
Citation: Heo, S.; Choi, J.; Park, Y.;

Vaz, N.; Ju, H. Reliability-Based

Design Optimization of the PEMFC

Flow Field with Consideration of

Statistical Uncertainty of Design

Variables. Energies 2024, 17, 1882.

https://doi.org/10.3390/en17081882

Academic Editors: Samuel

Simon Araya and Vincenzo Liso

Received: 19 March 2024

Revised: 3 April 2024

Accepted: 12 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Reliability-Based Design Optimization of the PEMFC Flow Field
with Consideration of Statistical Uncertainty of Design Variables
Seongku Heo, Jaeyoo Choi, Yooseong Park , Neil Vaz and Hyunchul Ju *

Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea; shy00365@inha.edu
or heo@inha.edu (S.H.); 22211018@inha.edu (J.C.); useongpark57@inha.edu (Y.P.); neilvaz@inha.edu (N.V.)
* Correspondence: hcju@inha.ac.kr; Tel.: +82-32-860-7312

Abstract: Recently, with the fourth industrial revolution, the research cases that search for optimal
design points based on neural networks or machine learning have rapidly increased. In addition,
research on optimization is continuously reported in the field of fuel cell research using hydrogen
as fuel. However, in the case of optimization research, it often requires a large amount of training
data, which means that it is more suitable for numerical research such as CFD simulation rather than
time-consuming research such as actual experiments. As is well known, the design range of fuel cell
flow channels is extremely small, ranging from hundreds of microns to several millimeters, which
means the small tolerance could cause fatal performance loss. In this study, the general optimization
study was further improved in terms of reliability by considering stochastic tolerances that may
occur in actual industry. The optimization problem was defined to maximize stack power, which
is employed as objective function, under the constraints such as pressure drop and current density
standard deviation; the performance of the optimal point through general optimization was about
3.252 kW/L. In the reliability-based optimization problem, the boundary condition for tolerance
was set to 0.1 mm and tolerance was assumed to occur along a normal distribution. The optimal
point to secure 99% reliability for the given constraints was 2.918 kW/L, showing significantly lower
performance than the general optimal point.

Keywords: RBDO; PEMFC; design optimization; statistical uncertainty; neural network-based surrogate

1. Introduction

In the context of emphasizing the environmental friendliness of energy, hydrogen
energy plays a crucial role [1]. While there are various ways to harness it, one example is
fuel cells that utilize precisely designed electrochemical reactions to directly convert the
chemical energy of hydrogen into electrical energy [2]. Depending on the type, fuel cells
can operate in both high-temperature and low-temperature environments, and possess
rapid responsiveness and portability [3,4].

Fuel cells are composed of a bipolar plate with engraved flow channels, a gas dif-
fusion layer for uniform reactant diffusion, and a membrane electrolyte assembly where
electrochemical reactions and ion transfer occur. Material transfer occurs through the flow
channels engraved on the bipolar plate and the type and shape of these channels are crucial
for determining the concentration overpotential which is one of the three types of overpo-
tentials (activation overpotential, ohmic overpotential, and concentration overpotential)
determining the performance of a fuel cell. Particularly, in high-power fuel cells, these
channels play an extremely decisive role in the performance. In addition, there is a wide
range of parameters in fuel cells, leading to active research in this area [5–8]. Especially in
recent times, research on commercialization has begun in earnest, providing ample oppor-
tunities for optimization in various areas of fuel cell design, including materials, operating
conditions, and shapes. There are various optimization methods and one intuitively ac-
cessible approach is empirical optimization, where optimization is carried out based on
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understanding the influence of parameters on performance [9,10]. Although this approach
is easy to implement, it comes with high human and material costs, and the derived values
rely on experience, making it challenging to ensure global optimal values or even confi-
dence in local optimal values across the entire variable space. To address the drawbacks
of such empirical methods, research has been conducted and applied in utilizing com-
puter engineering-based optimization algorithms [11]. Particle swarm optimization (PSO)
and genetic algorithms (GA) serve as examples of optimization algorithms implemented
computationally, utilizing behavioral and evolutionary characteristics inspired by biology.
They have been widely employed in optimizing various engineering problems [12,13].

