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Abstract: The exchange of sensitive information between power distribution networks (PDNs) and
urban transport networks (UTNs) presents a difficulty in ensuring privacy protection. This research
proposes a new collaborative operation method for a coupled system. The scheme takes into account
the schedulable capacity of electric vehicle charging stations (EVCSs) and locational marginal prices
(LMPs) to handle the difficulty at hand. The EVCS hosting capacity model is built and expressed
as the feasible area of charging power, based on AC power flow. This model is then used to offer
information on the real schedulable capacity. By incorporating the charging loads into the coupling
nodes between PDNs and UTNs, the issue of coordinated operation is separated and becomes equal
to the optimal problem involving charging loads. Based on this premise, the most efficient operational
cost of PDNs is transformed into a comparable representation of cost information in PDNs. This
representation incorporates LMP information that guides charging decisions in UTNs. The suggested
collaborative scheduling methodology in UTNs utilises the collected projection information from the
static traffic assignment (STA) to ensure data privacy protection and achieve non-iterative calculation.
Numerical experiments are conducted to illustrate that the proposed method, which uses a smaller
amount of data, achieves the same level of optimality as the coordinated optimisation.

Keywords: electric vehicles (EV); coordinated optimisation; equivalent model; non-iterative; power
and traffic system

1. Introduction

EVs have gained considerable international recognition due to concerns such as the oil
crisis and carbon emissions. They have emerged as a prominent alternative to replace cars
that run on petrol [1]. Global EV forecast research [2] predicts that the number of EVs in use
globally will increase to 270 million by 2030, representing almost 14% of the total number
of vehicles on the road. However, the extensive integration of electric vehicles (EVs) is
expected to establish a mutually dependent relationship between PDNs and UTNs [3,4].
The travel patterns of EVs will be impacted by different road conditions, leading to changes
in the spatial and temporal distribution of traffic flow. However, the charging price and
queueing time at EVCSs are expected to influence the preferences of EV drivers for charging
stations and, as a result, change the distribution of the electrical demand. Therefore, it is
crucial to include coupling parameters in the coordination and scheduling of PTNs [5–9].

In this regard, researchers have recently focused on studying the interactions in PTNs
to effectively accommodate the widespread use of EVs. Therefore, due to concerns regard-
ing computational efficiency and data security, a substantial amount of study is focused
on examining the coordination of joint flow. One specific form of research focuses on cen-
tralised optimisation by using joint modelling of PTNs and applying various acceleration
strategies for computation. In the given example, a stochastic optimisation framework is de-
veloped to analyse the interconnections of PTNs in [10,11]. These interconnections include
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relationships between EVs/fuel-based automobiles, charging costs, and charging power.
In [12], a coordination model is proposed that is based on the generalised user equilibrium
in power–traffic coupled networks. This model effectively reduces the pressure in the
power distribution networks with EVs. Furthermore, a model that combines dynamic user
equilibrium and that is based on [8,13,14] is introduced to accurately represent the flows
in PTNs. The paper [15] presents a scheduling technique that combines the assignment of
charging stations and the allocation of charging power to ensure an appropriate charging
plan for each EV. In their study, the authors of [16] develop a two-stage architecture that
integrates optimal pathways and active and reactive power regulation for EVs in order to
minimise the cost of charging. A comprehensive model is developed in [17–19] to address
the intricate relationship between EVs, the power grid, and photovoltaics. This model
incorporates multiple stages and takes into account the routing and scheduling of EVs
to effectively handle complex traffic scenarios. In order to address congestion in UTNs,
a pricing model that incorporates both LMPs and congestion charges is proposed. This
model is built on a variational inequality framework, as described in [20].

The previously described research on centralised optimisation enhances computational
efficiency by integrating electricity and transportation modelling. However, due to the
fact that the electricity and traffic systems are controlled by various entities with distinct
information security needs, it is not feasible to implement a centralised method that requires
sharing of information [21].

In addition to centralised optimisation methods, decentralised procedures that rely
on limited information iteration are also crucial for coordinating scheduling in networked
systems. A bi-level coordinate operation framework is built using the alternative direction
method of multipliers (ADMM) in [14,22,23], considering both systemic and individual
views. In [24], a decentralised collaborative pricing method is proposed which uses vari-
ational inequalities. Based on this premise, a decentralised and decoupling architecture
is constructed to effectively address the issue. In order to achieve the best outcome and
maintain the anonymity of information, a scheme has been developed that combines the nu-
merous individual decisions of EVs in PTNs. This strategy involves two separate network
operators and uses small data, as described in reference [25]. A decentralised approach is
utilised in [26] to address the collaborative pricing model, which encompasses road tolls
and charging costs.

