problems with interval input 
data [258]. Urli and Nadean proposed interactive approaches for solving multi-objective linear 
programming problems with interval coefficients [259]. Matloka investigated the generalization of 
inexact LP methods and provided a relevant solution algorithm [260]. Xia and Zhang introduced 
several methods for solving interval nonlinear programming problems and applied them to water 
pollution control planning [261]. Huang and Baetz proposed an inexact quadratic programming (IQP) 
method through the introduction of interval numbers into a quadratic programming framework [256,257]. 
Yeh proposed several inexact linear and quadratic programming models for planning water resource 
management systems [262]. Sugimoto et al. advanced a parallel relaxation method for handling 
quadratic programming models with interval constraints [263]. Huang and his colleagues proposed 
several interval-parameter mathematical programming methods as a special group of IMP, and applied 
them to a number of environmental and energy decision analysis problems in Canada, the US, Japan, 
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Taiwan, and China [255,264–267]. Bass et al. presented an inexact multi-objective programming 
method for the planning of climate change adaptation within a water resources management 
system [268]. Chi proposed an interval-parameter mixed integer linear programming (IMILP) model 
for the planning of waste diversion in the city of Regina [269]. Liu developed an inexact  
chance-constrained mixed-integer linear programming (ICCMILP) approach for the planning and 
management of a regional energy-environmental system [270]. Huang et al. developed an  
interval-parameter fuzzy stochastic programming for environmental management [256,257]. Chen and 
Wu presented an interval optimization method for the dynamic response of structures with interval 
parameters [23]. Noureldin and Hasan examined new opportunities for energy saving inside a 
Bisphenol-A (BPA) plant through optimal selection of process operating temperatures [271].  

4. Model-Based Decision Support Tools 

There are many potential decision alternatives for the planning of multi-scale EMSs under a variety 
of changing conditions. Decision makers must systematically evaluate economic and environmental 
performance of energy technologies, resources and services and choose a desired plan for each  
sub-sector of EMSs. To facilitate this decision-making process, expert systems and decision support 
tools can be employed based on scientific modeling tools. In the past decades, a number of  
research efforts have been directed toward developing such systems for energy management systems 
planning [203,272–280]. For assisting in decision making of an advisory council in identifying areas of 
interest for energy research and development, Lootsma et al. employed a number of multi-criteria 
decision analysis methods to develop an expert system [281]. Harhammer and Infanger developed a 
DSS for operation planning (DSS-OP) to assist decision makers in the planning of multiple scales of 
energy systems [282]. In order to provide interference analysis for the development of geothermal 
energy in Mexico, Arellano et al. developed a computerized expert system (ANAPPRES V1.0) [283]. 
Liu et al. described a computer-based DSS for evaluating quality of life improvement, as well as 
technological and environmental impacts of energy planning and consumption [16]. Robin et al. 
proposed a computer-aided DSS for supporting thermal design of buildings [284]. Clarke and Grant 
adopted a computer-based DSS (EnTrack) for supporting the development of renewable energy 
resources at a regional level [285]. Georgopoulou et al. presented a DSS for assisting decision makers 
in the promotion of renewable energy resource utilization [286]. In order to support the analysis of 
energy consumption in various buildings, Kim and Degelman developed a computer-aided interface 
system [287]. As an effective decision-support tool for energy systems planning, a set of computerized 
decision-support software was developed by Rylatt et al. [288]. A specialized group DSS was designed 
by van Groenendaal for providing long-term support related to energy policy formulation on the island 
of Java, Indonesia [289]. Freppaz et al. proposed a DSS for supporting forest biomass exploitation and 
renewable energy production [290]. When planning bioenergy production from biomass, in order to 
take into account opinions from multiple groups of stakeholders (e.g., biomass resources suppliers, and 
transportation, conversion and electricity suppliers), a two-level general bioenergy decision system 
(gBEDS) was developed by Ayoub et al. [291]. In order to identify the most appropriate set of energy 
options for providing sufficient power to fulfill local demands and improve rural livelihoods,  
Cherni et al. developed a new multi-criteria DSS [292]. Yue and Yang established a DSS for 
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strengthening the utilization of renewable energy resources and meeting new international 
environmental requirements and providing self-sufficient domestic energy supplies in Taiwan [293]. 
Blanco et al. developed a DSS for the planning of micro-hydro power plants in the Amazon region 
under a sustainable development perspective [294]. Panichelli and Gnansounou presented a GIS-based 
DSS for supporting the selection of the least-cost bioenergy utilization patterns when there was 
significant variability in biomass farmgate price and when more than one bioenergy plant with a fixed 
capacity needs to be placed in a region [295]. In order to enhance the utilization of renewable energy 
sources, an information decision system was developed by Patlitzianas et al. based on an expert 
subsystem and a multi-criteria decision making subsystem [296]. Aydin et al. developed a GIS-based 
DSS for site selection of wind turbines in Turkey [297]. Frombo et al. developed a GIS-based 
environmental decision support system (EDSS) for optimal planning of forest biomass 
utilization [298]. Vainio et al. proposed a GIS-based DSS for wood procurement management in order 
to identify wood harvesting alternatives [299]. Several studies were also conducted on both 
environmental and energy management [300–318]. 