Optimization techniques, through various methodologies, often require a substantial
amount of responses to track the minimum or maximum values of the objective function.
Therefore, to enhance the computational efficiency of optimization techniques, there is
active utilization of regression models through artificial intelligence (AI) [14,15]. For fuel
cells with various parameters, it is possible to model them diversely depending on the
phenomena to be described [16]. Particularly, understanding the impact of numerical values
and shapes at the cell and stack levels on performance involves a complex combination of
physical phenomena, making it challenging to intuitively grasp. Consequently, there have
been diverse attempts to optimize this through simulation and AI in recent years [13,17,18].

On the other hand, in some cases, there may be a need for more constraints rather
than optimizing the entire variable space. For example, the operating temperature of
a fuel cell is a crucial factor determining its performance. The electrochemical reaction
rate increases with temperature, so under conditions with adequate moisture supply, the
performance of a fuel cell increases with temperature. However, exceeding the temperature
at which water vaporizes leads to a sharp decline in performance due to the mechanical
deformation of the Nafion membrane [19]. In other words, due to design constraints, there
is a restriction on the operating temperature, which ultimately influences the objective
function, namely, the performance. Engineering objectives can lead to various constraints
on variables, and in such cases, constrained optimization can be employed to address
these issues. Linear programming (LP) and sequential quadratic programming (SQP) are
representative methodologies for constrained optimization [20,21]. Constraints can be
defined in the form of equalities or inequalities and can take the shape of linear or nonlinear
functions. In constrained optimization, the goal is to obtain the optimal solution under
conditions that satisfy these nonlinear (or linear) inequality (or equality) constraints.

In most engineering problems, the ultimate goal of optimization is to find the design
point that represents the maximum or minimum value of the objective function within
the valid design space. Typically, due to the nature of optimal design which requires a
vast amount of data, computer simulation, as mentioned earlier, is actively utilized. How-
ever, computer simulation using deterministic variables focuses on identifying physical
phenomena and behaviors, and indeed, computer simulation and traditional deterministic
optimization may have the probabilistic disadvantage of not reflecting the uncertainties
that can occur in actual industrial processes. Reliability-based design optimization (RBDO),
which has been developed by K.K. Choi [22] and others [23,24], is designed to narrow
the gap between such real-world industrial uncertainties and deterministic optimization
based on probabilistic theory. It has been observed that uncertainties such as tolerances
that can occur in actual industrial processes can be reflected by considering the probability
distribution of each design variable, and through this, it is possible to derive an optimal
design solution that guarantees reliability [25–27].

In this study, we introduce research that has optimized key design variables—channel
width, land width, and channel depth—of parallel flow channels in PEMFC bipolar plates,
focusing not only on performance but also on various objective functions such as pressure
drop and current density uniformity. First, the multi-scale, multi-phase PEMFC model
was validated against experimental data from PEMFCs with parallel flow channels and
used to generate comprehensive data on key design variables via simulation. A neural
network-based surrogate model was then trained with the acquired database to ascertain
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the optimal values for the parallel flow field design. A novel aspect of this study, which
differentiates it from other optimization studies, was the application of a probability distri-
bution to the optimal design values to account for the uncertainties and tolerance effects
in the bipolar plate flow path production process, thus verifying the values’ reliability.
Typically, the optimal design values obtained from general multi-objective optimization can
partially fall into the infeasible region when uncertainties from the production process are
accounted for with a probability distribution applied to these values. This study success-
fully demonstrated that it was necessary to revise the optimal design values, ensuring all
output data fall within the feasible region through a probability statistics-based reliability
optimization process. It also demonstrated the essential role of a novel reliability-based
optimal design technology, which merged a three-dimensional physical model, artificial
intelligence algorithms, and probabilistic statistical theory, in deriving practical optimal
design values.

