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Abstract: Cereal straw stands out as one of the most abundant and globally distributed agricultural
residues. Traditional applications cope with a limited amount of production, leaving the remainder
in the field for natural decomposition. Managing cereal straw through controlled biological trans-
formation under anaerobic conditions holds the potential to generate added value in the form of
bioenergy. However, the lignocellulosic composition of these substrates poses challenges for organic
degradation, often requiring energy-intensive pretreatments. A detailed study with a comprehensive
calculation of the overall energy balance of the integrated process is proposed, aiming to provide
real added value and replicability. Three scenarios for wheat straw transformation were investigated,
incorporating two preliminary pre-treatment stages—mechanical milling and physicochemical steam
explosion. Three conditions of pretreatment were essayed, varying the time exposure of the steam
explosion. The subsequent energy integration analysis revealed that the process was optimized by up
to 15% in the final energy balance when the steam explosion was set to 10 min. The macromolecular
composition determination revealed that the thermal pretreatment reduced the lag phase of the
hydrolysis step through hemicellulose breakdown.

Keywords: anaerobic digestion; biogas; cereal straw; energy integration; thermal pretreatment; steam
explosion; waste to energy

1. Introduction

There is a growing interest in the use of agricultural residues as an alternative to fossil
fuels in energy production. Materials such as crop residues and manure are abundant
and renewable, making them a sustainable source of energy [1]. In addition to reducing
dependence on fossil fuels, transforming these materials into bioenergy avoids the release
of diffuse greenhouse gas emissions [2]. Anaerobic digestion (AD) yields high-calorific-
value biogas, primarily composed of biomethane, a substitute for traditional natural gas,
thereby reducing the release of greenhouse gas emissions in the primary sector.

Among the agricultural wastes that can be used for biogas production, cereal waste is
the most abundant and widely generated residue. However, straw is characterized by its
substantial lignocellulosic content, which, owing to its limited degradability, presents a sig-
nificant hurdle in the biogas production process [3]. These wastes primarily consist of three
distinct polymers: cellulose, hemicellulose, and lignin. Cellulose, which presents a rigid
crystalline structure, makes up a significant percentage. Hemicellulose, on the other hand,
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has a lower molecular weight and short side chains, making it a polymer that can be easily
hydrolyzed. Lignin, a complex and amorphous heteropolymer, comprises three different
phenylpropane units and is insoluble in water [4]. In the case of wheat straw the percent-
ages of each polymer are: cellulose 30–45%, hemicellulose 20–35% and lignin 7–22% [5–7].
Both the cellulose and hemicellulose fractions can be broken down into monomeric sugars
that are subsequently transformed into biogas, but the low biodegradability due to the
rigid structure of the polymers reduces the amount of biomass transformed, compromising
the viability of the process. Several pretreatments have been proposed to increase the rate
of hydrolysis, with thermal pretreatment being the most commonly applied [8].

Thermal pretreatment is an effective strategy to improve the degradability of ligno-
cellulosic wastes [9]. It consists of subjecting the waste to high temperatures, typically
above 150 ◦C, for a given time [10]. This process breaks down the lignocellulose structure,
increasing the accessibility of enzymes and facilitating the release of monomers. Thermal
pretreatment can be performed by different methods, such as steam explosion, pyrolysis,
and or in combination with chemical processes such as a thermal–acid treatment [11], which
is the most widely employed pretreatment method for lignocellulosic biomass due to its
cost-effectiveness and efficiency [12]. These methods modify the chemical composition
and physical properties of the residues, making them more susceptible to enzyme action
during the fermentation stage [13]. As a result, a higher conversion of waste to biogas
is achieved, thus improving the efficiency and profitability of the process of producing
renewable energy from lignocellulosic waste [14]. Steam explosion has been tested in the
case of cereal straw and obtained a wide range of values in terms of an increase in biogas
production. This process involves exposing the material to high temperatures by directly
injecting saturated steam; subsequently, the material undergoes rapid depressurization,
which generates shear forces capable of separating the fibers.

