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Abstract: This comprehensive review explores the application and impact of digital twin (DT) tech-
nology in bolstering the reliability of Floating Offshore Wind Turbines (FOWTs) and their supporting
platforms. Within the burgeoning domain of offshore wind energy, this study contextualises the
need for heightened reliability measures in FOWTs and elucidates how DT technology serves as a
transformative tool to address these concerns. Analysing the existing scholarly literature, the review
encompasses insights into the historical reliability landscape, DT deployment methodologies, and
their influence on FOWT structures. Findings underscore the pivotal role of DT technology in enhanc-
ing FOWT reliability through real-time monitoring and predictive maintenance strategies, resulting
in improved operational efficiency and reduced downtime. Highlighting the significance of DT
technology as a potent mechanism for fortifying FOWT reliability, the review emphasises its potential
to foster a robust operational framework while acknowledging the necessity for continued research to
address technical intricacies and regulatory considerations in its integration within offshore wind en-
ergy systems. Challenges and opportunities related to the integration of DT technology in FOWTs are
thoroughly analysed, providing valuable insights into the role of DTs in optimising FOWT reliability
and performance, thereby offering a foundation for future research and industry implementation.

Keywords: FOWT; digital twin; reliability; offshore wind energy; predictive maintenance; real-time
monitoring

1. Introduction

The Kyoto Protocol and the Paris Agreement are committed to reducing Earth’s
greenhouse gas emissions [1,2]. The commitment to reduce climate change effects and
global warming has led to the use of more renewable sources of energy. In the offshore
region, research and development are devoted to the use of offshore renewable energies,
which contribute to the achievement of several Sustainable Development Goals (SDGs) by
providing clean and affordable energy (SDG 7) and fostering innovation and infrastructure
development (SDG 9). Among different types of renewable energies, wind technology is
one of the most mature sectors. Despite the considerable power capacity provided by fixed
wind platforms, the recent trend is towards bigger turbines to increase efficiency and the
deployment of floating structures [3,4]. According to the International Renewable Energy
Association (IRENA), the wind industry would need to be prepared for significant growth
in the wind market over the next three decades. Compared to onshore wind, higher growth
would be required in annual offshore wind capacity additions—around a ten-fold increase,
to 45 GW per year by 2050 from 4.5 GW added in 2018 [5]. By 2024, the Global Wind Energy
Council (GWEC) expects onshore wind to pass the 100 GW annual installations mark, while
offshore wind will install more than 25 GW in a single year for the first time in 2025 [6].
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The expansive oceanic expanse presents favourable conditions for the development of
large-scale wind farms and turbines [7,8]. Offshore wind power benefits from faster wind
speeds, greater uniformity, and extended operational availability compared to onshore
counterparts [9–12]. While the upper tower components of an offshore wind turbine (OWT)
resemble their onshore counterparts, the primary distinction lies in the design of the lower
platforms [8,13]. These support structures for OWTs can be categorised into fixed and
floating types [14–16], with the selection dependent on factors such as water depth, soil
conditions, seabed characteristics, and environmental loads. Notably, the water depth
plays a pivotal role in the design process, with floating offshore wind technology gaining
prominence due to its capacity to access deeper waters, where wind resources are typically
more abundant, reaching depths of up to 1000 m [17,18].

The OWTs and their support platforms, as they near the end of their service lives,
typically possess structural integrity suitable for prolonged use, largely attributable to
conservative design principles and operational protocols. Consequently, the offshore wind
industry seeks a dependable certification framework to ensure that structural capacity
exceeds permissible limits throughout the desired extended service life, while minimising
operational costs [19]. Techno-economic analyses for lifecycle extension projects neces-
sitate the incorporation of various factors, including structural health monitoring data,
detailed structural integrity assessments, condition-based maintenance strategies, and
comprehensive financial analyses. To facilitate smart maintenance planning and predictive
maintenance for wind farm operations, the digital twin (DT) technique offers a valuable
approach. By mirroring the life of the corresponding physical twin through the utilisation
of advanced physical models, sensor updates, and other relevant data, DT enables more
effective and informed decision-making in the management of wind farm assets [20–22].

This review seeks to provide a comprehensive exploration of how DT technology
contributes to enhancing reliability in FOWTs. The foundation of our examination lies in
contextualising the reliability challenges specific to floating offshore wind, tracing the his-
torical evolution of reliability measures within the offshore wind sector, and subsequently
delving into the intricacies of DT technology as a tailored solution for addressing these
challenges. The results of our analysis will unveil the pivotal role played by DT technology
in real-time monitoring, predictive maintenance, and reliability analysis within the con-
text of FOWTs. Success stories and case studies will be examined to showcase instances
where DT implementations have led to tangible improvements in reliability, operational
efficiency, and overall performance. The subsequent sections of this paper delve into the
historical overview of offshore energy asset safety and reliability, DT applications in the
offshore wind industry, and challenges and opportunities associated with the integration
of DT technology in FOWTs, offering a comprehensive and insightful exploration of this
innovative approach.

2. Historical Overview of Offshore Energy Asset Safety and Reliability

The historical evolution of safety and reliability measures within the realm of offshore
energy assets is a journey marked by continuous innovation and adaptation. The quest
for robust safety protocols and reliable operational frameworks has been necessitated by
the inherent challenges posed by offshore environments, where harsh weather conditions,
complex engineering, and remote locations converge. This historical overview aims to
trace the trajectory of safety and reliability considerations in offshore energy, laying the
groundwork for understanding the contemporary landscape and the role of DT technology
in mitigating risks.

2.1. Developments in Offshore Energy

The genesis of offshore energy exploration can be linked to the mid-20th century, when
the pursuit of hydrocarbon resources led to the development of fixed-platform structures
in shallow waters [23,24]. These early structures laid the foundation for safety standards,
focusing primarily on structural integrity and fire prevention. Over subsequent decades,
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as offshore activities expanded into deeper and more remote waters, the industry faced
heightened challenges. Tragic incidents, such as the Piper Alpha disaster in 1988 [25,26],
served as wake-up calls, prompting a re-evaluation of safety practices and the establishment
of regulatory frameworks.

The 1990s witnessed a paradigm shift in safety thinking, transitioning from a fo-
cus solely on hardware integrity to a holistic approach encompassing human factors,
organisational culture, and risk management [27,28]. International standards such as the
International Safety Management (ISM) Code were introduced [29,30], emphasising a sys-
tematic approach to safety management. This period also saw the emergence of advanced
technologies for asset monitoring and risk assessment, setting the stage for a more proactive
safety culture [31].

2.2. Offshore Wind Energy

In the 21st century, as the offshore energy sector diversified to include renewable
sources like offshore wind [32–35], safety and reliability considerations evolved to encom-
pass a broader spectrum of challenges. Offshore wind farms introduced novel structural
configurations and operational dynamics, necessitating adaptations in safety protocols.
The Deepwater Horizon incident in 2010 [36,37] highlighted the ongoing need for vigilance
and spurred further advancements in safety technologies and regulatory oversight.

Offshore wind turbine structures represent a pioneering frontier in renewable energy,
harnessing the power of wind over vast expanses of the ocean to generate clean and sus-
tainable electricity [8,10,11,14,15,18,21]. These structures, typically consisting of towering
masts anchored to the seabed, support massive turbine blades that capture wind energy
and convert it into electricity through rotational motion. Engineered to withstand the harsh
marine environment, offshore wind turbine structures feature robust designs capable of
enduring high winds, turbulent seas, and corrosive saltwater. As a key component of
offshore wind farms, these structures are strategically located in coastal waters to maximise
wind resources and minimise visual impact on land. The OWT structure is comprised of
several essential components, including the foundation, tower, nacelle, and rotor assembly.
A towering structure is typically made of steel or concrete, which supports the nacelle and
rotor assembly. The nacelle houses the turbine’s mechanical components, including the
gearbox, generator, and control systems, while the rotor assembly comprises the blades
and hub responsible for capturing wind energy. As for the foundations of OWTs, there are
two primary types: fixed and floating foundations [4,21,38,39]. Figure 1 shows the main
types of OWT foundations by different installation methods [8].
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Figure 1. Types of OWT platforms: (a) monopile, (b) gravity-based platform, (c) jacket, (d) tripod,
(e) tripole, (f) spar, (g,h) tension-legged platform, and (i) semi-submersible. Reproduced from [8],
with permission from Elsevier, 2024.

Fixed foundations, such as monopiles or jackets, are anchored directly to the seabed,
providing stability and support for the turbine. These fixed foundations are suitable for
shallow to moderate water depths and relatively stable seabed conditions. On the other
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hand, floating foundations are designed for deeper waters where fixed foundations are
not feasible. Floating foundations utilise buoyant structures that are moored to the seabed
using tethers or anchors, allowing the turbine to remain stable while floating on the water’s
surface. These foundations enable the deployment of offshore wind turbines in deeper
waters, expanding the potential sites for wind energy development.