2. Multi-Scale, Multi-Phase 3D PEMFC Model

A 3D, multi-scale, two-phase PEMFC model based on the multi-phase mixture (M2)
model proposed by Wang and Cheng [28] was considered in the current study. Modeling the
PEMFC was carried out considering the various components such as the membrane, CLs,
GDLs, and BPs. The 3D PEMFC model has been previously validated against experimental
polarization curves measured under various cell designs and operating conditions [29].
The model assumptions and governing equations considered in this study are similar to
the ones described in our previous study. Therefore, a very brief summary of the same
has been reported in the Section 2. Additionally, the boundary conditions and numerical
implementations of the PEMFC model featured using commercial computational fluid
dynamics (CFD) software; ANSYS Fluent v23(ANSYS Inc., 2600 Ansys Dr, Canonsburg,
PA, USA) is summarized in the Section 2. Furthermore, the multi-scale, two-phase PEMFC
model employed in this study is shown in Figure 1.
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Figure 1. (a) Microscale and macroscale computational domain and coupling variables for multi-scale 
PEMFC simulations (b) grid independence test results for the 3D PEMFC model simulations. 
  

Figure 1. (a) Microscale and macroscale computational domain and coupling variables for multi-scale
PEMFC simulations (b) grid independence test results for the 3D PEMFC model simulations.
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2.1. Model Assumptions

The following four assumptions were applied to the proposed 3D DU hydride model:

(1) The present study was guided by a set of specific assumptions outlined below.
(2) Ideal gas mixtures in the gas phase were considered due to the low operating pres-

sures involved.
(3) Flow velocity was assumed to be low, maintaining a laminar condition.
(4) Negligible effects of gravity were taken into account.
(5) The influence of immobile liquid saturation in porous regions was considered to

be negligible.

2.2. Governing Equations and Source Terms

The 3D PEMFC model under consideration in this study was subject to five conservation
principles: mass, species, charge, momentum, and thermal energy. These conservation
equations were intricately linked with source terms corresponding to electrochemical reactions
taking place in both the anode (hydrogen oxidation reaction, HOR) and cathode (oxygen
reduction reaction, ORR). A summary of the governing equations and their associated source
terms is available in Tables 1 and 2, respectively. Additionally, Table 3 compiles constitutive
equations detailing the kinetic and physicochemical properties of various PEMFC components.
For the M2 model, Table 4 provides an overview of the two-phase mixture properties, while
Table 5 outlines information on species and transport properties.

Table 1. PEM fuel cell model: Governing equations [17].

Governing Equations

Mass ∇ ·
(
ρ
→
u
)
= 0 (1)

Momentum
(

1
ε2

)
∇ ·

(
ρ
→
u
→
u
)
= −∇P +∇ · τ + Su (2)

Species

Flow channels and porous media:

∇ ·
(
γiρmi

→
u
)
= ∇ ·

[
ρg Dg,e f f

i ∇
(
mg

i

)]
+∇ ·

[(
mg

i − ml
i

)→
j

l]
+ Si

(3)

Water transport in membrane:

∇ ·
((

ρmem
EW

)
D

mem

w
∇λ
)

Mw −∇ ·
(
nd
( I

F

))
Mw +∇ ·

((
κmem

νl

)
∇Pl = 0

(4)

Charge

Proton transport:
∇ ·

(
κeff∇ϕe

)
+ Sϕ = 0

(5)

Electron transport:
∇ ·

(
σeff∇ϕs

)
− Sϕ = 0

(6)

Energy ∇ ·
(
ρ
→
uCg

p T
)
= ∇ ·

(
ke f f ∇T

)
+ ST (7)

Table 2. PEM fuel cell model: source/sink terms. [17].

Description Expression

Momentum Porous media Su = − µ
K
→
u

Species

H2 in anode CL SH2,a =
[
− j

2F

]
MH2

O2 in cathode CL SO2,c =
[

j
4F

]
MO2

Water in anode CL Sw,a =

[
−∇ ·

(
nd
F

→
I
)
+ j

4F

]
Mw

Water in cathode CL Sw,c =

[
−∇ ·

(
nd
F

→
I
)
− j

2F

]
Mw

Energy

In anode CL ST,a = j · η + I2

ke f f

In cathode CL ST,c = j
(

η + T dU0
dT

)
+ I2

ke f f

In membrane ST = I2

ke f f
Charge In CLs: Sϕ = j
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Table 2. Cont.