Table 1 presents a literature review of yields and conditions achieved by steam explo-
sion pretreatment of wheat straw. The great variation in the methane enhancement (from
6.7 to 85.7%) can be seen. Beside this, it is important to note that while steam explosion
treatment exhibits high performance compared to other pretreatment methods, it does
have certain drawbacks when operated at high temperatures or for extended periods of
time [15]. Along with the high energy consumption that reduces the net energy balance,
the partial degradation of xylans in hemicelluloses and the incomplete breakdown of the
lignin–carbohydrate has been related to the generation of inhibitors that can have a negative
impact on the performance of anaerobic digestion, as reported by Bauer et al. (2014) [16].

Table 1. Summary of the anaerobic digestion effect of steam explosion pretreatment on AD of
lignocellulosic biomass.

Substrate Pretreatment Conditions Anaerobic Digestion Effect Reference

Wheat straw
(WS)

178 ◦C, 30 min 85.7% increase in methane production [17]160 ◦C, 30 min 71.2% increase in methane production

WS 170 ◦C, 5 min 40.5% increase in methane yield [18]WS 170 ◦C, 15 min 59.4% increase in methane yield

WS 160 ◦C, 10 min 13.9% increase in methane production
[16]WS 180 ◦C, 10 min 12.8% increase in methane production

WS 180 ◦C, 15 min 20.0% increase in methane production

Spent grain 170 ◦C, 30 min 40.2% increase in methane production [19]

Corn stover 180 ◦C, 15 min 12.7% increase in methane production [20]

Rice straw 174 ◦C, 30 min 6.7% increase in methane yield [21]

On that path, the energy cost of thermal shock pretreatment must be weighed against
the benefits obtained in form of biomethane produced. Therefore, a significant increase
in biogas production should be achieved in a limited exposure time. The current study
explores the biological transformation of wheat straw as a substrate for energy production
via the anaerobic digestion process with a previous steam explosion pretreatment. Different
conditions of time exposure were essayed and energy balances were calculated in order to
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maximize the energy recovery of the whole process. The production rate of biomethane
was modelled for a better understanding of the pretreatment effect. In the same manner,
the relative number of polymers (cellulose, hemicellulose, and lignine) was determined
before and after pretreatment to evaluate the impact of thermal shock.

2. Materials and Methods
2.1. Feedstocks and Anaerobic Inoculum

Wheat straw was collected in the Soria province of Spain following the harvest season
and employed as a substrate. To prepare the substrate, a physical pretreatment process was
performed using a Moulinex grinder, resulting in particle sizes of 1 mm [22]. Inoculum
for the anaerobic reactor, operated under mesophilic conditions, was sourced from the
anaerobic digester of sewage sludge of the wastewater treatment (WWT) plant in Soria,
Spain. The inoculum used required an adaptation period of four weeks under continuous
conditions feeding with wheat straw in a 1.2 L reactor at 35 ± 0.5 ◦C degrees and magnetic
stirring. Table 2 offers detailed characteristics of both the substrates and the inoculum.

Table 2. Substrate and inoculum characterization.

Parameter Units WWT Inoculum Wheat Straw

Total solids g·kg−1 14.9 ± 0.1 928.2 ± 7.3
Volatile solids g·kg−1 10.2 ± 0.2 851.6 ± 15.9
COD g·L−1 19.2 ± 0.4 1422.4 ± 15.5
Cellulose % - 33.9 ± 0.4
Hemicellulose % - 23.8 ± 0.2
Lignin % - 22.3 ± 0.1

2.2. Thermal Hydrolysis Pretreatment

The laboratory-scale hydrolysis system consists of a 2 L reactor where substrate was
introduced and is heated by the steam and a 5 L flash tank where the steam explosion
takes place once the hydrolysis reaction time has passed (Figure 1). A detailed description
of the thermal hydrolysis TH equipment was recently published by Diez et al. [23]. The
temperature and pressure were maintained constant until depressurization at values of
170 ◦C and 7 ± 0.2 bar, respectively. These conditions were established following the
approach by [24]. Therefore, the steam explosion exposure time was studied as the main
variable with three levels: 5, 10, and 15 min. This approach was taken on the basis that the
optimum temperature reported for this kind of pretreatment is 170 ◦C, but the adequate
exposure time has not been documented.
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2.3. Biochemical Methanogenic Potential Tests
2.3.1. Anaerobic Digestion Tests

The anaerobic biodegradation of the pretreated substrates was assessed in batch mode
over a 40-day period. The tests were initiated following the biochemical methanogenic
potential (BMP) methodology, in accordance with the standard protocol outlined by
Holliger et al. [25].