A semi-submersible platform consists of buoyant pontoons or columns submerged
below the waterline, which provide stability and buoyancy to the platform. The plat-
form is partially submerged, with only a portion of the structure visible above the water
surface. This design allows the platform to remain stable in rough sea conditions while
providing a secure foundation for OWTs. The semi-submersible platform is often used in
deepwater locations where fixed-bottom foundations are not feasible, offering flexibility
and scalability for offshore wind energy projects [8,16,38]. Engineering applications of
semi-submersible platforms include the WindFloat platforms by Principle Power, Saitec’s
SATH (Swinging Around Twin Hull) platforms, BW Ideol’s Damping Pool floating founda-
tion, the OC4-DeepCwind platform, and the W2Power Platform [39]. In addition to the
semi-submersible platform, Spar and tension leg platforms (TLP) are also used in offshore
wind projects [4,11,18].

The loads acting on the foundation of OWTs primarily include vertical loads from
the weight of the turbine components, horizontal loads from wind and waves [40], and
moments resulting from the dynamic behaviour of the structure. As the historical landscape
unfolds, it becomes evident that safety and reliability in offshore energy have been shaped
by a continuous dialogue between industry experiences, technological innovations, and
regulatory responses [29–31,41–44].

2.3. Reliability Methods

In structural design, the reliability of a structural component is assessed concerning
one or more limit states. The structure is characterised by a set of fundamental variables,
denoted as X, which encompass its strength, stiffness, geometry, and loading, among
other factors.

The failure probability can be expressed using the probability integral over the
failure set:

PF =
∫

G(X)≤0
fX(X)dX (1)

where G(X) is the limit-state function for the failure mode considered, and fX(X) is the joint
probability density function for X.

The complement 1—PF is accordingly referred to as the reliability of the structural
component in question. The corresponding reliability index is determined by

β = −Φ−1(PF) (2)

where Φ is the standard normal distribution function.
The failure probability and reliability index can be determined using various reliability

methods, which may include the first- and second-order reliability methods, i.e., FORM
and SORM [45–48], as well as simulation methods. Analytical methods have an advantage
in that they typically do not require significant computer resources. However, they may
not provide exact results for the probabilities sought but rather approximations that may
not always be accurate enough. The first step in these methods involves transforming the
physical basic variables into a space of standard normal variables. This transformation leads
to a corresponding limit-state surface in the standard normal space, replacing the limit-state
surface of basic variables. The analytical methods for solving failure probability rely on
approximations of the limit-state surface in the standard normal space by operational
surfaces. These operational surfaces allow for the computation of the corresponding failure
probability according to the probability integral defined above.

When dealing with larger failure probabilities, it is recommended to use simulation
methods. Monte Carlo simulation (MCS) techniques are a useful tool for estimating failure
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probabilities [49–52]. One advantage of these methods is their simplicity, as they are easy to
understand and execute. Additionally, when a sufficient number of simulations are carried
out, the solutions provided by these methods converge towards exact results. However,
one drawback is that these methods require a lot of computation time, particularly when
estimating small failure probabilities with good confidence. It has been noted [53] that
for simulations employing indicator-based Monte Carlo methods, a minimum of 100/PF
simulation samples is required, where PF represents the failure probability.

In addition to the previously mentioned, widely utilised reliability analysis methods,
the partial safety factor (PSF) specified in design standards is often aligned with target
reliability, especially when the probability of failure is not explicitly computed [54,55]. In
the first-order second-moment (FOSM) method, two parameters (mean and variance) are
typically employed to characterise each uncertain variable [40,56]. The response surface
method (RSM) is also an efficient and widely applicable method in structural reliability
analysis, in which typical first- or second-order polynomials are chosen to replace the real
limit-state function [57,58].

2.4. Discussion on Recent Developments

Recently, there has been an increasing trend in the utilisation of artificial intelligence
(AI), machine learning (ML), and DT technologies to enhance reliability in engineering ap-
plications [8,59–62]. AI and ML algorithms offer powerful tools for analysing large datasets,
identifying patterns, and making predictive assessments, thereby enabling more accurate
risk assessments and proactive maintenance strategies. These technologies can leverage
real-time data from sensors and monitoring systems to detect anomalies, predict equipment
failures, and optimise operational performance. Additionally, DT technology has gained
prominence for creating virtual replicas of physical assets, facilitating simulation-based
reliability analysis, and enabling condition-based monitoring and maintenance. In the
offshore wind sector, AI, ML, and DT are increasingly being integrated into asset manage-
ment systems to improve reliability, reduce downtime, and enhance overall operational
efficiency. In [60], artificial neural network (ANN) models were used for limit-state function
approximation and combined with MCS and FORM for reliability assessment.

Incorporating structural health monitoring (SHM) and condition monitoring (CM)
techniques into reliability assessments presents a significant advancement in ensuring
the integrity and performance of engineering assets. By continuously monitoring the
structural health and operational conditions of components in real time, SHM and CM
provide invaluable data for assessing the reliability of critical systems. More specifically,
SHM systems installed on offshore wind turbine structures continuously monitor struc-
tural integrity, detecting any signs of fatigue, corrosion, or damage that may compromise
reliability. Similarly, CM technologies track the operational performance of critical compo-
nents such as gearboxes, bearings, and blades, identifying potential faults or inefficiencies
early on. By integrating SHM and CM data into reliability analyses, offshore wind farm
operators can better predict component failures, optimise maintenance schedules, and
minimise downtime.

3. Advances in DT Development for FOWTs

By learning from past incidents and evolving safety practices, the offshore wind
industry is better poised to integrate DT solutions effectively, ensuring a resilient and
secure future for offshore energy assets. The overview in this section sets the stage for the
subsequent exploration of DT technology’s application in enhancing safety and reliability
within offshore energy assets, providing valuable insights into the evolution of safety
practices and the imperative for continuous improvement in the face of dynamic challenges.

3.1. Introduction to DT

A DT can be defined as a virtual representation of a system or asset that calculates
system states and makes system information available, through integrated models and
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data, to provide decision support over its life cycle. The idea of using a twin model can
be dated back to NASA’s Apollo program in the 1970s, where two identical space vehicles
were built to allow mirroring of the conditions of the space vehicle during the mission [63].
While initially proposed in 1991, the DT made its debut in 2002 within the realm of product
lifecycle management (PLM). Originally dubbed the mirrored spaces model (MSM) and
information mirroring model (IMM), it was officially named Digital Twin in 2011 [64].

DT technology has found widespread applications across various industries, including
aerospace [65], automotive [66], healthcare [67], manufacturing [68], and smart city [69]
industries, etc. Initial applications of DTs are evident in NASA’s spacecraft and US Air
Force jet fighters [70,71]. Major vendors like Siemens, PTC, and Dassault Systèmes have
incorporated DT concepts into their PLM systems. The DT model has also been proposed
to support the resilient implementation of the Internet of Things (IoT) [72]. Companies like
TESLA are actively pursuing the development of DTs for all manufactured cars, facilitating
synchronous data transmission between vehicles and the production facility. Between 2017
and 2019, Gartner, a prominent technology research and advisory company, included DT
technology among the top 10 strategic trends. Their prediction foresaw that within 5 years,
billions of objects would be represented by DTs [73].

While the concept of DT is not novel, initially, it remained largely descriptive and
lacked auxiliary technologies in its early stages [74–76]. Figure 2 illustrates the surge
in research interest in the DT concept, evident from the increasing amount of findings
acquired through searching the topic ‘digital twin’ in the database of Web of Science (WoS).
Especially since 2019, there has been a notable surge in interest from both industry and
academia, as reflected in the increasing number of results obtained. According to data
from WoS, China emerges as the leading country in DT publications, followed by the USA,
Germany, Italy, the UK, and South Korea, among others, indicating global recognition and
engagement with this evolving field.
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3.2. DT for Offshore Wind

The DT concept comprises three key components: (1) the physical asset itself, (2) its
virtual representation, and (3) the interconnectedness between these two components.
This connection encompasses the seamless exchange of information from the physical
asset to its DT, and vice versa [77,78]. In more recent developments, an expanded five-
dimensional DT model has emerged to address the evolving needs of various applications
for Industry 4.0 [79]. This enhanced model builds upon the foundational concept of DTs by
incorporating additional dimensions for data and services.

Figure 3 shows one example of a DT of a wind turbine, comprised of the physical entity,
the virtual model, the data and services, and the transmissions between the DT components.
The DT-enabling technologies include sensing technology, modelling technology, the data
management method, DT service technology, data connection technology, etc.
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The integration of sensing technology is crucial for enabling physical objects to per-
ceive and interact with the external environment. Once data have been collected, adjust-
ments to the virtual model are necessary to accurately reflect changes in physical entities.
This comprehensive approach requires the virtual model to encompass a wide array of
features, including geometric, physical, behavioural, and rule-based information. Given the
vast amount of data generated during the operation of physical objects, big data analytics
technologies are indispensable for effectively collecting, transmitting, storing, and process-
ing this information. Additionally, the functionality of DT services is dependent on the
specific usage of the physical object, necessitating the implementation of data transmission
technologies, such as various communication protocols and IoT technologies, to facilitate
the exchange of original and processed data. Furthermore, data-driven technology plays a
crucial role in enabling physical objects to respond to commands from higher-level systems.
Environmental factors are also essential components of DT, providing critical information
for maintaining consistency between physical entities and virtual models, integrating infor-
mation on all elements, and accurately predicting changes in the environment. As a result,
environment-coupling technology is essential for considering the impact of environmental
factors on the DT model.