Description Expression

Electrochemical reactions

∑k si Mz
i = ne− , where

 Mi = chemical formula of species i
si = stoichiometric coefficient

n = number of electrons transferred
HOR on the anode side: H2 − 2H+ = 2e−
ORR on the cathode side: 2H2O − O2 − 4H+ = 4e−

Transfer current density,[
A/m3

]
HOR in anode CL:
j =

(1 − s)aire f
0,a

(
CH2

CH2,re f

) 1
2

exp
[
− Ea

R

( 1
T − 1

353.15

)](
exp
(

αa F
RT η

)
− exp

(
− αc F

RT η
)) (8)

ORR in cathode CL:

j = − 3LPt
rPt ·ρPt ·δCL

ire f
0,c

(
CPt

O2
CO2,re f

)3/4

exp
(
− Ec

R

( 1
T − 1

353.15

))
exp

(
− αc

Ru T Fη
) (9)

Overpotential
η = ϕs − ϕe − U

where U = U0 − RT
nF ln

CO2
CO2re f

(10)

Table 3. Kinetic, physiochemical properties and transport of the fuel cell [17].

Description Value/Expression Ref.

Activation energy of anode, Ea 10.0 kJ/mol [24]
Activation energy of cathode, Ec 70.0 kJ/mol [24]
Transfer coefficient of HOR, αa = αc 1 [28]
Transfer coefficient of ORR, αc 1 [28]
Reference H2/O2 molar concentration, Cre f 40.88 mol/m3 [28]
Permeability of GDL/CL, KGDL/KCL 1.0 × 10−12/1.0 × 10−13 m2 [24]
Equivalent weight of electrolyte in the membrane, EW 1.1 kg/mol [24]
Faraday’s constant, F 96,485 C/mol [28]
Universal gas constant, Ru 8.314 J/(mol · K)
H2 diffusivity in the anode gas channel, Dg

0,H2 ,a 1.1028 × 10−4 m2/s [28]
H2O diffusivity in the anode gas channel, Dg

0H2O,a 1.1028 × 10−4 m2/s [28]
O2 diffusivity in the cathode gas channel, Dg

0,O2 ,c 3.2348 × 10−4 m2/s [28]
H2O diffusivity in the cathode gas channel, Dg

0,H2O,c 7.35 × 10−5 m2/s [28]

Binary gas diffusivity ( Dg
i
) For nonporous regions

Dg
i = Dg

o

(
T
T0

)3/2( P0
P

) (11)

Effective diffusivity ( Dg,e f f
i

) For porous regions
Dg,e f f

i = ε
τk

Dg
i

(12)

Table 4. Expressions used in the two-phase mixture model [17].

Description Expression

Mixture density (ρ) ρ = ρls + ρg(1 − s) (13)
Gas mixture density (ρ g)

ρg =
(

P
Ru T

)
1

∑i
mg

i
Mi

(14)

Mixture velocity ( ρ
→
u
)

ρ
→
u = ρl→u

l
+ ρg→u

g (15)

Mixture mass fraction mi =
ρl sml

i+ρg(1−s)mg
i

ρ
(16)

Relative permeability kl
r = s3 (17)

kg
r =

(
1 − s)3 (18)

Kinematic viscosity of the two-phase
mixture v =

(
kl

r
vl +

kg
r

vg

)−1
(19)

Kinematic viscosity of the gas mixture
vg = µg

ρg = 1
ρg ∑n

i=1
xiµi

∑n
j=1 xjϕij

(20)

where ϕij =
1√
8

(
1 + Mi

Mj

)−1/2
[

1 +
(

µi
µj

)1/2(Mj
Mi

)1/4
]2

and
(21)
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Table 4. Cont.