For these experiments, 120 mL serological glass bottles with a working volume of
70 mL and a headspace of 50 mL were prepared. The temperature was maintained at
35 ± 0.5 ◦C in an incubator (Hotcold-GL, Selecta, Barcelona, Spain), and mixing was
achieved using an orbital stirring plate (Rotabit, Selecta). The inoculum to substrate ratio
was set at 1.5:1 g VS, and 1.5 g of CaCO3 L−1 was added as a buffering agent to prevent
pH fluctuations [26,27]. To establish anaerobic conditions, the bottles were purged with
nitrogen to remove any residual air at the start of the experiment.

Three parallel tests were conducted for each pretreatment condition, namely, wheat
straw standalone (WS Control), wheat straw with a 5 min period of steam explosion
pretreatment (WS T1), with a 10 min pretreatment period (WS T2), and with a 15 min
pretreatment period (WS T3). A blank test with only the inoculum was included to measure
the endogenous production of biogas originating from the inoculum. The measurements
were adjusted by subtracting the endogenous biogas production. Daily biogas production
was quantified using a water displacement method, and the biogas volume was corrected
for standard conditions, accounting for ambient pressure and operating temperature.
Biogas composition was also measured by gas analysis equipment (Biogas 5000, GeoTech,
Leamington Spa, UK).

2.3.2. Analytical Procedure

The American Public Health Association’s standard methods were employed for the
analysis of total solids (TS), volatile solids (VS), and chemical oxygen demand (COD) [28].
The determination of carbon (C) and nitrogen (N) content was carried out using a Leco CNS-
928 elemental analyzer (LECO corporation, St. Joseph, MI, USA). This analyzer employs a
process that involves the total combustion of the sample, followed by the determination of
the percentage of total weight for each element.

The lignocellulosic fractions (comprising hemicellulose, lignin, and cellulose) in both
the pre- and post-pretreatment samples were analyzed using the lignocellulosic biomass
analysis methods established by the National Renewable Energy Laboratory [29].

2.4. Modelling
Biogas Production

The experimental data acquired from the tests were applied to the modified Gompertz
mathematical model to adjust the biomethane production for each test and applied to
evaluate the AD performance following Equation (1) [30–32]. The Gompertz model offers
several advantages in the context of biological processes, such as the degradation of organic
substances. It effectively describes the biogas production and allows for the identification
of three distinct stages: the lag phase, a subsequent exponential phase where biogas
production increases linearly with time, and a final stationary phase where the biogas
production rate returns to zero [33]. This information provides a rapid insight into the
degradation process and possible effect of the pretreatments [34].

B(t) = B·e
{
−e[

R·e
P ·(λ−t)+1]

}
(1)

In this equation, B(t) represents the cumulative methane production at standard tem-
perature and pressure (mL CH4·g VS−1). B stands for the potential methane production in
(mL CH4·g VS−1), R represents the maximum methane production rate (mL CH4·g VS−1 d−1),
P represents the maximum volume of methane achieved (mL CH4·g VS−1), λ signifies the
lag phase duration in days, and t denotes the elapsed time in days. The model was fitted
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to the experimental data using the least-squares methodology. The adjusted coefficient
of determination (R2), which represents the correlation coefficient, was computed using
Equation (2):

R2 =

[
1
m
·∑m

t=1

(
dt

Yt

)]1/2
(2)

2.5. Energy Feasibility Study

A scenario was created based on the configuration shown in Figure 2, which integrates
two pretreatment methods: mechanical and thermal. The energy requirements for both
pretreatment processes were determined using the electrical consumption for substrate
grinding and the steam requirements based on Cano et al.’s (2014) prior research [19]. To
achieve this, the scenario was applied in a full-scale plant, with a thorough analysis of
energy inputs and outputs.