A DT for the power converter of offshore wind turbines was introduced in [81] with
the aim of forecasting damage accumulation and estimating the remaining useful life (RUL).
This DT model takes into consideration medium- and short-term thermal transient loadings,
as well as long-term thermal loading. Figure 4 illustrates the 5 MW NREL wind turbine
and the corresponding numerical turbine utilised within the virtual space framework of the
DT. The details of the data and information transmission are revealed in the next section.
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3.3. Data Acquisition and Integration

Data acquisition and integration play pivotal roles in the development and implemen-
tation of DT technology. Effective data acquisition is essential for capturing real-world
information and transforming it into actionable insights. This involves collecting data from
various sources, including sensors, IoT devices, historical records, and operational systems.
With the proliferation of IoT devices and sensors in industrial environments, there is an
abundance of data available for DT applications. Advanced data acquisition techniques
such as edge computing and cloud-based data platforms enable real-time data processing
and analysis, facilitating timely decision-making and predictive maintenance.

In the examination of the aforementioned 5 MW NREL virtual wind turbine [81], wind
and ambient profiles were imported from supervisory control and data acquisition (SCADA)
data. Subsequently, the loading profile was integrated into FAST (now OpenFAST) [11,12]
or similar aero-elastic-servo-control models to generate inputs (e.g., torque and speed) for
the generator. Within the DT framework, virtual sensors were generated for structural
locations without strain gauges, utilising a blend of aeroelastic models and finite element
methods (FEM). Power loss was estimated based on the power values obtained from
SCADA data. Python programming was utilised to forecast the junction temperatures of
insulated-gate bipolar transistors (IGBT) and diodes, in conjunction with overall junction
temperature prediction.

However, the challenge lies in identifying relevant data sources, ensuring data quality,
and establishing secure and efficient data transmission channels. The integration of dis-
parate data sources is critical for creating a comprehensive DT ecosystem. This involves
harmonising data formats, protocols, and standards to enable seamless interoperability
across different systems and domains. Integration efforts may encompass data from multi-
ple sources, including engineering design tools, simulation software, enterprise resource
planning (ERP) systems, and supply chain management platforms. By integrating data
from various sources, organisations can gain a holistic view of their assets and operations,
enabling better-informed decision-making and the optimisation of processes. Additionally,
data integration enables the creation of digital threads that link various stages of the product
lifecycle, including the phases of design, manufacturing, operation, and maintenance.

Enhanced alignment with data formats is deemed essential for the industry, facilitat-
ing cost savings and enabling data sharing for comparison, trend analysis, and learning
purposes. Some operators are heavily investing in data integration efforts. Aker BP, for
instance, is actively engaged in integrating and evaluating data within the context of its
integrity management application, called SIGMA (Subsea Integrity Graph Management
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Application) [82]. Data from various source systems are aggregated and processed through
Cognite Data Fusion (CDF), as depicted in Figure 5.
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The data format represents an inherent attribute of the data, and the existence of
diverse data formats poses a significant challenge when integrating data. While data
integration platforms are adept at handling various formats, direct comparisons of data,
such as through conducting trend analyses over time, are often hindered by the disparate
formats of the data. Operators have reported this challenge, particularly when transitioning
between service providers, as data requirements are typically contractually defined. This
contractual flexibility allows operators to align data requirements across service providers
and assets. However, accommodating different data requirements across operators and
assets demands time and resources from service providers. Ongoing industry initiatives,
such as READI (REquirement Asset Digital lifecycle Information) [83] and PDEF (Pipeline
Data Exchange Format) [84] joint industry projects [85], aim to address these challenges by
focusing on standardising data formats.

In summary, the diversity of data formats poses a challenge to data integration efforts.
While data integration platforms are capable of handling different formats, the direct
comparison of data, particularly for trend analysis over time, is hindered by these format
disparities. This challenge becomes more pronounced when operators switch service
providers, as each may have distinct data requirements defined in contracts. Aligning
these data requirements across service providers and assets is crucial but entails both time
and cost.

3.4. Modelling and Simulation

Modelling encompasses the process of creating virtual replicas or models of physical
assets, capturing their structural, operational, and environmental characteristics. In the
case of FOWT platforms, modelling involves integrating data on turbine components,
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support structures, environmental conditions, and operational parameters into a cohesive
digital representation. Various modelling techniques, ranging from finite element analysis
(FEA) to computational fluid dynamics (CFD), are employed to simulate the behaviour
of offshore energy assets under different operating conditions, loading scenarios, and
environmental forces.

Qi et al. [86] categorised the typical tools for applications of DT services into four
main groups, (1) platform tools, (2) simulation, (3) optimisation, and (4) diagnostic and
prognosis service tools, which are summarised in Figure 6. For example, the commercial
software ANSYS Twin Builder, built upon the ANSYS simulation platform, empowers users
to develop highly accurate virtual replicas of physical assets, enabling real-time monitoring,
predictive analytics, and performance optimisation. With its seamless integration with
other ANSYS tools such as ANSYS Fluent, ANSYS Mechanical, and ANSYS SCADE, users
can leverage a comprehensive suite of simulation capabilities to accurately capture the
behaviour of complex systems and components.
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An instance of model updating is exemplified in [87], where a sequence of tests was
conducted on an H-style vertical axis wind turbine to ensure the accuracy of the DT finite
element (FE) models in replicating real-world conditions. Experimental modal analysis
with impact testing was employed, involving the measurement of excitation and response
across different degrees of freedom (DOF) within the structure. Six accelerometers were
strategically positioned in the X, Y, and Z directions at the corner of the platform and at
the bottom of the first blade to capture structural responses, yielding frequency response
functions. Various techniques were employed to measure the blades, struts, and platform
individually to validate the assumptions of the FE models. The entire system underwent in
situ testing at the Open Jet Facility wind tunnel in Delft.

Simulation using the DT model involves running computational experiments or sce-
narios to predict the performance and response of the physical asset. Through simulation,
engineers can assess the structural integrity, dynamic behaviour, and operational efficiency
of FOWT platforms, identifying potential failure modes, optimising design parameters,
and evaluating risk mitigation strategies. Advanced simulation tools enable real-time
interaction with the DT, allowing operators to monitor asset health, predict maintenance
needs, and make informed decisions to enhance reliability and safety [74–76,80,86,88].

Akselos’ reduced basis FE analysis (RB-FEA) technology is claimed to be faster than
conventional FEA methods, boasting higher accuracy by leveraging posterior accuracy
indicators and automated model enrichment processes [88]. The reduced basis (RB) method
stands as a technique for creating reduced-order models of parametrised partial differen-
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tial equations (PDE), necessitating the definition of a geometric domain (e.g., established
by a mesh with different elements), a specific physics type, boundary conditions, and
a model parameter (e.g., material properties) vector. In RB-FEA, the RB method is ap-
plied to the interiors of components, while a transfer eigenvalue technique, known as
“optimal modes”, is employed for DOF reduction on component interfaces. In the con-
text of a detailed DT for a floating platform, the RB-FEA model typically ranges from
approximately 10,000 to 500,000 DOF, representing a reduction of around 1000 when com-
pared to the DOFs in an equivalent FE model [89]. Akselos’ predictive DT technology
has catalysed numerous wind foundation design projects in collaboration with industry
leaders such as BEPA, Det Norske Veritas (DNV), Lamprell, ABS, Shell, and various other
companies [89–93].

Furthermore, the integration of modelling and simulation with data-driven approaches,
such as ML [94–97] and AI [98–100], enhances the predictive capabilities of DTs. By
analysing vast amounts of operational data and historical performance metrics, ML algo-
rithms can identify patterns, predict potential failures, and optimise asset performance
in real time. This synergistic combination of modelling, simulation, and data analytics
offers a holistic approach to ensuring the safety, reliability, and sustainability of offshore
energy assets.

4. Application of DT on Safety and Reliability

The impact of DT technology on safety and reliability within the offshore energy sector
is profound, revolutionising traditional approaches to asset management and maintenance
practices. By creating virtual replicas of physical assets and continuously updating them
with real-time data from sensors and monitoring systems, DTs provide operators with
unprecedented visibility into asset health and performance. This real-time monitoring
capability enables the early detection of potential failures, allowing operators to implement
proactive maintenance interventions before issues escalate, thus enhancing overall safety
and reliability. Ultimately, the impact of DT technology on safety and reliability in the
offshore energy sector is transformative, driving continuous improvement and innovation
in offshore operations.