Several academics have examined several variables that impact the process of charging
EVs. As an illustration, the researchers in [27] conducted a research study to analyse the
effect of charging station placements on PDNs. The failure of a charging station does
not impact the charging behaviour of electric buses, as seen in [28]. In a previous study,
scientists employed genetic algorithms to forecast forthcoming charging requirements for
EVs and strategise the most advantageous sites for charging stations [29]. A comparison
analysis was conducted in [30] to compare wireless charging with traditional charging
models. The writers of [31] concentrate on long-distance transportation for EVs and devise
the most efficient sites for charging stations to guarantee rapid charging capabilities. In their
study, the authors of [32] used an optimisation model to determine the optimal placement
of charging stations and the appropriate size of electric cars. They took into account factors
such as time-of-use energy price and the behaviour of electric buses to ensure the safe and
efficient operation of PTNs. In order to address the charging requirements and enhance the
charging effectiveness for electric vehicle users, a dispatch model for electric vehicles is
suggested in [33]. This approach employs price advice to reduce the burden on charging
stations. The authors of [34] consider the unpredictability of wind power generation and
optimise the charging behaviour of electric buses to efficiently utilise renewable energy
resources and decrease the use of non-clean energy sources. In order to synchronise the
economic dispatch in PDNs with the traffic assignment in transportation networks (TNs), a
decentralised architecture is suggested to develop the most efficient charge price in [35]. In
their study, the authors of [36] investigate social optimal welfare by examining the charging
fees and the interactions between cooperative Charging Network Operators, mobile EVs,
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and bulk power infrastructures. In addition, the authors of [37] suggest a framework that
integrates pricing for charging and scheduling of power.

Using a decentralised strategy to synchronise power–traffic flows is in perfect har-
mony with the practical reality of their operation by two separate entities. This strategy
successfully addresses the difficulties presented by restricted data sharing while guaran-
teeing the highest level of data privacy. However, due to the dependence on information
iteration, there are several disadvantages to traditional decentralised approaches. (1) Within
the domain of conventional distributed algorithms, such as Lagrangian relaxation [38],
Benders decomposition [39], and generalised Benders decomposition [40], these methods
may face challenges related to slow convergence or even the potential for convergence
failure. (2) In order to maintain equilibrium in the coupled system, the increased frequency
of information exchange will place a greater strain on communication resources. (3) The
increasing number of distribution networks and transportation systems will result in a
significant increase in the iteration count [41].

This study focuses on implementing the analogous projection approach to address the
previously mentioned limitations in PTNs. The strategy, initially presented in [42], aims
to achieve system reduction and has been proven to provide the same level of optimality
as the primal model. Moreover, the technique is utilised in [43] to efficiently synchronise
the optimisation process between the transmission and distribution of electrical power
networks. In [44], the authors successfully characterised the charging power area of EVCS
using this method. However, they have not yet included the projection of optimal cost
information in PDNs.

The aforementioned approaches are specifically employed to address the interconnec-
tions of power systems. However, the interactions of traffic systems are considerably more
complex, involving factors such as the unpredictability of individual behaviour of EVs and
the multitude of road pathways. In order to achieve this goal, this study aims to create
a thorough modelling framework using network equivalent projection that includes the
schedulable capacity of EVCSs and LMPs. This framework will enable effective interaction
and allow for reaching the optimal operating point with minimal information in PTNs.
This paper presents the following primary contributions:

1. A novel non-iterative coordinated optimisation method for PTNs is created using
network equivalent projection. The coupled networks incorporate the schedulable capacity
of EVCSs and dynamic LMPs at charging stations, and map this information into the feasible
region of boundary information for PDNs. Implementing this suggested methodology can
safeguard data confidentiality without the need to share sensitive information.

2. A technique is introduced to map the optimal cost function in the PDN. The
segmented cost function of the PDNs is produced by specifically addressing the economic
dispatch model and the Karush–Kuhn–Tucker (KKT) conditions. The original linked
model of the PTN is substituted with integrated equivalent restrictions and segmented
cost functions incorporating the traffic model. This proposed approach will guarantee
manageable computation in the PTN.

The subsequent sections of this work are structured in the following manner. The
coordinated optimisation model of the PTNs is established in Section 2. Section 3 introduces
a decoupled model of the PTNs based on the feasible region of the PDNs. This model
is created using network equivalent projection and takes into account the schedulable
capacity of EVCS and LMPs. A unique optimal cost mapping methodology for the PDN is
devised in Section 4. A case study is conducted to validate the effectiveness and advantages
of the suggested approach outlined in Section 5. The conclusions are presented in Section 6.

2. Power–Traffic Coupled Model Equation
2.1. Interaction of the Coupled PTNs

The interconnection between PDNs and UTNs is strongly interconnected as a result of
EVs. The EVCS recharge facilities facilitate the interplay between the flow of power and
the flow of traffic. Figure 1 illustrates the operational framework of the interconnected
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power–traffic system. Pricing methods employed by electricity and transportation system
organisations have an impact on the driving and charging decisions made by vehicle users.
EV drivers choose their driving routes and charging stations based on price signals that are
limited by the PDN and road conditions, with the goal of minimising their travel expenses.
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2.2. A Traffic Model for the Travel Characteristics of Vehicles

From a graph theory standpoint, the fundamental components of the UTN are ex-
amined, with crossings being considered as nodes and road segments as connections.
Moreover, the structure of the UTN is represented as (V, A), where V and A are collections
of sequentially numbered intersections and road segments, respectively. An O-D pair
represents the route used by electric vehicles (EVs) from a starting point to a destination,
which indicates the traffic demand. Based on this premise, the traffic assignment problem
is transformed into the calculation of traffic flow on various paths in a UTN, with each
origin–destination pair specified.

An investigation is conducted to examine the travel characteristics of various EVs in
order to meet the charging needs of EVs.

2.2.1. Road Congestion Analysis Based on Various Types of EVs

The structure of the transportation network consists of interconnected links and nodes.
The links symbolise several paths or routes, while the nodes indicate the starting points,
ending points, and points where different paths overlap. In order to model the travel
patterns of EVs, the links in the UTN will be split into three equal segments: charging links,
ordinary links, and bypass links [6].