Energies 2024, 17, x FOR PEER REVIEW 6 of 14 
 

 

𝐸  ( ) kW ∙ ht = 𝑀𝑃 mt VS ∗ 𝑉𝑆 t Vst ∗ 𝐶𝑉 kW ∙ hm  (4)

where MP is the methane production per ton of substrate, VS is the volatile solids of the 
substrate, and CV is the calorific value of the methane. 𝐸  ( ) kW ∙ ht = 𝐸( ) kW ∙ ht + 𝐸( ) kW ∙ ht    (5)

where E(miller) is the energy consumed in the mechanical pretreatment of cutting the sub-
strate to 1 mm size with a value of 140 kWh·t−1 and E(steam) is the energy consumed in the 
thermal pretreatment. 𝐸 kW ∙ ht =  𝑆𝑡𝑒𝑎𝑚 mt ∗ 𝜂𝑏𝑜 (%) ∗ 𝐶𝑉 kW ∙ hm  (6)

where Steam is the steam needed in the pretreatment per ton, ηbo is the boiler efficiency 
(90%), and CV the calorific value of the natural gas used. 

In addition to improving this balance, there are energy savings in heating consump-
tion achieved by increasing the temperature of the substrate as it enters in the anaerobic 
digester. This avoids losses within the digester since, following pretreatment, the sub-
strate is already at a high temperature (≈100 °C), eliminating the need for additional heat 
during AD. Energy savings are defined in Equation (7): 𝐸 kW ∙ ht =  𝑊𝑆 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 (t) ∗ 𝑆ℎ (kW ∙ h°C ∙ t ) ∗ Δ𝑇(°C) (7)

where WS substrate is the biomass entering in the anaerobic digester, Sh is the specific heat 
of the substrate, and ΔT is the temperature difference between the outdoor conditions and 
the inside reactor conditions (15 °C). 

 
Figure 2. Energy flow diagram configuration. Mechanical and thermal hydrolysis pretreatments. 

3. Results and Discussion 
3.1. Impact of Steam Explosion Pretreatment on Biogas Production 

Figure 3 shows the daily and cumulative biomethane generation outcomes from a 25-
day experimental regimen. Over this period, notable fluctuations in biomethane produc-
tion were observed, corresponding with distinct growth phases. 

Figure 2. Energy flow diagram configuration. Mechanical and thermal hydrolysis pretreatments.

The potential biomethane generated from the BMP tests was assessed using an energy
content of 10 kWh·Nm−3 [35,36]. Initially, all raw substrates and cold water were assumed
to be 20 ◦C, with a consistent heat-capacity equivalent to that of water (4.18 kJ·kg−1 ◦C−1)
assigned to them to achieve hydrolysis conditions at 170 ◦C and anaerobic digestion at
35 ◦C. Furthermore, the process considered the grinding of straw in a 30 kW knife mill. This
grinding operation had a specific flow rate per dry matter (DM) of 2.6 kg DM·h−1·kW−1

and consumed 140 kWh·t DM−1 [22,37,38]. The net energy balance of the process was
determined as the difference between the energy produced from renewable sources and
the energy associated with natural gas, as can be observed in Equations (3)–(6).

EBalance

(
kW·h

t

)
= EGeneration (CH4)

(
kW·h

t

)
− EConsumption (PreT)

(
kW·h

t

)
+ ESaving

(
kW·h

t

)
(3)

where E(generation) is the energy produced in the anaerobic digestion process and E(consumption)
is the energy consumed including the pretreatments.

EGeneration (CH4)

(
kW·h

t

)
= MP

(
m3

tVS

)
∗ VS

(
tVs

t

)
∗ CV

(
kW·h

m3

)
(4)
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where MP is the methane production per ton of substrate, vs. is the volatile solids of the
substrate, and CV is the calorific value of the methane.

EConsumption (Pretreatments)

(
kW·h

t

)
= E(Miller)

(
kW·h

t

)
+ E(Steam)

(
kW·h

t

)
(5)

where E(miller) is the energy consumed in the mechanical pretreatment of cutting the
substrate to 1 mm size with a value of 140 kWh·t−1 and E(steam) is the energy consumed in
the thermal pretreatment.

ESteam

(
kW·h

t

)
= Steam

(
m3

t

)
∗ ηbo (%) ∗ CV

(
kW·h

m3

)
(6)

where Steam is the steam needed in the pretreatment per ton, ηbo is the boiler efficiency
(90%), and CV the calorific value of the natural gas used.