4.1. Real-Time Monitoring and Predictive Analytics

Real-time monitoring is a cornerstone of DT technology, enabling operators to capture
and analyse live data from sensors embedded throughout offshore energy assets. These
sensors collect a plethora of information, including structural health metrics, environmental
conditions, operational parameters, and performance indicators. By integrating this real-
time data into the DT framework, operators gain immediate insights into asset performance,
allowing them to detect anomalies, identify potential issues, and take proactive measures
to ensure safety and reliability.

Leveraging the GE Predix platform as a foundation, GE developed a digital wind farm
infrastructure, incorporating a DT for each wind turbine (see Figure 7). The platform is
accomplished by varying the tower height, the rotor diameter, and the nameplate. This
innovative approach aims to optimise maintenance strategies, enhance reliability, and
boost energy production within wind farms. By harnessing the power of DT technology,
operators gain unprecedented insight into the operational health and performance of
each turbine, enabling proactive maintenance interventions, maximising reliability, and
optimising energy output [86,101,102].
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not required).

DNV has also introduced WindGemini, a tool designed to assess the performance
and health monitoring of OWTs by predicting failures and estimating their remaining
lives [103]. It utilises various measurements such as temperatures and frequency analysis
for health monitoring. The interface of the program, depicted in Figure 8, enables users to
monitor the relative variation in production among turbines and over time. This function-
ality allows operators to identify performance outliers and track degradation in turbine
performance effectively.
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Displayed in Figure 9 is the desktop interface of the DT visualisation tool RamView360,
developed by RAMBOLL Group, specifically referencing the Wikinger Offshore Wind Farm
situated in the Baltic Sea. This web-based building information modelling (BIM) model
visualisation tool offers a plethora of functionalities to accommodate user preferences,
including but not limited to BIM visualisation, CFD simulation modelling, computer-aided
design (CAD) modelling, and point cloud modelling derived from LiDAR scanning data.
The inspection information can be easily visualised by clicking on the annotation point
integrated into the RamView360 model [104].
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Furthermore, predictive analytics leverages historical data, ML algorithms, and ad-
vanced analytics techniques to forecast future behaviour and performance trends of offshore
energy assets. By analysing patterns and correlations within the data, predictive analytics
models can anticipate potential failures, predict maintenance needs, and optimise asset
performance. For example, ML algorithms can identify early warning signs of equipment
degradation or impending failures based on historical failure patterns and operational data,
enabling operators to intervene before catastrophic events occur.

In the project on RaPiD (Reciprocal Physics and Data-driven) models [82,105], physics-
based models with data-driven ML and probabilistic uncertainty analyses were integrated
to enhance decision support for safety-critical systems. The project seeks to provide specific,
timely, and accurate insights into the operation of such systems. Central to this approach is
the fusion of well-established full-order models (FOM), optimised through reduced-order
modelling (ROM), with the utilisation of probabilistic data-driven models.

4.2. Further Discussions

DTs empower operators with data-driven decision-making capabilities, enabling them
to make informed choices regarding asset maintenance, optimisation, and risk mitigation
strategies. By providing operators with actionable insights derived from real-time monitor-
ing and predictive analytics, DTs facilitate optimised asset performance, extended asset
lifespans, and improved operational efficiency.

In a study focused on the mooring line tension of an FOWT [106], two DTs were
developed using data from the Hywind Pilot Park for validation. The first DT aimed to
predict mooring line tension under normal conditions to monitor any deviations from
expected behaviour, providing an effective solution for detecting long-term drifts in me-
chanical responses. The second DT incorporated past, present, and forecasted data to
predict near-future mooring line tension, achieving promising results with an error margin
of approximately 15 kN for a forecast horizon of 1–2 min. The DT’s predictions can serve
as early safety warnings during FOWT operational maintenance activities.

A probabilistic framework was introduced in [107] for enhancing the structural relia-
bility of OWT substructures by leveraging information from DTs. The data obtained from
DTs played a crucial role in quantifying and revising the uncertainties linked to structural
dynamics and load modelling parameters concerning fatigue damage accumulation. This
framework was demonstrated through two numerical case studies featuring a typical OWT,
utilising data from established DTs [108,109], as illustrated in Figure 10.
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Depending on the scheduled lifetime extension, one can store structural response
data or environmental data, or both, with higher-quality data leading to more precise
estimates. Operational data are compared to predicted data generated by numerical models
used in the design phase, with significant differences prompting model updates to better
reflect the real structure. Updated uncertainties are then compared to initial assumptions,
forming the basis for updating structural reliability. This process establishes a consistent
reliability level for a given structure, with reduced uncertainties leading to an estimation
of excess reliability used to extend the structure’s lifetime. Excess reliability is translated
into extended lifetime through probabilistic models, predicting when reliability reaches
its target value due to deterioration mechanisms like fatigue. Extending the monitoring
campaign and utilising damage detection algorithms during operational stages provide
further insights and optimisation for additional lifetime extension.

Xia and Zhou [110] conducted a recent comprehensive review of the latest advance-
ments in DT technology, focused on optimising the operation and maintenance (O&M) of
offshore wind farms (OWF). The review covered various aspects such as failure analysis,
O&M objectives, strategies, and optimisation models, as well as the development and
management of DT technology in the context of O&M. Furthermore, a novel DT-based opti-
misation framework tailored for OWF O&M was introduced, aiming to enhance operational
efficiency and intelligence levels.

In addition, a method to quantify the value of a DT was proposed in [110]. It was
suggested that the value of a DT could be assessed by considering the collective value of
each wind turbine component’s DT. This is quantified by the following equation:

V = ∆Vr + ∆Vc + ∆Vs + ∆Ve (3)

where V is the DT’s value, ∆Vr signifies the reliability utility variation, ∆Vc means the
O&M cost variation, ∆Vs reflects the variation in the security utility, and ∆Ve represents
the variation in terms of environmental protection.

The value of each sub-DT can be partitioned into the sum of the value of the corre-
sponding monitoring system, of the data storage and processing system, and of the digital
model construction.

Six requirements were outlined in [111] for implementing DT technology in the fatigue
monitoring of bolted ring-flanges on OWT support structures, considering the broader
context of the DT paradigm within the OWT industry. While each requirement addresses
specific needs in the OWT context, they may also have applicability to other industries.
The summarised requirements are as follows:

(1) A well-defined objective for the DT to meaningfully support engineering decisions.
(2) Strategically designed observations, considering associated costs.
(3) Resolution of boundary conditions subject to parametric variability or uncertainty to

allow the reconstruction of structural loads.
(4) A simulator or surrogate model enabling uncertainty propagation in near real-time,

feasible with desktop computational resources.
(5) Updatability of the simulator form and parameters based on observations of the

physical system.



Energies 2024, 17, 1964 15 of 23

(6) Interpretability of the simulation model, with a preference for physics-informed
simulators.

While the outlined requirements provide a structured approach to implementing
DT technology in fatigue monitoring, their practical use may be influenced by various
limitations such as resource constraints, data quality, computational feasibility, and the
balance between complexity and interpretability.

5. Challenges and Future Directions

The challenge of conducting reliability analysis, health monitoring, and predictive
maintenance for FOWTs persists because of their high O&M costs [8]. It was noted in [110]
that the majority of current studies concentrate solely on monitoring certain components
of OWFs, lacking systematic monitoring strategies for the entire facility. Existing DT
models often exhibit poor performance, characterised by inadequate fidelity, attributed
to incomplete data, sluggish data processing, and insufficient model integration. In this
regard, investigating systematic monitoring, non-contact monitoring techniques, rapid data
processing techniques, and model integration will be pivotal for the successful deployment
of DT technology in OWFs.

A practical scheme for transferring data from the physical to the virtual space has
been established, addressing data interconnection between the two realms. However, the
absence of virtual-to-physical feedback, essential for the DT-informed decision-making
process, is notable in the literature [112]. Moreover, while numerous studies on DT have
been proposed, many remain conceptual or focus solely on subsystem development. A
comprehensive, integrated framework for creating and applying DTs appears to be lacking.

Challenges and future directions in DT technology for offshore wind present a dynamic
landscape shaped by both technological advancements and industry-specific complexities.
Despite significant progress, several hurdles remain, necessitating innovative solutions and
strategic focus.

Table 1 outlines the challenges encountered in DT applications for enhancing the relia-
bility of FOWTs within the offshore wind industry, along with corresponding suggestions
or comments for addressing each challenge. One of the foremost challenges lies in data
integration and management. Offshore wind farms generate vast amounts of data from
various sensors and monitoring systems, posing challenges in data collection, storage, and
processing [113,114]. Ensuring the seamless integration of this diverse data into DT models
remains critical for accurate and reliable performance monitoring and predictive analytics.

Table 1. List of challenges in DT applications for offshore wind.