Description Expression

µi
[
N · s · m−2] =


µH2 = 0.21 × 10−6T0.66

µw = 0.00584 × 10−6T1.29

µN2 = 0.237 × 10−6T0.76

µO2 = 0.246 × 10−6T0.78

, T in kelvin
(22)

Relative mobility λl = kl
r

vl v (23)

λg = 1 − λl (24)

Diffusive mass flux
→
jl = ρl→u

l
− λlρ

→
u = K

v λlλg2207Pc
(25)

Capillary pressure Pc Pc = Pg − Pl = σcosθ
(

ε
K
)1/2 J(s) (26)

Leverett function J(s) J =
{

1.417(1 − s)− 2.120
(
1 − s)2 + 1.263

(
1 − s)3

1.417s − 2.120s2 + 1.263s3
ifθc < 90◦

ifθc > 90◦
(27)

Table 5. Transport properties in the electrolyte.

Description Expression

Membrane water content (λ) Water λ =

{
λg = 0.043 + 17.81a − 39.85a2 + 36.0a3 f or 0 < a ≤ 1
λl = 22

(28)

Water activity, a = Cg
w Ru T
Psat

(29)
Electro-osmotic drag (EOD) coefficient of
water (nd)

nd = 2.5λ
22 (30)

Proton conductivity (κ) κ = (0.5139λ − 0.326)exp
[
1268

(
1

303 − 1
T

) ]
(31)

Water diffusion coefficient (Dmem
w )

Dmem
w =

2.692661843 · 10−10 f or λ ≤ 2{
0.87(3 − λ) + 2.95(λ − 2)} · 10−10 · e(7.9728−2416/T) f or 2 < λ ≤ 3

{2.95(4 − λ) + 1.642454(λ − 3)} · 10−10 · e(7.9728−2416/T) f or 3 < λ ≤ 4(
2.563 − 0.33λ + 0.0264λ2 − 0.000671λ3) · 10−10 · e(79728−2416/T) f or 4 < λ ≤ λ

g
a=1

(32)

Interfacial resistance of the water film Ωw,int = zw
δw

DO2,w
(33)

2.3. Microscale CL Model

The schematic representation of the micro CL model is illustrated in Figure 1, while
Table 6 provides a comprehensive list of parameters for a CL particle within a microscale
CL domain. These parameters encompass volume fractions such as Pt (εPt), carbon (εC),
ionomer (εe), and δCL. The values were determined based on factors like the ionomer to
carbon weight ratio (I/C), weight percent of Pt/C, and Pt loading. Given the hydrophilic
nature of the ionomer layer, a layer of water covers it, and the thickness of the ionomer
and water films was determined using Equations (38) and (39), respectively. Furthermore,
Equations (41)–(43) were employed to calculate parameters such as the oxygen flux across
ionomer layers and the water, the volumetric surface area of the ionomer (aC), jc for the
oxygen reduction reaction (ORR), the active volumetric surface area of Pt (aPt), and the
electrochemical active surface area (ECSA). The interfacial resistance in the water and
ionomer films, along with the effective thicknesses of the water and ionomer films (δe f f

w ,
δ

e f f
e ), were utilized to determine the total oxygen transport resistance, denoted by the

variable ΩT . For a more in-depth understanding of microscale modeling, interested readers
are recommended to consult our previous works [17,29].

Table 6. Correlations of the microscale CL model [17].

Description Expression

Carbon volume fraction (εPt) εPt =
1

ρPt

LPt
δCL

(34)

Pt particle volume fraction (εC) εc =
LPt
δCL

(
1

ρcwt%

)
(35)

Ionomer volume fraction (εe) εe =
( I

C
) ρc

ρe
εc (36)
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Table 6. Cont.