1. Charging links with EVCSs

The travel time of EVs on a charging link is determined by the combined factors of
charging time and queueing time. Hence, the improved Davidson function considering
queueing theory is employed to quantify the travel time tc

a(xa) of charging EVs, i.e.,

tc
a(xa) = tFCS

a

[
1 + J

(
xa

cFCS
a − xa

)]
, ∀a ∈ TC(A) (1)

where tFCS
a represents the free traveling time in the charging oracle, i.e., the charging time.

xa is the traffic flow of the a-th link. cFCS
a is the traffic capacity of the a-th charging segment.

J represents the parameter controlling the shape of the congestion function in the charging
segment. TC(A) denotes the set of all charging links in UTNs.

2. Regular links without EVCSs
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The widely used Bureau of Public Road (BPR) function is adopted in this work to
represent the time spent on a regular link, i.e.,

tR
a (xa) = t0

a

[
1 + 0.15

(
xa

ca

)4
]

, ∀a ∈ TR(A) (2)

where t0
a is the free traveling time of the a-th link. ca is the traffic capacity of the a-th link.

TR(A) denotes the set of all regular links in UTNs.

3. Bypass links

A bypass link denotes a road segment with an EVCS where EVs skip and continue to
drive without interruption. Due to the short length of the bypass oracle, it can be assumed
that the travel time through this link is negligible and approximated as zero, i.e.,

tb
a(xa) = 0, a ∈ TB(A) (3)

where TB(A) is the set of all bypass links. T(A) is the set of all links in UTNs: TC(A) ∪
TR(A) ∪ TB(A) = T(A).

2.2.2. Modelling the Costs of Vehicles Based on Different Driving Behaviours

Based on the above different types of congestion in UTNs, the travel cost functions
of different paths are established for various transportation participants. For EVs with
charging, a feasible path must include at least a charging station. The set of feasible paths
Kod is expressed as

Kod = KC
od ∪ KR

od (4)

where KC
od, KR

od denote feasible path sets for EVs with recharging and regular vehicles,
respectively.

1. The travel costs of EVs with charging

To estimate the travel cost of EVs with recharging, it is essential to consider three key
components: the monetary value of time spent driving on regular links, the queueing time
in EVCSs, and the charging cost. Accordingly, the travel time tod

k and cost cod
k of an EV with

charging on the feasible path k-th are, respectively, represented by

tod
k = ∑

a∈TC(A)

tc
a(xa)δ

od
a,k + ∑

a∈TR(A)

tc
a(xa)δ

od
a,k, ∀k ∈ KC

od, ∀(o, d) (5)

cod
k = ωtod

k + ∑
a∈TC(A)

(
λ

j
aPFCStFCS

a

)
δod

a,k, ∀k ∈ KC
od, ∀(o, d) (6)

where tod
k and cod

k denote the travel time and cost of a feasible path k between the O-D pair,

respectively. ω is the unit travel cost coefficient. λ
j
a represents the charging price in EVCS a

supplied by node j in a PDN. PFCS is the charging power of EVs.

2. The travel costs of regular EVs

The total cost of regular vehicles is calculated by factoring in only the monetary value
of time spent driving on regular links, i.e.,

tod
k = ∑

a∈TR(A)

tR
a (xa)δ

od
a,k, ∀k ∈ KR

od, ∀(o, d) (7)

cod
k = ωtod

k , ∀k ∈ KR
od, ∀(o, d) (8)

2.2.3. A Traffic Model Based on User Equilibrium

As the charging behaviours of EV users affect the feasible path set and cause divergence
from the path choices of non-charging users, it is vital to express the user equilibrium (UE)
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condition more explicitly. On this basis, an EV charging equilibrium model originating
from [6] is utilised to characterise the equilibrium state in the UTN, i.e.,

min ∑
t∈T(T)

 ∑
a∈TR(A)

∫ xa

0
ωtR

a (θ)dθ + ∑
a∈TC(A)

∫ xa

0
ωtc

a(θ)dθ

 (9)

f od
k,t ≥ 0, ∀t ∈ T, ∀k ∈ Kod, ∀od ∈ (O, D) (10)

rod
t = ∑

k∈Kod

f od
k,t tod

k,t

τRF , ∀t ∈ T, ∀k ∈ K (11)

qmod
od,t = qod,t +

1
2

rod
t−1 −

1
2

rod
t , ∀t ∈ T, ∀od ∈ (O, D) (12)

∑
k∈KC

od

f od
k,t = µqmod

od,t , ∀t ∈ T, ∀od ∈ (O, D) (13)

∑
k∈KR

od

f od
k,t = (1 − µ)qmod

od,t , ∀t ∈ T, ∀od ∈ (O, D) (14)

xa,t = ∑
o∈O

∑
d∈D

∑
k∈Kod

f od
k,t δod

a,k, ∀t ∈ T, ∀a ∈ T(A) (15)

where f od
k is the traffic flow on the k-th path connecting the O-D pair. qod represents the

total travel demand between the O-D pair. δod
a,k is a binary variable that represents the

relationship between link a and path k connecting the O-D pair when δod
a,k = 0 if link a is

included in path k, and δod
a,k = 1 otherwise. µ denotes the ratio of the number of EVs with

charging to the total transportation demand.
In the given model, Equation (9) represents the objective of minimising the total

cost of travel for traffic users. Equation (10) ensures that the traffic flow remains non-
negative. Equations (11) and (12) describe the temporal relationship between traffic flow
by incorporating the remaining flow from path k in the previous period into the traffic
demand in the next period. Equations (13) and (14) represent the balance between traffic
demand and path flow for traffic users on the feasible path k. Equation (15) states that the
traffic flow in link a is equal to the sum of the traffic flows on all paths passing through
this oracle.