In addition to improving this balance, there are energy savings in heating consumption
achieved by increasing the temperature of the substrate as it enters in the anaerobic digester.
This avoids losses within the digester since, following pretreatment, the substrate is already
at a high temperature (≈100 ◦C), eliminating the need for additional heat during AD.
Energy savings are defined in Equation (7):

ESavings

(
kW·h

t

)
= WS substrate (t) ∗ Sh

(
kW·h
◦C·t

)
∗ ∆T(◦C) (7)

where WS substrate is the biomass entering in the anaerobic digester, Sh is the specific heat
of the substrate, and ∆T is the temperature difference between the outdoor conditions and
the inside reactor conditions (15 ◦C).

3. Results and Discussion
3.1. Impact of Steam Explosion Pretreatment on Biogas Production

Figure 3 shows the daily and cumulative biomethane generation outcomes from
a 25-day experimental regimen. Over this period, notable fluctuations in biomethane
production were observed, corresponding with distinct growth phases.

It can be observed that biogas production trends exhibited similarity in the three tests
with thermal pretreatment. The highest production levels occurred during the initial five
days, where the experiments surpassed the threshold of 50 mL biomethane g VS−1·d−1.
Subsequently, from the fifth day onwards, daily production displayed fluctuations, alter-
nating between decline and ascent, within the range of 10 to 25 mL biomethane g VS−1·d−1.
However, an average biogas production level was sustained between days 10 and 25, mark-
ing the stationary phase of the process. Beyond the 13th day, biogas production gradually
diminished due to reduced availability of convertible organic substrates. Ultimately, the
cumulative production reached 277, 316, and 340 mL biomethane g VS−1 for pretreatment
trials WS T1, WS T2, and WS T3, respectively. In contrast, the control trial, WS Control,
exhibited a more gradual biogas production pattern, maintaining values within the range
of 10–15 mL biomethane g VS−1·d−1 for the first 10 days. Subsequently, it entered a sta-
tionary production phase, yielding between 5 and 10 mL biomethane mL·g VS−1·d−1 until
the conclusion of the trial, with a cumulative production of 212 mL biomethane g VS−1.
Different authors have reported values between 204 and 285 mL·g VS−1 using raw wheat
straw as substrate in the AD process [39–41].
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Figure 3. Daily and cumulative biomethane production from the anaerobic digestion of wheat straw
with steam explosion pretreatment at different conditions throughout the experiment. WS Control
stands for wheat straw standalone, and WS T1, WS T2, and WS T3 for wheat straw with a 5 min,
10 min and 15 min period of steam explosion pretreatment, respectively.

Table 3 provides an overview of the increment in biomethane production observed
throughout the trials involving the three pretreatments compared to the control. Remark-
ably, the most substantial disparity was discerned after the initial five days, owing to the
effect of thermal pretreatment, which expedited the hydrolysis phase of the anaerobic
digestion process. Over an extended period, the pretreatment effect remained prominent,
ultimately finishing in a 35%, 53%, and 65% increase in biomethane production in compari-
son to the control test for pretreatments WS T1, WS T2, and WS T3. This rise has also been
described by other authors, as shown in Table 1, using wheat straw as a substrate under
various steam water pretreatment conditions in the AD process [12,16,17,20,21]. In the
same manner, the direct correlation between methane increased, and the time of exposure
to the steam was also previously documented.

Table 3. Increase in cumulative methane production in comparison with the control experi-
ment (%) from the anaerobic digestion of wheat straw with steam explosion pretreatment at
different conditions.

Essay
Increase in Cumulative Methane Production
in Comparison with Control Experiment (%)

Day 5 Day 10 Day 15 Day 20

WS T1 114.9% 73.9% 47.5% 34.7%
WS T2 122.2% 81.9% 63.5% 53.5%
WS T3 155.8% 102.1% 78.3% 65.4%

Regarding the biogas composition in each trial, it can be observed that it was quite
similar across all four trials, with slightly over 50% methane content in Figure 4. This
methane content was within the typical range for such substrates [16,42]. There was a slight
trend of decreasing methane concentration observed from the control trial, with a recorded
52% for the trial with more pretreatment time, which showed a biogas content of 50%. This
trend aligns with findings reported by Theuretzbacher et al. (2015) [17].
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Figure 4. Biogas composition (right axis) and biogas yield (left axis) from the anaerobic digestion of
wheat straw with steam explosion pretreatment at different conditions.