5. Discussions and Conclusions 

As extensions of deterministic optimization approaches, a number of inexact ones have been 
proposed for dealing with uncertainties associated with energy systems planning and GHG emission 
mitigation. These methods can be broadly categorized into fuzzy mathematical programming (FMP), 
stochastic mathematical programming (SMP), and interval mathematical programming (IMP). Each of 
these methods could deal with an individual type of uncertainties that can be expressed as fuzzy sets, 
probability density function, and intervals. For FMP-based methods, they are effective in address 
uncertain information that can be expressed as fuzzy sets in both objective functions and system 
constraints. However, there are quite a number of improvements that could be made upon FMP. Firstly, 
many methods could be used for determining fuzzy membership functions that might be used in the 
optimization system (mainly for FPP). These methods are mainly subject to a certain degree of 
subjectivity. Secondly, for both FFP and FPP, the solution procedures could lead to complicated  
inter-medium processes. Thirdly, for most of the FPP methods, the increased computational efforts 
may also lead to system infeasibility. Fourthly, most of the FMP methods could only deal with a 
specific type of function membership (e.g., triangle forms). At the same time, in terms of SMP-based 
methods, there are effective in handling uncertainties that can be expressed as probability density 
functions. However, they are also subject to several disadvantages. Firstly, in practical problems it is 
difficult in establishing probabilistic distributions of relevant parameters. Secondly, most of these 
methods are mainly proposed based on assumptions that distributions of relevant parameters are fixed 
and can be identified. This might lead to system infeasibility when the parameters are dynamic and are 
associated with intensive variations. Thirdly, the computation requirements of stochastic mathematic 
programming are relatively high especially for large-scale practical problems. Moreover, regarding 
IMP-based methods, they could easily deal with uncertainties that can be expressed as intervals. 
However, they are associated with the following three shortcomings. Firstly, since most of the 
parameters in IMP are expressed as intervals without any distribution information, it might lead to 
simplification of real-world problem when some of the parameters could be expressed as probabilistic 
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and/or possibilistic distributions. Secondly, due to the adoption of inter-medium submodels, solution 
feasibility could sometimes be an inherent problem for large-scale real-world cases. Thirdly, when 
ranges of the intervals are broad, the optimization model could be infeasible. Accordingly, there are 
still a number of areas that need further studies, including: (a) studies that could incorporate multiple 
technologies, multiple resources, multiple sectors, as well as their complex interactions within a 
general modeling framework, particularly those could be used for supporting the planning of 
renewable energy management systems; (b) efforts in systematically studying multiple formats of 
uncertainties (e.g., intervals, fuzzy membership functions, probability distributions, as well as their 
combinations) in a flexible manner; (c) studies that could effectively deal with issues of diverse data 
availability and reliability. When sufficient information is available to represent the uncertainties as 
probability distributions but an interval method is used, valuable probabilistic information will be lost. 
On the contrary, when a stochastic method is used without sufficient information support, detailed 
probabilistic distributions might be generated based on unrealistic assumptions, resulting in errors in 
modeling inputs. In general, such manipulation in uncertain modeling inputs would result in 
considerable effects on modeling results, reducing the system robustness, and (d) studies that could 
incorporate post-modeling analysis, and energy simulation/prediction models to improve applicability 
and robustness of the obtained solutions. 
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