2.3. Modelling of the Optimal Power Flow in the PDN

A radial PDN adopted in this part is represented by a directed graph (N, L), where
N denotes the set of nodes and L means the set of branches. The initial node designated
as {1} is connected to the transmission power grid and purchases electricity directly from
the main grid. The other nodes can be numbered sequentially as N+ = {2, . . . , n}, and
so on. (i, j) ∈ L corresponds to a branch from node i to node j. The sets NFCS denote the
collection of nodes that are connected to the EVCS. Φ(i) refers to the set of sub-nodes that
are connected to node i, while Π(j) means the set of nodes that stem from node j. The
optimal power flow is regarded as Equations (16)–(24), in which the subscript t represents
the time interval.

min∑
t∈T

 ∑
j∈N+

(
aj
(

PDG,jt
)2

+ bjPDG,jt

)
︸ ︷︷ ︸

i

+ λMAIN,t ∑
j∈Φ(1)

P1jt︸ ︷︷ ︸
ii

 (16)
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s.t.
Ng

∑
i=1

PGi,t −
Ne

∑
i=1

PEVCSi,t = Ploss,t + PL,t, ∀t ∈ T (17)

Pi,t − Vi,t ∑
j=1

Vj,t

(
cos δij,t

rij
+

sin δij,t

xij

)
= 0, ∀t ∈ T (18)

Qi,t − Vi,t ∑
j=1

Vj,t

(
sin δij,t

rij
−

cos δij,t

xij

)
= 0, ∀t ∈ T (19)

P2
i,t + Q2

i,t ≤
(

SMAX
ij,t

)2
, ∀t ∈ T (20)

0 ≤ PDG,jt ≤ Pmax
DG,j, ∀j ∈ N+ ∀t ∈ T (21)

0 ≤ QDG,jt ≤ Qmax
DG,j, ∀j ∈ N+ ∀t ∈ T (22)

Vmin ≤ Vj,t ≤ Vmax, ∀j ∈ N ∀t ∈ T (23)

Pmin
EVCS ≤ PEVCSi,t ≤ Pmax

EVCS ∀t ∈ T (24)

where P1,jt is the power purchased from the main grid. T denotes the entire scheduling
period. aj and bj represent the cost coefficient of the controllable generations connected
to node j in the PDN. PDG,j and QDG,j refer to the active and reactive power output of the
controllable generation at node j. λMAIN represents the purchasing electricity price from
the main grid. Pi and Qi denote the injective active and reactive power at node i. Pij and Qij
refer to the active and reactive power transmitted in the branch (i,j), respectively. rij and xij
represent the equivalent resistance and reactance of the branch (I, j). Vj denotes the voltage
magnitude at node j. δj is the voltage phase angle at node j. PL,j and Ploss,t are conventional
active loads and loss power at node j, respectively. PEVCS,j represent the charging loads of
EVCSs located at node j. Pmax

DG,j and Qmax
DG,j represent, respectively, the upper bound of the

distributed units’ active and reactive power output. Vmax and Vmin are the upper and lower
bounds of the nodal voltage magnitudes. Pmax

EVCS and Pmin
EVCS represent the active power

limits in the EVCSs, respectively.
The objective function of Equation (16) represents the minimum operational cost of

the PDN, including (i) the generation cost of controllable distributed generation units and
(ii) the purchase cost of electricity from the main grid. Equation (17) denotes the active
power balance of the PDN. Equations (18) and (19) denote the power flow balance of
the PDN. Equation (20) represents the active and reactive power transmission limits of
branches. Equations (21) and (22) denote controllable generation capacity in the PDN.
Equation (23) represents the nodal voltage magnitude bounds. Equation (24) is the capacity
limit of EVCSs.

The power flow balance constraints (18) and (19) can be expressed using the lineariza-
tion derivation from [45] in the following manner:

Pi,t ≈
n

∑
j=1

Vj,t

rij
−

n

∑
j=1

δj,t

xij
, ∀t ∈ T (25)

Qi,t ≈ −
n

∑
j=1

Vj,t

xij
−

n

∑
j=1

δj,t

rij
, ∀t ∈ T (26)

We employ the linearization method based on polygon approximation in [46] to
address the branch transmission limitations. According to Equation (20), it is evident that
there are many power circles being considered. Thus, it is capable of approximating the
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aforementioned power circles by using polygons that have a limited number of edges.
Thus, Equation (20) can be converted into:

Pij,tPij,t + Qij,tQij,t ≤
(

Smax
ij,t

)2
, ∀t ∈ T (27)

Pij,t = cos
[(

p − E + 4
4

)
2π

E

]
, ∀p ∈

[
1, 2, . . . ,

E
2

]
, ∀t ∈ T (28)

Qij,t = sin
[(

p − E + 4
4

)
2π

E

]
, ∀p ∈

[
1, 2, . . . ,

E
2

]
, ∀t ∈ T (29)

where E represents the number of edges of the polygon approximating the power circles.
The value of E can be chosen to be between 8 and 20, considering the trade-off between
computational efficiency and accuracy. After evaluating the relationship between efficiency
and precision, an inscribed regular dodecagon (i.e., a polygon with twelve edges) is opted
to replace the power circles.