Challenges Suggestions/Comments Reference

Data stored in disparate systems Unify data and model standards,
universal platforms and tools [8,20,65–68,82,112]

Limited data accessibility
on servers

Establish an accessible database
for sharing models and data [20,69–71,85,113,114]

Data quality assurance and
system validation

Examination of data quality
and dedicated validation

campaign required
[74–78,86,112,115]

Real-time communication of
data and modelling IoT technologies and ROM [8,87–89,92,103,116]

Large-scale computation Computational infrastructure, fog-,
cloud-, and edge-computing [63,79–81,88,90,112]

Cyber security issues Advanced cyber-security protocols [22,85,92,106,117,118]

Social impact Redistribute the workplace with
minimum effects on employment [22,103,107,116,119]

Another key challenge is model fidelity and validation. DT models must accurately
represent the complex behaviour of offshore wind assets, including dynamic environ-
mental conditions, structural loads, and system interactions [115]. Building high-fidelity
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models entails a foundation in FEA [15,87,88,120,121] and CFD [16,122,123], alongside the
incorporation of innovative data-driven methodologies [94–100], all of which necessitate
continuous validation against real-world data, thereby posing computational and analytical
challenges [116].

Furthermore, interoperability and standardisation are essential for scaling DT solu-
tions across the offshore wind industry. Establishing common data formats, communication
protocols, and interoperable platforms will facilitate seamless collaboration and data ex-
change among stakeholders, ultimately enhancing efficiency and innovation. Additionally,
concerns arise regarding the safeguarding of physical and virtual infrastructure against
cyber-attacks [117,118], as well as potential social ramifications stemming from widespread
DT applications in the future [119].

Looking ahead, future directions in DT for offshore wind will likely focus on enhancing
predictive capabilities, enabling proactive maintenance and optimisation strategies. While
the focus on enhancing predictive capabilities and enabling proactive maintenance and
optimisation strategies is paramount, it is essential to address the inherent complexities and
uncertainties within offshore wind operations. One significant challenge lies in the dynamic
and harsh offshore environment, where unpredictable factors such as extreme weather
conditions and environmental degradation can significantly impact asset performance
and reliability. Therefore, developing robust predictive models that account for these
uncertainties and accurately forecast equipment failures is crucial for effective maintenance
planning and risk mitigation. Advanced analytics, ML, and AI will play a crucial role
in developing predictive models capable of forecasting equipment failures, optimising
performance, and maximising energy production.

Additionally, there is a growing emphasis on DT applications for holistic asset lifecycle
management, spanning design, construction, operation, and decommissioning phases.
Integrating DTs into a unified lifecycle management framework will enable comprehensive
decision support and facilitate data-driven strategies for optimising asset performance and
longevity. This approach requires the seamless integration of DTs into a unified lifecycle
management framework, which presents technical and organisational challenges. Ensuring
interoperability between various DT systems and data sources, as well as establishing
standardised protocols for data exchange and analysis, will be essential for realising the full
potential of DT in optimising asset performance and longevity. Furthermore, overcoming
barriers related to data privacy, security, and ownership rights will be crucial for fostering
collaboration and knowledge sharing across stakeholders in the offshore wind industry.

6. Summary

Amidst the ongoing digitalisation trend, the digital twin has emerged as powerful
technology, with discussions spanning various industries, including offshore wind energy.
The advent of DTs offers an effective avenue for achieving remote monitoring and control,
predicting downtime, and mitigating risks for FOWTs. This paper delves into the recent
literature concerning the myriad applications of DTs for the offshore wind industry, pro-
viding valuable insights into the role of DTs in optimising the reliability and performance
of FOWTs.

Despite challenges associated with DT implementation in FOWTs, including data
integration, data quality assurance, real-time modelling, and cybersecurity concerns, the
potential benefits outweigh the obstacles. To harness the full potential of DT in offshore
wind, several recommendations emerge.

(1) First and foremost, there is a critical need to unify data and model standards, along
with the development of universal platforms and tools. This standardisation will
facilitate seamless data exchange and interoperability among different stakeholders
and systems within the offshore wind sector.

(2) Additionally, the establishment of an accessible database for data and model sharing
is essential to promote collaboration, transparency, and innovation across the industry.
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(3) Furthermore, thorough examinations of data quality and dedicated validation cam-
paigns are imperative to ensure the accuracy and reliability of DT models. Integrating
IoT technologies and leveraging ROM techniques will enhance the efficiency and
scalability of DT applications.

(4) Investing in computational infrastructure, including fog, cloud, and edge computing,
will provide the necessary computational power to support real-time analytics and
decision-making processes.

(5) Finally, advanced cyber-security protocols need to be implemented to safeguard DT
systems and data from potential cyber threats, ensuring the integrity and confiden-
tiality of sensitive information in the offshore wind environment. By embracing
these recommendations, the offshore wind industry can unlock the transformative
potential of DT technology, driving innovation, efficiency, and sustainability in wind
energy operations.

As the offshore wind sector continues to evolve, embracing DT technology will offer a
pathway to optimise reliability, mitigate risks, and drive innovation in FOWT operations
and maintenance practices. Through collaborative efforts and strategic investments, the
realisation of reliable and sustainable offshore wind energy is becoming increasingly
attainable with the aid of digital twin solutions.

While efforts were made to provide a comprehensive overview, it should be noted that
not every aspect of FOWT reliability enhancement or digital twin application may have
been covered within the review’s scope. Further research is encouraged to delve deeper
into specific limitations and future directions in this rapidly evolving field.
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Comparing the benefits of offshore wind farms and marine protected areas. Energy Econ. 2016, 55, 127–134. [CrossRef]

10. Kang, J.; Sun, L.; Guedes Soares, C. Fault Tree Analysis of floating offshore wind turbines. Renew. Energy 2019, 133, 1455–1467.
[CrossRef]

11. Branlard, E.; Jonkman, J.; Brown, C.; Zang, J. A digital-twin solution for floating offshore wind turbines validated using a full-scale
prototype. Wind Energy Sci. 2023, 9, 1–24. [CrossRef]

12. Liu, Y.; Fontanella, A.; Wu, P.; Ferrari, R.M.; van Wingerden, J.W. Fault detection of the mooring system in floating offshore wind
turbines based on the wave-excited linear model. J. Phys. Conf. Ser. 2020, 1618, 022049. [CrossRef]

13. Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends
and enabling technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [CrossRef]

14. Jiang, Z.; Hu, W.; Dong, W.; Gao, Z.; Ren, Z. Structural reliability analysis of wind turbines: A review. Energies 2017, 10, 2099.
[CrossRef]

15. Gentils, T.; Wang, L.; Kolios, A. Integrated structural optimisation of offshore wind turbine support structures based on finite
element analysis and genetic algorithm. Appl. Energy 2017, 199, 187–204. [CrossRef]

16. Tran, T.T.; Kim, D.H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body
interaction approach. Renew. Energy 2016, 92, 244–261. [CrossRef]

17. Salvação, N.; Guedes Soares, C. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 2018,
145, 276–287. [CrossRef]

18. Li, H.; Díaz, H.; Guedes Soares, C. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean
Eng. 2021, 234, 109261. [CrossRef]

19. Yeter, B.; Garbatov, Y. Optimal life extension management of offshore wind farms based on the modern portfolio theory. Oceans
2021, 2, 566–582. [CrossRef]

20. Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.D.J.
Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [CrossRef]

21. van der Tempel, J.; Diepeveen, N.F.B.; Salzmann, D.J.C.; de Vries, W.E. Design of support structures for offshore wind turbines.
In Wind Power Generation and Wind Turbine Design; Tong, W., Ed.; WIT Press: Southampton, UK, 2010; Volume 44, pp. 559–591.
[CrossRef]

22. Chen, B.Q.; Videiro, P.M.; Guedes Soares, C. Opportunities and challenges to develop digital twins for subsea pipelines. J. Mar.
Sci. Eng. 2022, 10, 739. [CrossRef]

23. Bull, A.S.; Love, M.S. Worldwide oil and gas platform decommissioning: A review of practices and reefing options. Ocean Coast.
Manag. 2019, 168, 274–306. [CrossRef]

24. Parra, F. Oil Politics: A Modern History of Petroleum; I.B. Tauris: London, UK, 2003.
25. Cullen, L. The public inquiry into the Piper Alpha disaster. Drill. Contract. 1993, 49, 43–190.
26. Paté-Cornell, M.E. Learning from the Piper Alpha accident: A postmortem analysis of technical and organizational factors. Risk

Anal. 1993, 13, 215–232. [CrossRef]
27. Covello, V.T.; Mumpower, J. Risk analysis and risk management: An historical perspective. Risk Anal. 1985, 5, 103–120. [CrossRef]
28. Dionne, G. Risk management: History, definition, and critique. Risk Manag. Insur. Rev. 2013, 16, 147–166. [CrossRef]
29. Batalden, B.M.; Sydnes, A.K. Maritime safety and the ISM code: A study of investigated casualties and incidents. WMU J. Marit.

Aff. 2014, 13, 3–25. [CrossRef]
30. Bhattacharya, S. The effectiveness of the ISM Code: A qualitative enquiry. Mar. Policy 2012, 36, 528–535. [CrossRef]
31. Moan, T. Reliability-based management of inspection, maintenance and repair of offshore structures. Struct. Infrastruct. Eng. 2005,

1, 33–62. [CrossRef]
32. Snyder, B.; Kaiser, M.J. Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 2009, 34, 1567–1578.