3.2. Modelling

The modelling with the Gompertz equation is illustrated in Figure 5 and the corre-
sponding parameter values are detailed in Table 4. Higher rates of biogas production,
denoted as R in the model, signify a mitigation of the rate-limiting step within the hydrol-
ysis phase, with maximum values in the more intense pretreatment. Specifically, WS T1
achieved a value of 38.89 mL biomethane g VS−1·d−1, while WS T2 achieved 40.19 and WS
T3 reached 43.68. Likewise, the reduction in the lag phase was evident, as indicated by
values approaching zero in all trials, as a consequence of the reduction in fiber size and the
subsequent increase in the hydrolysis step.

Table 4. Kinetic parameters of methane production for the Gompertz modelling from the AD of
wheat straw with steam explosion pretreatment at different conditions.

Gompertz

P
(mL CH4·g VS−1)

Rm
(mL CH4·g VS−1·d−1) λ (d) R2

Control 212 16.73 0.09 0.996
WS T1 277 38.89 0.06 0.992
WS T2 316 40.19 0.00 0.985
WS T3 340 43.68 0.00 0.993

This substantial variation found in the biomethane production rates, ranging from
130% to 160% according to the Gompertz modelling for the three distinct pretreatment
conditions with respect to the control experiment, suggests the potential operational
benefits of integrating steam explosion systems into the AD. This integration could
optimize, on the one hand, the biomethane production, and on the other hand, the
potential reduction of the hydraulic residence time (HRT) by accelerating the organic
decomposition of the substrate. Consequently, this acceleration could lead to a smaller
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digester size, lower HRT, decreased investment costs for the operator, and ultimately, a
more sustainable process.
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Figure 5. Biomethane production per amount of volatile solid for wheat straw under three different
pretreatment conditions. Gompertz modelling.

3.3. Lignocellulose Component Decomposition

Table 5 shows the alterations in the chemical composition of the samples, comparing
those with and without thermal pretreatment. In the control test, the dry-matter content
of the ground sample without thermal pretreatment stood at 92.3%. This percentage
decreased to 58.5% as the intensity of the pretreatment increased due to the use of steam
to maintain the pretreatment temperature, which partly condensed in the flash tank. The
proportion of volatile solids within the dry matter remained consistent, ranging from 91.7%
to 95.5%. To ensure comparability between the biomass before anaerobic digestion, it was
necessary to calculate the relative proportion of the analyzed components, excluding the
water-soluble fractions. It can be observed that as the pretreatment severity increased, there
was a reduction in hemicellulose content. This outcome was anticipated since hemicellulose
becomes soluble at 150 ◦C, and therefore, its decrease can be attributed to both temperature
and pretreatment duration [43].

Table 5. Chemical composition of untreated and steam-exploded wheat straw.

Sample
Component Mass Fraction

Dry Matter
(%)

Volatile Solids
(% DM)

Cellulose
(% VS)

Hemicellulose
(% VS)

Lignin
(%VS)

WS Control 92.8 ± 0.1 91.7 ± 1.8 31.2 ± 0.4 21.8 ± 0.2 20.5 ± 0.1
WS T1;

170 ◦C, 5 min 61.8 ± 0.2 94.5 ± 0.1 36.0 ± 1.1 17.3 ± 0.4 23.3 ± 1.0

WS T2;
170 ◦C, 10 min 60.1 ± 0.4 95.8 ± 0.1 36.6 ± 0.5 14.0 ± 0.2 24.3 ± 0.2

WS T3;
170 ◦C, 15 min 58.5 ± 0.3 95.5 ± 0.1 38.2 ± 0.4 12.6 ± 0. 23.5 ± 1.4
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The degradation of hemicellulose in pretreated wheat straw showed an increase
from 4.5% to 9.2% as the retention time increased, aligning with findings from previous
studies [12,17]. In the same way, Theuretzbacher et al. (2015) found a 9.9% decrease in
hemicellulose, resulting in a 71.2% increase in biogas production. Shang et al. (2019)
observed a 26.6% increase in biogas production and a 6.5% decrease in hemicellulose
content after thermal pretreatment [17,44]. Long exposure to steam accelerated the rate of
hemicellulose hydrolysis, which ultimately had a positive impact on AD. Conversely, the
degradation rate of lignin and cellulose exhibited the opposite effect, remaining at a similar
concentration or even increasing as consequence of the hemicellulose decline. In the case of
lignin, as previously reported by Brownell and Saddler in 1987, its resistance to hydrolysis
was attributed to the formation of pseudolignin or the creation of cross-linked compounds
resulting from the reactions of sugars released from the hemicellulose fraction [45,46]. More
severe treatment, involving higher temperatures or longer exposure times, of lignocellulosic
biomass can lead to lower methane yield due to the release of phenolic and heterocyclic
compounds from the degradation of hemicellulose and cellulose, such as furfural and
hydroxymethylfurfural [47,48]. These compounds can inhibit the activity of fermenting
microorganisms in the process, as noted by Hendriks and Zeeman in 2009 [49].