2.4. Modelling of the Coupled PTN

This section examines the interconnected boundary between the power and trans-
portation systems, specifically focusing on the independent operation models for the UTN
and the PDN mentioned earlier. The goal is to understand the relationship between the
boundary information of these two systems. To achieve this, a coordinated scheduling
model for the power–traffic coupling system is developed. More precisely, the interaction
in a PTN occurs when EVs transfer energy by charging over the links connecting to the
PDN for additional electrical power. Thus, in the PTN, the boundary information of the
UTN pertains to the traffic flow of EVs entering the charging stations, while the boundary
information on the PDN corresponds to the charging load of the EVCS. The correlation
between the charging load linked to the PTN node j and the traffic flow in the UTN is
represented as:

PFCS,j = PFCS ∑
o∈O

∑
d∈D

∑
k∈KC

od

f od
k δod

a,k, ∀a ∈ TC(A), j ∈ NFCS (30)

The coordinated scheduling in the PTN is aimed at the minimum social cost, i.e.,

min ∑
a∈TR(A)

∫ xa

0
ωtR

a (θ)dθ + ∑
a∈TC(A)

∫ xa

0
ωtc

a(θ)dθ + ∑
t∈T

 ∑
i∈N+

(
aj
(

PDG,jt
)2

+ bjPDG,jt

)
+ λMAIN ∑

j∈Φ(1)
P1j,t

 (31)

s.t. {
(10)− (15)
(17), (21)− (29)

(32)

3. Decoupled Model of the PTN Based on the Feasible Region of the PDN

Definition 1 (schedulable capacity (SC)): During the EV charging process, the PDN establishes
a zone that includes all the possible operating locations of the charging loads. This region ensures
stability and security by meeting the restrictions specified in (35).

To facilitate the understanding of the model derivation, a concise representation of the
PTN, comprising Equations (31) and (32), is provided.

min∑
t

(
CPDN,t

(
yPDN,t

)
+ CUTN,t

(
ya

UTN,t

))
(33)

s.t.

 heq
PDN,t

(
yPDN,t, ut, PEVC

t

)
= 0

hineq
PDN,t

(
yPDN,t, ut, PEVC

t

)
≤ 0

(34)
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gUTN,t

(
ya

UTN,t, f od
k,t

)
≤ 0 (35)

ACPT PEVC
t + BCPTya

UTN,t = cCPT,t (36)

The constraints of Equation (34) denote the sets formed by the equality Equations (17),
(25) and (26), and inequality constraints Equations (21)–(24) and (27)–(29), respectively. The
constraints of Equation (35) denote the constraint sets formed by the UTN in Equations
(10)–(15). The CPDN,t denotes the operational cost function of the PDN. yPDN,t is the power
vector injected from controllable generators and the main grid. u represents the vector of the
state variable in the PDN. PEVC

t is the EV maximum charging power from the PDN, which
comprises the charging load and the available charging power. CUTN,t is the cost function
of the UTN. ya

UTN,t is a vector composed of the column vectors traffic flow xa and time ta,
i.e., ya

UTN,t = [xa, ta]. ACPT, BCPT, and cCPT represent coefficient vectors corresponding to
the PDN and the UTN in Equation (30), respectively. PEVC is the charging power of EVCS.

The polyhedral space Ωpri
SC formed by the constraint of Equation (34) is denoted as

follows, where the subscript t is neglected for simplicity:

Ωpri
SC =

{(
yPDN , PEVC

)
∈ Rm × Rn

∣∣∣∣∣ heq
PDN

(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

}
(37)

where m and n denote the dimensions.
According to definition 1, it is shown that the schedulable capacity is interpreted as a

projection from the constraints of space (yPDN, u, PEVC) to PEVC in the PDN. The projection
area Ωmap

SC is stated as

Ωmap
SC =

{(
PEVC

)
∈ Rn

∣∣∣∃yPDN ,
(

yPDN , u , PEVC
)
∈ Ωpri

SC

}
(38)

where Ωmap
SC describes the range of EV charging loads accommodated by the PDN at any

period t without violating safety operation constraints, as shown in Equation (34).
This polyhedron, i.e., the boundary information feasibility region, is expressed as:

Ωap
EVC =

{
AEV PEVC

k ≤ βEV

}
(39)

where AEV is the coefficient matrix for different stress directions; and βEV is a coefficient
vector that describes the boundary of the EVSC. The dimensions of AEV and βEV correspond
to the number of boundary points characterising the EVSC. Each determined boundary
point leads to a set of constraints.

Figure 2 presents the coordinated operation framework of the coupled power–traffic
system. The equivalent projection model of the PTN is expressed as:

min
(

CPDN

(
PEVC

k

)
+ CUTN(ya

UTN)
)

(40)

AEV PEVC
k ≤ βEV (41)

gUTN

(
ya

UTN , f od
k

)
≤ 0 (42)

ACPT PEVC
k + BCPTya

UTN = cCPT (43)
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4. Mapping Optimal Costs of the PDNs

When it comes to connections including boundary EVCSs, the PTN aims to opti-
mise the power and traffic flows. From the perspective of the PDN, charging stations are
classified as variable loads since they consume electrical energy from the grid. Alterna-
tively, when considering the transportation network, these stations can be seen as virtual
sources that provide electric power to cars. The fundamental coupled model in the PTN is
reconstructed and expressed as a result of boundary charging power.

minCPDN
(
yPDN

)
+ CUTN

(
ya

UTN
)

s.t.


heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

gUTN

(
ya

UTN , f od
k

)
≤ 0

APDNyPDN + DPDN PEVC
k = cPDN

BUTNya
UTN + DUTN PEVC

k = cUTN

(44)

where vector D denotes the charging power at a charging station.
The equivalent model consisting of Equations (33)–(36) implies that each PDN and the

UTN perform optimal social welfare individually with limited data exchange. Hence, the
model of the PDN at the time t is reformulated and expressed as

fPDN(PEVC
k ) = minCPDN

(
yPDN

)
s.t.


heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

APDNyPDN + DPDN PEVC
k = cPDN

(45)

where the objective function of fPDN(PEVC
k ) means the optimal social cost of the PDN

related to the boundary charging power PEVC
k .