CL thickness (δCL) δCL =

[
( I

C )
ρC
ρe

(
1

ρC×wt%

)
+
(

1
ρPt

+ 1
ρC×wt%

)
1−εCL

]
LPt

(37)

Thickness of the ionomer film (δe) δe =

[(
1 + εe

εc

) 1
3 − 1

]
rc

(38)

Thickness of water film (δw) δw =

[(
1 + εe

εc
+ s

εc

) 1
3 − 1

]
rc − δe

(39)

Oxygen balance in a single Pt/C particle domain Cg
O2

− CPt
O2

= −ΩT
jc

4F·ac
= ΩT

I
4F·δCL ·ac

= RT
I

4F (40)

Volumetric surface area of ionomer ( ac) ac =
3εc
r3
c
(rc + δe + δw)

2 (41)

Volumetric surface area of Pt ( aPt)
aPt =

aECSA LPt
δCL

(42)

(a ECSA = 3
rPt ·ρPt

)
(43)

Total oxygen transport resistance ( ΩT) ΩT = Ωw,int +
δ

e f f
w

DO2,w
+ Ωe,int +

δ
e f f
e

DO2,e
+ ΩPt,int (44)

Total transport resistance RT = ΩT
δCL ·ac

(45a)

Interfacial resistance in ionomer Ωe,int = ze
δe

DO2,e
(45b)

Interfacial resistance in water film Ωw,int = zw
δw

DO2,w
(45c)

Interfacial resistance in platinum particle ΩPt,int = zPt

(
rc+δTiO2

+δ
e

)2

r2
Pt

ρPt
ρc

(
rPt
rc

)3(
1−wt%

wt%

)
δe

DO2,e

(45d)

Effective ionomer thickness δ
e f f
e = (rc+δe+δw)2

nPt ·r2
Pt

δe (46)

Effective water thickness δ
e f f
w = (rc+δe+δw)2

nPt ·r2
Pt

δw (47)

Number of Pt particles on a single carbon particle nPt =
ρc
ρPt

(
rc
rPt

)3( wt%
1−wt%

)
(48)

Oxygen concentration on the Pt particle surfaces
(

CPt
O2

) f
(

CPt
O2

)
= B

(
CPt

O2

)γ
+ 4F

ΩT
3εc
r3
c
(rc + δe)

2C
Pt

O2
− 4F

ΩT
3εc
r3
c
(rc + δe)

2C
g

O2
= 0

where

B = 3LPt
rPt ·ρPt ·δCL

ire f
0,c

(
1

CO2,re f

)3/4

exp
(
− Ec

R

(
1
T − 1

353.15

))
exp
(
− αc

RT Fηc
) (49)

2.4. Boundary Conditions and Numerical Implementation

Figure 1 illustrates the computational domain for a single-channel PEMFC geometry,
including the operating and boundary conditions. Additional details can be found in
Table 7. The anode and cathode inlet velocities, formulated based on the stoichiometric
ratios (ξa and ξc, respectively), are provided. Mass flow conditions, enforcing no-slip and
impermeability criteria, were applied to all exterior surfaces, except for the anode and
cathode inlet and outlet areas. Within the computational domain, isothermal boundary
conditions were applied to the side walls, while adiabatic boundary conditions were
imposed on the bottom and top surfaces of the anode and cathode, suitable for the stack
environment. The PEMFC can operate under either galvanostatic or potentiostatic mode.
Consequently, a constant voltage or current density was applied to the cathode outer
sidewall, while the electric potential ϕs was fixed at zero on the anode sidewall, as depicted
in Figure 1. The number of mesh elements for the single channel geometry, covering
an MEA surface area of 2 × 25 mm2, was estimated to be around 2 hundred thousand
based on the grid-independent study results represented in Figure 2. Employing user-
defined functions, the PEMFC model was numerically integrated into the commercially
available CFD program ANSYS Fluent ver. 23 (ANSYS, Inc., Canonsburg, PA, USA).
Convergence criteria for equation residuals were set at 10−8.

Table 7. Boundary and operating conditions [17].

Description Expression

Anode inlet velocity uin,a =
ξa

I
2F Amem

CH2
Aa,ch

(50)

Cathode inlet velocity uin,c =
ξc

I
4F Amem

CO2
Ac,ch

(51)

Constant temperature on side walls Tside = 60 ◦C (52)
Heat flux on the top and bottom surfaces ke f f ∇T = 0 (53)
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Table 7. Cont.