3.4. Energy Feasibility Study

The viability of employing thermal hydrolysis pretreatment in a continuous processing
facility was assessed using the configuration outlined in Section 2.5 and the data obtained
in the BMP tests. The energy consumption associated with both mechanical and thermal
pretreatment was quantified using empirical data resulting from actual operational pro-
cesses. These calculations were based on the processing of one metric ton of raw wheat
straw within the facility.

Table 6 represents the primary outcomes of the study. Particle size reduction by
a knife mill presented constant values of energy consumption across all four trials at
140 kWh·t−1. Previous studies indicate that this pretreatment could account for the
highest percentage of energy input [50,51]. Biogas requirements for steam generation
increase with prolonged thermal pretreatment times. Energy production is related to
biomethane generation under each operational condition. It is important to note that all
trials involving thermal pretreatment exhibited a positive energy balance, resulting in a
net benefit. However, after a 10 min period of thermal pretreatment, the enhancement
of the energy balance declined due to the increased consumption associated with the
pre-treatment. A limited percentage improvement in the energy balance was achieved
for the 10 min pretreatment, accounting for a final value of 15.1% (Figure 6). In view
of the narrow energy profit and the possible detrimental effects associated with the
prolonged exposure times, steam explosion systems must be carefully designed based
on previous essays complemented with energy balances.

Table 6. Energy feasibility results expressed per ton of wheat straw fed.

Hydrolysis
Conditions Energy Generation Energy Consumption Energy

Savings
Energy
Balance

Temperature
(◦C)

Time
(min)

Methane
(m3·t VS−1)

Energy
(kWh)

Miller
Energy

(kWh·t−1)

Steam
(kg·t−1)

Steam
Energy
(kWh)

Total
Energy
(kWh)

Energy
(kWh)

Energy
(kWh·t−1)

Energy
Increase

(%)

Raw - 212 1876.4 140.0 0 0 140 0 1736.4 -
170 5 277 2361.2 140.0 31.5 283.8 423.8 16.9 1954.4 12.5
170 10 316 2689.5 140.0 63.1 567.6 707.6 16.9 1998.8 15.1
170 15 340 2897.9 140.0 94.6 851.4 991.4 16.9 1923.4 10.8

Substrates with high vs. content like wheat straw, ideally above 110 g kg−1, have
demonstrated positive outcomes when applying a steam water pretreatment [19]. Con-
versely, it is important to highlight that other waste materials, such as fatty wastes, may
require no pretreatment and can yield exceptionally high energy consumption levels ex-
ceeding 3000 kWh·t−1. This underscores the substantial potential for anaerobic digestion
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in this substrate category [19]. On the other hand, waste materials with greater availability
but lower volatile solid content, such as livestock waste or sewage sludge, do necessitate
pretreatment to achieve positive net energy balances in the process [52,53].
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Figure 6. Energy generation and consumption per ton of wheat straw with steam explosion pretreat-
ment at different conditions (left axis). Increase in the energy balance compared to the control tests
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4. Conclusions

The high availability of lignocellulosic organic residues from the agricultural sec-
tor presents a novel opportunity in its management for energy valorization through
anaerobic digestion. This potential that can be maximized by applying pretreatments
such as a combination of mechanical grinding and physico-chemical steam explosion.
Although the production of biomethane can be doubled with this configuration, the
overall energy balance was limited to an increase of 15% in a real-scale process inte-
gration. The rates of biomethane generation were significantly increased after thermal
shock with a total reduction in the lag phase, evidencing the increase in the hydrolytic
phase. Prolonged exposure (15 min) to the thermal pretreatment reduced the energy
recovery and viability. The macromolecular analysis revealed that the positive effect of
the steam treatment impacted the breakdown of hemicellulose, while lignin and cellulose
remained unaltered.
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