It has been demonstrated that there is an equivalence in optimality between the joint
optimisation Equations (45) and (46), i.e.,

min
(

fPDN(PEVC
k ) + CUTN

(
ya

UTN
))

s.t.

{
gUTN

(
ya

UTN , f od
k

)
≤ 0

BUTNya
UTN + DUTN PEVC

k = cUTN

(46)

From the modified model (see Equation (46)), it is crucial to derive the specific form of
the function CPDN(DPDN). According to Equation (16), the form of the objective function in
PDN is quadratic, which is converted and stated as:

FPDN(PDG) =
1
2

PDG AT
RePDG + BT

RePDG + λMAIN P1 (47)
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where vector PDG and P1 denote all PDG,j and P1j, respectively. The syntax AT
Re = (a1, · · · , ai)

T

and BT
Re = (b1, · · · , bi)

T are utilised to catenate column vectors with the cost coefficient of
the controllable generators.

With the charging power given, the optimal objective in Equation (47) is computed,
and the solution corresponds to an optimal value, where the constraints are categorised
into active and inactive ones. These constraints divided are rewritten, i.e.,

(APDN)aPDG + (DPDN)aPEVC = (cPDN)a (48)

(APDN)inaPDG + (DPDN)inaPEVC ≤ (cPDN)ina (49)

where Equation (48) means the active constraints, denoted by subscript a. Additionally,
Equation (49) is the inactive constraints with subscript ina.

From the perspective of optimisation theory, the optimal solution of the model is not
affected by inactive constraints. Hence, Equation (46) is modified equivalently, i.e.,

minFPDN(PDG)
s.t. (APDN)aPDG + (DPDN)aPEVC = (cPDN)a

(50)

The Lagrange function is expressed as:

L(PDG, µ) =
1
2

PDG AT
RePDG + BT

RePDG + λMAIN P1 + ηT
(
(APDN)aPDG + (DPDN)aPEVC − (cPDN)a

)
(51)

By applying complementary slackness conditions of KKT theory,

∂L(PDG, µ)

∂PDG
= AT

RePDG + BT
Re + (APDN)

T
a µ = 0 (52)

Simultaneously ensuring the satisfaction of the active constraints of Equation (49) gives:(
AT

Re (APDN)
T
a

(APDN)a 0

)(
PDG

η

)
=

(
−BT

Re
(cPDN)a − (DPDN)aPEVC

)
(53)

By solving Equation (53), the values PDG, η are
PDG = (APDN)

−1
a
(
(cPDN)a − (DPDN)aPEVC

k
)

η = −AT
Re

(
(APDN)a(APDN)

T
a

)−1(
(cPDN)a − (DPDN)aPEVC)

−
(
(APDN)

T
a

)−1
BT

Re

(54)

There exists a linear relationship between the active power from the main grid and the
charging power (i.e., PEVC). It is shown that f PDN (PEVC) is a quadratic function.

Nonetheless, the above derivation process should be performed in the neighbour inter-
val of the given charging power value (i.e., P̂EVC), and the active and inactive constraints in
Equations (49) and (50) remain unchanged. Hence, it is essential to analyse the conditions
affecting the neighbour interval.

Condition 1: Lagrange multipliers η remain non-negative, ensuring that the inequality
constraints of the problem Equation (49) are satisfied, i.e.,

η ≥ 0 (55)

Condition 2: To guarantee the feasibility of Equation (47), the solution of Equation (51)
must satisfy the inactive constraints of Equation (49).
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To obtain the optimal cost function of the PDN under the feasible region, a piecewise
approach is proposed. Specifically, based on the constraints set in Equation (46), the upper
and lower bounds of the charging power (i.e., PEVC) are expressed as{

PEVC = minPEVC

PEVC
= maxPEVC

s.t.


heq

PDN
(
yPDN , u , PEVC) = 0

hineq
PDN

(
yPDN , u , PEVC) ≤ 0

APDNyPDN + DPDN PEVC = cPDN

(56)

where PEVC, PEVC denote the upper and lower bounds of the charging power, respectively.
After conducting the analysis mentioned above, it is clear that the deduction can

only be valid within a neighbour interval. To achieve this, the feasible region interval[
PEVC, PEVC

]
is divided into multiple sub-intervals, with each sub-interval determined by

conditions 1 and 2. One significant advantage of determining the interval width based on
active and inactive constraints is the ability to enumerate all sub-intervals, which satisfies
the following constraint, i.e.,

dm−1
PDN ≤ dm

PDN (57)

where the m-th upper bound denotes dm
PDN , and the m-th sub-interval is expressed as[

dm−1
PDN , dm

PDN

]
.

As the exploration of sub-intervals continues, the right endpoint dm
PDN of the sub-

interval is equal to the upper bound PEVC of the feasible region, which is used as a stopping
criterion to express the end of the exploration process. The specific form of the optimal cost
in the PDN is expressed as

fPDN(PEVC) = ∑
m∈M

f m
PDN(d

m
PDN) (58)

where M is the overall count of sub-intervals. f m
PDN

(
dm

PDN
)

denotes the optimal cost of the
m-th sub-interval in the PDN.