[CrossRef]
33. Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [CrossRef]
34. Green, R.; Vasilakos, N. The economics of offshore wind. Energy Policy 2011, 39, 496–502. [CrossRef]
35. Rodrigues, S.; Restrepo, C.; Kontos, E.; Pinto, R.T.; Bauer, P. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 2015, 49,

1114–1135. [CrossRef]
36. Beyer, J.; Trannum, H.C.; Bakke, T.; Hodson, P.V.; Collier, T.K. Environmental effects of the Deepwater Horizon oil spill: A review.

Mar. Pollut. Bull. 2016, 110, 28–51. [CrossRef] [PubMed]
37. Joye, S.B. Deepwater Horizon, 5 years on. Science 2015, 349, 592–593. [CrossRef] [PubMed]
38. Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adcock, T.; Jiang, Z.; Gao, Z.; Lin, Z.; et al. Foundations of offshore wind

turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [CrossRef]
39. Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Dagher, H.; Gueydon, S.; Qvist, J.; Vittori, F.; Azcona, J.; Uzunoglu, E.; et al.

OC5 project phase II: Validation of global loads of the DeepCwind floating semisubmersible wind turbine. Energy Procedia 2017,
137, 38–57. [CrossRef]

40. Tian, Z.; Huang, J.; Xiang, J.; Zhang, S. Suspension and transportation of sediments in submarine canyon induced by internal
solitary waves. Phys. Fluids 2024, 36, 022112. [CrossRef]

https://doi.org/10.1016/j.eneco.2015.12.022
https://doi.org/10.1016/j.renene.2018.08.097
https://doi.org/10.5194/wes-9-1-2024
https://doi.org/10.1088/1742-6596/1618/2/022049
https://doi.org/10.1016/j.rser.2015.07.200
https://doi.org/10.3390/en10122099
https://doi.org/10.1016/j.apenergy.2017.05.009
https://doi.org/10.1016/j.renene.2016.02.021
https://doi.org/10.1016/j.energy.2017.12.101
https://doi.org/10.1016/j.oceaneng.2021.109261
https://doi.org/10.3390/oceans2030032
https://doi.org/10.3390/rs14061335
https://doi.org/10.2495/978-1-84564-205-1/17
https://doi.org/10.3390/jmse10060739
https://doi.org/10.1016/j.ocecoaman.2018.10.024
https://doi.org/10.1111/j.1539-6924.1993.tb01071.x
https://doi.org/10.1111/j.1539-6924.1985.tb00159.x
https://doi.org/10.1111/rmir.12016
https://doi.org/10.1007/s13437-013-0051-8
https://doi.org/10.1016/j.marpol.2011.09.004
https://doi.org/10.1080/15732470412331289314
https://doi.org/10.1016/j.renene.2008.11.015
https://doi.org/10.1016/j.renene.2010.07.009
https://doi.org/10.1016/j.enpol.2010.10.011
https://doi.org/10.1016/j.rser.2015.04.092
https://doi.org/10.1016/j.marpolbul.2016.06.027
https://www.ncbi.nlm.nih.gov/pubmed/27301686
https://doi.org/10.1126/science.aab4133
https://www.ncbi.nlm.nih.gov/pubmed/26250675
https://doi.org/10.1016/j.rser.2019.01.012
https://doi.org/10.1016/j.egypro.2017.10.333
https://doi.org/10.1063/5.0191791


Energies 2024, 17, 1964 20 of 23

41. Wang, L.; Kolios, A.; Liu, X.; Venetsanos, D.; Cai, R. Reliability of offshore wind turbine support structures: A state-of-the-art
review. Renew. Sustain. Energy Rev. 2022, 161, 112250. [CrossRef]

42. American Petroleum Institute. API RP 2A-WSD: Recommended Practice for Planning, Designing and Constructing Fixed Offshore
Platforms—Working Stress Design, 22nd ed.; API: Washington, DC, USA, 2014.

43. Det Norske Veritas. DNV-ST-0126: Support Structures for Wind Turbines; DNV: Oslo, Norway, 2021.
44. American Bureau of Shipping. Guide for Building and Classing Floating Offshore Wind Turbine Installations; ABS: Houston, TX,

USA, 2020.
45. Guedes Soares, C.; Garbatov, Y. Reliability of maintained, corrosion protected plates subjected to non-linear corrosion and

compressive loads. Mar. Struct. 1999, 12, 425–445. [CrossRef]
46. Teixeira, A.P.; Guedes Soares, C.; Netto, T.A.; Estefen, S.F. Reliability of pipelines with corrosion defects. Int. J. Press. Vessel. Pip.

2008, 85, 228–237. [CrossRef]
47. Leimeister, M.; Kolios, A. A review of reliability-based methods for risk analysis and their application in the offshore wind

industry. Renew. Sustain. Energy Rev. 2018, 91, 1065–1076. [CrossRef]
48. Zhao, Y.G.; Ono, T. A general procedure for first/second-order reliability method (FORM/SORM). Struct. Saf. 1999, 21, 95–112.

[CrossRef]
49. Billinton, R.; Wang, P. Teaching distribution system reliability evaluation using Monte Carlo simulation. IEEE Trans. Power Syst.

1999, 14, 397–403. [CrossRef]
50. Naess, A.; Leira, B.J.; Batsevych, O. System reliability analysis by enhanced Monte Carlo simulation. Struct. Saf. 2009, 31, 349–355.

[CrossRef]
51. Jang, D.; Kim, K.; Kim, K.H.; Kang, S. Techno-economic analysis and Monte Carlo simulation for green hydrogen production

using offshore wind power plant. Energy Convers. Manag. 2022, 263, 115695. [CrossRef]
52. Song, C.; Kawai, R. Monte Carlo and variance reduction methods for structural reliability analysis: A comprehensive review.

Probab. Eng. Mech. 2023, 73, 103479. [CrossRef]
53. Det Norske Veritas. Notes No. 30.6: Structural Reliability Analysis of Marine Structures; DNV: Oslo, Norway, 1992.
54. Stacey, A.; Sharp, J.V. Safety factor requirements for the offshore industry. Eng. Fail. Anal. 2007, 14, 442–458. [CrossRef]
55. Yoon, G.L.; Kim, S.B.; Kwon, O.S.; Yoo, M.S. Partial safety factor of offshore wind turbine pile foundation in West-South Mainland

Sea. KSCE J. Civ. Environ. Eng. Res. 2014, 34, 1489–1504.
56. Kar, S.S.; Roy, L.B. Probabilistic based reliability slope stability analysis using FOSM, FORM, and MCS. Eng. Technol. Appl. Sci.

Res. 2022, 12, 8236–8240. [CrossRef]
57. Youn, B.D.; Choi, K.K. A new response surface methodology for reliability-based design optimization. Comput. Struct. 2004, 82,

241–256. [CrossRef]
58. Goswami, S.; Ghosh, S.; Chakraborty, S. Reliability analysis of structures by iterative improved response surface method. Struct.

Saf. 2016, 60, 56–66. [CrossRef]
59. Hurtado, J.E.; Alvarez, D.A. Neural-network-based reliability analysis: A comparative study. Comput. Methods Appl. Mech. Eng.

2001, 191, 113–132. [CrossRef]
60. Chojaczyk, A.A.; Teixeira, A.P.; Neves, L.C.; Cardoso, J.B.; Guedes Soares, C. Review and application of Artificial Neural Networks

models in reliability analysis of steel structures. Struct. Saf. 2015, 52, 78–89. [CrossRef]
61. Afshari, S.S.; Enayatollahi, F.; Xu, X.; Liang, X. Machine learning-based methods in structural reliability analysis: A review. Reliab.

Eng. Syst. Saf. 2022, 219, 108223. [CrossRef]
62. Cai, B.; Sheng, C.; Gao, C.; Liu, Y.; Shi, M.; Liu, Z.; Feng, Q.; Liu, G. Artificial intelligence enhanced reliability assessment

methodology with small samples. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6578–6590. [CrossRef] [PubMed]
63. Rosen, R.; von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of

manufacturing. IFACPapersOnLine 2015, 48, 567–572. [CrossRef]
64. Grieves, M. Virtually intelligent product systems: Digital and physical twins. In Complex Systems Engineering: Theory and Practice;

Flumerfelt, S., Schwartz, K.G., Mavris, D., Briceno, S., Eds.; American Institute of Aeronautics and Astronautics: Reston, VA, USA,
2019; pp. 175–200.

65. Mandolla, C.; Petruzzelli, A.M.; Percoco, G.; Urbinati, A. Building a digital twin for additive manufacturing through the
exploitation of blockchain: A case analysis of the aircraft industry. Comput. Ind. 2019, 109, 134–152. [CrossRef]

66. Damjanovic-Behrendt, V. A digital twin-based privacy enhancement mechanism for the automotive industry. In Proceedings of
the 2018 International Conference on Intelligent Systems, Funchal, Portugal, 25–27 September 2018; IEEE: New York, NY, USA,
2018; pp. 272–279.

67. Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pan, Z.; Deen, M.J. A novel cloud-based framework for the elderly
healthcare services using digital twin. IEEE Access 2019, 7, 49088–49101. [CrossRef]

68. Bilberg, A.; Malik, A.A. Digital twin driven human-robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [CrossRef]
69. Ruohomäki, T.; Airaksinen, E.; Huuska, P.; Kesäniemi, O.; Martikka, M.; Suomisto, J. Smart city platform enabling digital twin. In

Proceedings of the 2018 International Conference on Intelligent Systems, Funchal, Portugal, 25–27 September 2018; IEEE: New
York, NY, USA, 2018; pp. 155–161.

https://doi.org/10.1016/j.rser.2022.112250
https://doi.org/10.1016/S0951-8339(99)00028-3
https://doi.org/10.1016/j.ijpvp.2007.09.002
https://doi.org/10.1016/j.rser.2018.04.004
https://doi.org/10.1016/S0167-4730(99)00008-9
https://doi.org/10.1109/59.761856
https://doi.org/10.1016/j.strusafe.2009.02.004
https://doi.org/10.1016/j.enconman.2022.115695
https://doi.org/10.1016/j.probengmech.2023.103479
https://doi.org/10.1016/j.engfailanal.2005.08.003
https://doi.org/10.48084/etasr.4689
https://doi.org/10.1016/j.compstruc.2003.09.002
https://doi.org/10.1016/j.strusafe.2016.02.002
https://doi.org/10.1016/S0045-7825(01)00248-1
https://doi.org/10.1016/j.strusafe.2014.09.002
https://doi.org/10.1016/j.ress.2021.108223
https://doi.org/10.1109/TNNLS.2021.3128514
https://www.ncbi.nlm.nih.gov/pubmed/34822332
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.compind.2019.04.011
https://doi.org/10.1109/ACCESS.2019.2909828
https://doi.org/10.1016/j.cirp.2019.04.011


Energies 2024, 17, 1964 21 of 23

70. Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive
Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012.

71. Tuegel, E. The airframe digital twin: Some challenges to realization. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA,
Honolulu, HI, USA, 23–26 April 2012.

72. Maher, D. On software standards and solutions for a trusted Internet of Things. In Proceedings of the 51st Hawaii International
Conference on System Sciences, Honolulu, HI, USA, 3–6 January 2018.

73. Panetta, K. Gartner Top 10 Strategic Technology Trends for 2019. Available online: https://www.gartner.com/smarterwithgartner/
gartner-top-10-strategic-technology-trends-for-2019/ (accessed on 17 April 2024).

74. Son, Y.H.; Kim, G.Y.; Kim, H.C.; Jun, C.; Noh, S.D. Past, present, and future research of digital twin for smart manufacturing.
J. Comput. Des. Eng. 2022, 9, 1–23. [CrossRef]

75. Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst.
2021, 58, 346–361. [CrossRef]

76. Wang, J.; Li, X.; Wang, P.; Liu, Q. Bibliometric analysis of digital twin literature: A review of influencing factors and conceptual
structure. Technol. Anal. Strateg. Manag. 2024, 36, 166–180. [CrossRef]

77. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]

78. Chen, B.Q.; Videiro, P.M.; Guedes Soares, C. Review of digital twin of ships and offshore structures. In Developments in Maritime
Technology and Engineering; CRC Press: London, UK, 2021; pp. 445–451.

79. Tao, F.; Zhang, M.; Nee, A.Y.C. Five-dimension digital twin modeling and its key technologies. Digit. Twin Driven Smart Manuf.
2019, 63–81. [CrossRef]

80. Hu, W.; Zhang, T.; Deng, X.; Liu, Z.; Tan, J. Digital twin: A state-of-the-art review of its enabling technologies, applications and
challenges. J. Intell. Manuf. Spec. Equip. 2021, 2, 1–34. [CrossRef]

81. Sivalingam, K.; Sepulveda, M.; Spring, M.; Davies, P. A review and methodology development for remaining useful life prediction
of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In Proceedings of the 2nd
International Conference on Green Energy and Applications, Singapore, 24–26 March 2018; pp. 197–204.

82. DNV GL. 2020/1022: How Digital Tools and Solutions Can Improve Subsea Integrity Management; Report No. 2020-1137, Rev. 0; DNV
GL: Oslo, Norway, 2020.

83. Cameron, D.B.; Falk, K.; Kokkula, S.S. Towards Digital Requirements for Transformation in the Natural Resources Industries.
White Paper from the DSYNE Network Workshop (Video Conference), 9th–10th February 2021. Available online: https:
//www.duo.uio.no/bitstream/handle/10852/89024/1/V2+2021-02-22+White+Paper+Workshop+Summary.pdf (accessed on 17
April 2024).

84. Laviron, I.; Montjean, T.; Cocault-Duverger, V.; Santos Holtman, M.; Sicilia Gaillard, C.; Hoj-Hansen, J.; Mélou, J.; Cooper, D.;
Pomie, L. PDEF: A subsea pipeline data interchange format crafted by the industry for the industry. In Proceedings of the
Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022.

85. Knezevic, D.; Fakas, E.; Riber, H.J. Predictive digital twins for structural integrity management and asset life extension—JIP
concept and results. In Proceedings of the SPE Offshore Europe Conference and Exhibition, OE 2019, Aberdeen, UK, 3–6
September 2019; pp. 1–6.

86. Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf.
Syst. 2021, 58, 3–21. [CrossRef]

87. LeBlanc, B.; Ferreira, C. Experimental characterization of H-VAWT turbine for development of a digital twin. J. Phys. Conf. Ser.
2020, 1452, 012057. [CrossRef]

88. Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 2020,
8, 21980–22012. [CrossRef]

89. Sharma, P.; Knezevic, D.; Huynh, P.; Malinowski, G. RB-FEA based digital twin for structural integrity assessment of Offshore
structures. In Proceedings of the Annual Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018; Volume 4,
pp. 2942–2947.

90. Offshore Magazine. Shell Secures Digital Twin Needs. 2020. Available online: https://www.offshore-mag.com/production/
article/14189087/shell-secures-digital-twin-needs-with-akselos-framework-agreement (accessed on 22 February 2024).

91. Offshore Magazine. Akselos, BEPA form Offshore Wind Partnership. 2021. Available online: https://www.offshore-mag.com/
renewable-energy/article/14203832/akselos-bepa-form-offshore-wind-partnership (accessed on 22 February 2024).

92. Offshore Magazine. Digital Twin Technology Improves Offshore Wind Jacket Design. 2021. Available online: https://www.
offshore-mag.com/renewable-energy/article/14206660/digital-twin-technology-improves-offshore-wind-jacket-design (ac-
cessed on 22 February 2024).

93. Offshore Magazine. Akselos Gets $16.5 Million in Funding from Investors. 2022. Available online: https://www.offshore-mag.
com/renewable-energy/article/14276432/akselos-gets-165-million-in-funding-from-investors (accessed on 22 February 2024).

https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://doi.org/10.1093/jcde/qwab067
https://doi.org/10.1016/j.jmsy.2020.06.017
https://doi.org/10.1080/09537325.2022.2026320
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1016/B978-0-12-817630-6.00003-5
https://doi.org/10.1108/JIMSE-12-2020-010
https://www.duo.uio.no/bitstream/handle/10852/89024/1/V2+2021-02-22+White+Paper+Workshop+Summary.pdf
https://www.duo.uio.no/bitstream/handle/10852/89024/1/V2+2021-02-22+White+Paper+Workshop+Summary.pdf
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1088/1742-6596/1452/1/012057
https://doi.org/10.1109/ACCESS.2020.2970143
https://www.offshore-mag.com/production/article/14189087/shell-secures-digital-twin-needs-with-akselos-framework-agreement
https://www.offshore-mag.com/production/article/14189087/shell-secures-digital-twin-needs-with-akselos-framework-agreement
https://www.offshore-mag.com/renewable-energy/article/14203832/akselos-bepa-form-offshore-wind-partnership
https://www.offshore-mag.com/renewable-energy/article/14203832/akselos-bepa-form-offshore-wind-partnership
https://www.offshore-mag.com/renewable-energy/article/14206660/digital-twin-technology-improves-offshore-wind-jacket-design
https://www.offshore-mag.com/renewable-energy/article/14206660/digital-twin-technology-improves-offshore-wind-jacket-design
https://www.offshore-mag.com/renewable-energy/article/14276432/akselos-gets-165-million-in-funding-from-investors
https://www.offshore-mag.com/renewable-energy/article/14276432/akselos-gets-165-million-in-funding-from-investors


Energies 2024, 17, 1964 22 of 23

94. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for
wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [CrossRef]

95. Kane, M.B. Machine learning control for floating offshore wind turbine individual blade pitch control. In Proceedings of the 2020
American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 237–241.