According to the definition of LMPs, the charging price is

LMP =
∂ fPDN(PEVC)

∂PEVC (59)

5. Case Study
5.1. Basic Settings

This part develops a connected electric–transportation system for the purpose of
conducting simulation analysis. Figure 3 displays the topology of the traffic network. There
are a total of six EVCSs and four distinct types of highways in both the outer and inner
loops. The trip demand, free travel time, and traffic capacity for each origin–destination
pair (O-D pair) are previously known, and specific parameter configurations are supplied
in Tables 1 and 2. The EVs have an average charging power of 50 kW, and it is estimated
that the average charging time is 30 min. The journey time is valued at USD 10 per hour.

Table 1. Link parameters of roads in the 12-node transportation network.

Road Type 1 Type 2 Type 3 Type 4 EVCS

ca(p.u) 100 100 80 60 15
t0
a(min) 5 8 5 7 20
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Figure 3. Topology of the UTN.

Table 2. O-D pairs and trip rates of t = 1 (in p.u.).

O-D Pair qrs
g qrs

e

T1–T6 9 1
T1–T10 36 4
T1–T11 18 2
T1–T12 27 3
T3–T6 9 1

T3–T10 27 3
T3–T11 18 2
T3–T12 27 3

Figure 4 displays the configuration of the updated IEEE 33-bus system. Node 1 was
linked to the primary power network for the purpose of procuring electricity. Nodes 8,
15, and 31 were linked to electric vehicle (EV) charging stations, which have a maximum
charging capacity of 400 kW. Controllable generations with voltage regulation facilities were
connected to nodes 18 and 33. The scheduling period was fixed at 24 h. The simulations in
this part were performed on the lenovo Y9000P laptop equipped with an AMD Ryzen 7
5800H processor with Radeon Graphics, running at a clock speed of 3.20 GHz, and 16 GB
of RAM. The models were solved using MATLAB R2021b and YALMIP toolboxes, with the
solvers IBM CPLEX 12.8 and IPOPT.
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Figure 4. Topology of the PDN.

In order to assess the efficacy of the suggested method utilising equivalent projection,
three specific scenarios were constructed for thorough investigation.

M1: The independent scheduling operation of the power–traffic network without coupling.
M2: The coordinated scheduling operation of the power–traffic network with the

centralised method.
M3: The coordinated scheduling operation of the power–traffic network with equiva-

lent projection.
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5.2. Analysis Discussion

The cost of the power–traffic linked system is clearly lower than operating the power
grid and traffic network separately, as shown in Figure 5. Furthermore, as the adoption of
EVs continues to grow, the disparity between the overall cost of the integrated power–traffic
system and the individual operation managed by M1 in the power–traffic networks becomes
more pronounced. The effectiveness of coupled system scheduling in significantly reducing
operational expenses is proved when compared to standalone scheduling. Furthermore,
the overall expense of the power–traffic coupled network with M2 is equal to the one
computed by M3 (refer to Figure 5). This suggests that by employing the cost function of
the PDNs, the cost coupling in PTNs may be correctly aligned.
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Figure 6 examines the charging frequency of EVs at charging stations within the
transportation network during the peak time (t = 10). In a scenario where there is a 10%
penetration rate, the scheduling using M1 does not require a direct connection between
the UTN and the PDN. Due to their higher capacity and lower waiting times, the majority
of EVs prefer to charge at EVCS 2 and 6. The number of charging vehicles at Station
2 and Station 6 is 4.95 and 4.68, respectively, which together make up nearly 75% of
the total charging vehicle count. The independent scheduling of EV charging results in
uneven distribution of EV traffic flow, leading to high saturation levels at EVCS 2 and 6.
Additionally, the paucity of charging stations at Stations 1, 4, and 5 exacerbates this issue.
Unlike the uncoordinated scheduling, the coordinated scheduling of the power–traffic
network efficiently reduces the concentrated distribution of EV traffic flow, leading to
a more balanced traffic flow distribution and an improved utilisation rate for charging
stations. Furthermore, it is important to mention that, regardless of the different levels of
EV adoption, the number of times EVs need to be charged at charging stations, as calculated
using M2 and M3, is consistent with the results obtained from the centralised coordinated
scheduling of the power–traffic system.

Significantly, if the penetration rate falls below 40%, the aggregate demand for electric
vehicles remains relatively modest, which does not pose any risk to the secure functioning
limits of the power distribution networks. Nevertheless, the scenario will undergo a
transformation once the EV adoption rate surpasses 40%. Figure 7 illustrates the voltage
magnitudes of the PDNs when the EV penetration rate is 50%. Through a thorough
examination of Figures 7 and 8, it becomes evident that EVs have a tendency to gather
or cluster near EVCSs 1 and 4. Consequently, the voltage magnitudes at nodes 15 and 16
in the distribution network decrease to 0.9186 and 0.9190, respectively, indicating voltage
violations in the power grid. The increased traffic in the road segments where charging
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stations are situated results in higher impact loads on the distribution grid nodes that are
connected to the charging stations.
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Figure 7. The voltage magnitude in the PDN when EVs penetrate 50%.

It is evident that there is an enhancement in the voltage magnitude, particularly at
node 18, for M2 and M3. Additionally, the voltage distribution in the PDNs is effectively
maintained. The coordinated strategy uses the charging price for the PDNs to incentivise
EVs to charge at specific stations, such as EVCS 1 and 4. Therefore, it can efficiently mitigate
traffic congestion and the low voltage problem at distribution network nodes generated
by the independent scheme. This guarantees the secure and effective functioning of the
power–traffic network.

After conducting a thorough examination of operational costs, EV charging numbers,
and voltage magnitude, we evaluated the calculation time of three approaches in two
common scenarios, peak and off-peak, to further examine their usefulness. Table 3 clearly
demonstrates that M1 has the shortest computation time. Nevertheless, it fails to accomplish
the most efficient functioning of the PTNs, which could potentially jeopardise the secure
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operating of the PDNs. As M2 approaches its optimal state, it heavily depends on the
transmission of large amounts of data between the power and traffic systems. This raises
concerns over the privacy of information and the practicality of its implementation. When
comparing M2 with M3, it is evident that M3 achieves a better balance between maintaining
system privacy and providing precise solutions. Additionally, M3 is able to provide
accuracy even when working with little data.
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Figure 8. The traffic flow of the UTN when EVs penetrate 50%.

Table 3. Computation times of different methods.

Different EV
Penetrations Time of M1 (s) Time of M2 (s) Time of M3 (s)

10% 14.42 46.14 169.34
20% 15.13 47.39 170.05
30% 15.98 49.36 171.96
40% 16.56 50.47 172.56
50% 17.26 52.30 173.31

Figure 8 displays the traffic patterns during peak hours (t = 10) in the UTN for in-depth
examination. The figure reveals that the majority of vehicles opt to travel on the inner
and outer loops due to their higher capacities and fewer traffic signals (t0) compared to
other connections. The traffic flow of the charging link (T4–T5) in the coordinated system
is 10.01 p.u., which indicates a 20% reduction compared to the autonomous scheme. The
coordinated scheduling strategy considers the secure operation of the PDNs. By modifying
the charging fees, voltage losses in the vicinity can be reduced, thereby diverting charging
vehicles to other EVCSs. Furthermore, the traffic patterns achieved by M3 are identical
to the centralised optimisation of the interconnected PTNs, which is solved by M2. This
suggests that the use of boundary information mapping and cost functions can effectively
replace the original power grid model with M3. By employing the suggested approach,
the correctness of optimisation outcomes for the interconnected PTNs is guaranteed, while
also safeguarding the confidentiality of sensitive system information.

5.3. Comparative Analysis of the Case Studies

This section examines the influence of various charging station connection sites on the
power–traffic coupling system. Figure 9 illustrates the topology for scenario 2, which is
distinct from the topologies shown in Figures 3 and 4. The parameter configurations align
with those outlined in Section 5.2.
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Figure 9. (a) Comparative case topology of the PDN with different charging station connections.
(b) Comparative case topology of the UTN with different charging station connections.

Figure 10 displays the overall expenses of the PTNs at various locations. In contrast
to instance 1, the bulk of the charging stations are situated within or in close proximity to
the outer circle. Figure 10 demonstrates that the overall operational expenses in case 2 are
often more than those in case 1. The greater operational costs are caused by the positioning
of charging stations along the outer loops and capacity, which forces EVs to detour from
the optimal path and travel extra distances to access the charging stations. From these data,
it can be inferred that placing charging stations along the outer ring has an adverse effect
on the overall operational expenses of the EVs. In order to maximise cost-effectiveness, it is
advisable to strategically position charging stations along the inner loop, so minimising
any extra trip time.
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Figure 10. Comparison of total costs under different charging station locations.

Figure 11 illustrates the voltage magnitudes for various charging station sites when the
EV penetration rate is 50%. Case 2 exhibits fewer voltage variations compared to case 1. In
scenario 1, a substantial quantity of electric vehicles congregate at EVCS 5, which is situated
within the inner circle. This efficiently decreases the amount of time spent travelling while
still satisfying the need for travel. The voltage near node 30 approaches its limit as a result.
In case 2, the charging stations are strategically placed in the outer ring or near the outer
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loop. This arrangement helps to decentralise the charging of EVs and minimise the strain
on the PDN, resulting in a reduction in voltage fluctuations.
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6. Conclusions

This research introduces a new coordinated scheduling technique for PTNs that ad-
dresses the limitations of previous coordinated optimisation methods. The method utilises
boundary information mapping and implements a non-iterative framework for the PTNs.
Using this proposed approach, the efficient functioning of the PDNs is translated into a
mathematical equation and a safety operation set with minimum data, enabling the PDNs
to attain external equivalence. The suggested model replaces the PDNs by utilising partial
boundary information, allowing for coordinated optimisation of the PTNs. This approach
eliminates the need for iterative solutions between the linked systems. By maintaining
uniformity in the highest level of effectiveness, it simultaneously ensures confidentiality
and protection across many systems. A case analysis is performed on a system that consists
of a 12-node traffic network and an IEEE 33-bus system in order to verify the efficacy of
the suggested method. The main discoveries are as follows: (1) The proposed method
for mapping the feasible domain can effectively align the operational limitations of the
power grid, enabling coordinated scheduling of the power–traffic network while safeguard-
ing the confidentiality of power grid information. (2) In comparison to independently
scheduling the two networks, the coordinated scheduling of the power–traffic networks
can optimise the distribution of electric vehicle traffic flow and charging load in both the
power grid and the traffic network, thereby enhancing the safety and efficiency of the
power–traffic networks.
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