96. Jiménez, A.A.; Zhang, L.; Muñoz, C.Q.G.; Márquez, F.P.G. Maintenance management based on machine learning and nonlinear
features in wind turbines. Renew. Energy 2020, 146, 316–328. [CrossRef]

97. Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep learning method for fault detection of wind turbine converter. Appl. Sci. 2021, 11,
1280. [CrossRef]

98. Wu, Y.K.; Lee, C.Y.; Chen, C.R.; Hsu, K.W.; Tseng, H.T. Optimization of the wind turbine layout and transmission system planning
for a large-scale offshore windfarm by AI technology. IEEE Trans. Ind. Appl. 2013, 50, 2071–2080. [CrossRef]

99. Mitchell, D.; Blanche, J.; Harper, S.; Lim, T.; Gupta, R.; Zaki, O.; Tang, W.; Robu, V.; Watson, S.; Flynn, D. A review: Challenges
and opportunities for artificial intelligence and robotics in the offshore wind sector. Energy AI 2022, 8, 100146. [CrossRef]

100. Garcia Marquez, F.P.; Peinado Gonzalo, A. A comprehensive review of artificial intelligence and wind energy. Arch. Comput.
Methods Eng. 2022, 29, 2935–2958. [CrossRef]

101. Ciuriuc, A.; Rapha, J.I.; Guanche, R.; Domínguez-García, J.L. Digital tools for floating offshore wind turbines (FOWT): A state of
the art. Energy Rep. 2022, 8, 1207–1228. [CrossRef]

102. GE Renewable Energy. Digital Wind Farm: The Next Evolution of Wind Energy. 2016. Available online: https://docplayer.net/20
878994-Ge-renewable-energy-digital-wind-farm-the-next-evolution-of-wind-energy-www-ge-com-wind.html (accessed on 22
February 2024).

103. Det Norske Veritas. Windgemini Digital Twin for Wind Turbine Operations. 2019. Available online: https://www.dnv.com/
power-renewables/services/data-analytics/windgemini/windgemini-service.html (accessed on 22 February 2024).

104. Gambhava, D.; Gräfe, M. D6.5 Use-Case Demonstration into O&M Platform. 2021. Available online: https://www.
romeoproject.eu/wp-content/uploads/2020/11/ROMEO_D6.5_Use-case-demonstration-into-OM-Platform.pdf (accessed on 22
February 2024).

105. Det Norske Veritas. RaPiD—Models. 2020. Available online: https://rapid-models.dnv.com/ (accessed on 22 February 2024).
106. Walker, J.; Coraddu, A.; Collu, M.; Oneto, L. Digital twins of the mooring line tension for floating offshore wind turbines to

improve monitoring, lifespan, and safety. J. Ocean Eng. Mar. Energy 2022, 8, 1–16. [CrossRef]
107. Augustyn, D.; Ulriksen, M.D.; Sørensen, J.D. Reliability updating of offshore wind substructures by use of digital twin information.

Energies 2021, 14, 5859. [CrossRef]
108. Augustyn, D.; Smolka, U.; Tygesen, U.T.; Ulriksen, M.D.; Sørensen, J.D. Data-driven model updating of an offshore wind jacket

substructure. Appl. Ocean Res. 2020, 104, 102366. [CrossRef]
109. Augustyn, D.; Pedersen, R.R.; Tygesen, U.T.; Ulriksen, M.D.; Sørensen, J.D. Feasibility of modal expansion for virtual sensing in

offshore wind jacket substructures. Mar. Struct. 2021, 79, 103019. [CrossRef]
110. Xia, J.; Zou, G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean Eng. 2023,

268, 113322. [CrossRef]
111. Jorgensen, J.; Hodkiewicz, M.; Cripps, E.; Hassan, G.M. Requirements for the application of the Digital Twin Paradigm to offshore

wind turbine structures for uncertain fatigue analysis. Comput. Ind. 2023, 145, 103806. [CrossRef]
112. Li, S.; Brennan, F. Digital twin enabled structural integrity management: Critical review and framework development. Proc. Inst.

Mech. Eng. Part M J. Eng. Marit. Environ. 2024; online first. [CrossRef]
113. Haghshenas, A.; Hasan, A.; Osen, O.; Mikalsen, E.T. Predictive digital twin for offshore wind farms. Energy Inform. 2023, 6, 1.

[CrossRef]
114. Ambarita, E.E.; Karlsen, A.; Scibilia, F.; Hasan, A. Industrial digital twins in offshore wind farms. Energy Inform. 2024, 7, 5.

[CrossRef]
115. Li, S.; Brennan, F. Implementation of digital twin-enabled virtually monitored data in inspection planning. Appl. Ocean Res. 2024,

144, 103903. [CrossRef]
116. Nezhad, M.M.; Neshat, M.; Sylaios, G.; Garcia, D.A. Marine energy digitalization digital twin’s approaches. Renew. Sustain.

Energy Rev. 2024, 191, 114065. [CrossRef]
117. Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.K.; Gosine, R.G.; James, L.A.; de Silva, O.; Mann, G.K.I.; Warrian, P.J. Digital

twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE Access 2020, 8, 104175–104197.
[CrossRef]

118. Atalay, M.; Murat, U.; Oksuz, B.; Parlaktuna, A.M.; Pisirir, E.; Testik, M.C. Digital twins in manufacturing: Systematic literature
review for physical-digital layer categorization and future research directions. Int. J. Comput. Integr. Manuf. 2022, 35, 679–705.
[CrossRef]

119. Bâra, A.; Oprea, S.V. Enabling coordination in energy communities: A digital twin model. Energy Policy 2024, 184, 113910.
[CrossRef]

120. Li, R.; Chen, B.Q.; Guedes Soares, C. Effect of ovality length on collapse strength of imperfect sandwich pipes due to local
buckling. J. Mar. Sci. Eng. 2021, 10, 12. [CrossRef]

121. Chen, B.Q.; Guedes Soares, C. A simplified model for the effect of weld-induced residual stresses on the axial ultimate strength of
stiffened plates. J. Mar. Sci. Appl. 2018, 17, 57–67. [CrossRef]

https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/j.renene.2019.06.135
https://doi.org/10.3390/app11031280
https://doi.org/10.1109/TIA.2013.2283219
https://doi.org/10.1016/j.egyai.2022.100146
https://doi.org/10.1007/s11831-021-09678-4
https://doi.org/10.1016/j.egyr.2021.12.034
https://docplayer.net/20878994-Ge-renewable-energy-digital-wind-farm-the-next-evolution-of-wind-energy-www-ge-com-wind.html
https://docplayer.net/20878994-Ge-renewable-energy-digital-wind-farm-the-next-evolution-of-wind-energy-www-ge-com-wind.html
https://www.dnv.com/power-renewables/services/data-analytics/windgemini/windgemini-service.html
https://www.dnv.com/power-renewables/services/data-analytics/windgemini/windgemini-service.html
https://www.romeoproject.eu/wp-content/uploads/2020/11/ROMEO_D6.5_Use-case-demonstration-into-OM-Platform.pdf
https://www.romeoproject.eu/wp-content/uploads/2020/11/ROMEO_D6.5_Use-case-demonstration-into-OM-Platform.pdf
https://rapid-models.dnv.com/
https://doi.org/10.1007/s40722-021-00213-y
https://doi.org/10.3390/en14185859
https://doi.org/10.1016/j.apor.2020.102366
https://doi.org/10.1016/j.marstruc.2021.103019
https://doi.org/10.1016/j.oceaneng.2022.113322
https://doi.org/10.1016/j.compind.2022.103806
https://doi.org/10.1177/14750902241227254
https://doi.org/10.1186/s42162-023-00257-4
https://doi.org/10.1186/s42162-024-00306-6
https://doi.org/10.1016/j.apor.2024.103903
https://doi.org/10.1016/j.rser.2023.114065
https://doi.org/10.1109/ACCESS.2020.2998723
https://doi.org/10.1080/0951192X.2021.2022762
https://doi.org/10.1016/j.enpol.2023.113910
https://doi.org/10.3390/jmse10010012
https://doi.org/10.1007/s11804-018-0007-7


Energies 2024, 17, 1964 23 of 23

122. Wang, S.; Guedes Soares, C. Effects of compressibility, three-dimensionality and air cavity on a free-falling wedge cylinder.
Ocean Eng. 2020, 217, 107589. [CrossRef]

123. Wang, S.; Xiang, G.; Guedes Soares, C. Assessment of three-dimensional effects on slamming load predictions using OpenFoam.
Appl. Ocean Res. 2021, 112, 102646. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2020.107589
https://doi.org/10.1016/j.apor.2021.102646

	Introduction 
	Historical Overview of Offshore Energy Asset Safety and Reliability 
	Developments in Offshore Energy 
	Offshore Wind Energy 
	Reliability Methods 
	Discussion on Recent Developments 

	Advances in DT Development for FOWTs 
	Introduction to DT 
	DT for Offshore Wind 
	Data Acquisition and Integration 
	Modelling and Simulation 

	Application of DT on Safety and Reliability 
	Real-Time Monitoring and Predictive Analytics 
	Further Discussions 

	Challenges and Future Directions 
	Summary 
	References