Description Expression

Electric potential on anode outer BP surface ϕs = 0 (54)
Electric potential on cathode outer BP surface ϕs = Vcell or σ2207ϕs = I (55)
Pressure(anode/cathode), Pa/Pc 2/2 bar
Operating temperature, Tcell 333.15 K
Stoichiometry(anode/cathode), ξa/ξc 1.5/2.0
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3. Reliability Based Design Optimization

In most engineering problems, design optimization has been used to derive theoreti-
cally optimal design performance that can be manufactured in the real industry. In other
words, the results of the optimization process through the CFD simulation which can be
directly related to industrial manufacturing should include considering uncertainties that
might appear in the manufacturing process such as tolerances. As design variables in the
manufacturing process have uncertainties, engineers should design products that satisfy
the constraints of engineering problems as well as reliability in terms of the quality of
products. To obtain the optimal point which satisfied both constraints and reliability, RBDO
process [30] was suggested in this paper and the general schematic is shown in Figure 2.

3.1. General Formulation of RBDO

In general, the definition of RBDO problem can be mathematically expressed as follows:

Minimize f (d) (56)

Subject to P
{

Gj(X) ≤ 0
}
< PTar

f j
, j = 1, . . . , nc (57)

dL ≤ d ≤ dU, d ∈ Rnd, X ∈ Rnr (58)

Here, f denotes the objective function, d denotes the vector of design variables which
means the average of the vector of random variables, X. Gj(X) represents the jth deter-
ministic constraint functions, thus if Gj(Xi) is less then 0, the design point Xi would be
structural/performance failure point in terms of jth constraint Gj. Moreover, P represents the
probability of failure, thus PTar

fj
means target probability of failure in terms of jth constraint.

dL and dU represent the upper bound and lower bound of the vector of design variables,
respectively. nc and nd denote the number of probabilistic constraints and number of
design variables, respectively, and nr denotes the number of random variables. Equation
(57) expresses the probabilistic constraint of RBDO which includes probabilistic conditions.
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In order to determine whether Equation (57) is satisfied, the probability of failure should
be calculated. In general, the probability of failure can be calculated as follows:

PF = P{X ∈ ΩF} = P
{

Gj(X) ≤ 0
}
=
∫

ΩF

hX(X)dX = E
[
IΩF(X)

]
(59)

Here, E[·] denotes the expectation operator and hX(X) denotes the joint probability
densigy function (JPDF) of all random variables. ΩF and IΩF which means that the failure
sets are expressed as follows:

ΩF =
{

X : Gj(X) ≤ 0
}

(60)

IΩF(X) =
{

1, i f Gj(X) ≤ 0
0, otherwise

(61)

Stochastic sensitivity can be obtained from partial differentiation about PF and is
expressed as follows:

∂PF(d)
∂di

=
∂

∂di

∫
ΩF

hX(X)dX (62)

3.2. Sampling-Based RBDO

In the case of problems where physical phenomena were complexly overlapped,
multiple integrations on JPDF must be performed in the failure region for reliability anal-
ysis, which cannot be calculated through mathematical methods [31]. As an alternative,
sampling-based methods have been developed along with various approximate analysis
methods such as the second-order reliability method (SORM) or the first-order reliability
method (FORM) [32–35]. In particular, sampling-based methods such as Monte Carlo sim-
ulation (MCS) can be applied to many optimization problems regardless of the complexity
of the problem [36]. When the probability of failure is obtained through sampling-based
methods, Equations (59) and (60) can be modified as follows [37]:

P
{

Gj(X) ≤ 0
} ∼=

1
M

M

∑
k=1

IΩF

(
X(k)

)
(63)

∂PF(d)
∂di

∼=
1
M

M

∑
k=1

IΩF

(
X(k)

)
s(1)di

(
X(k)

)
(64)

Here, X(k) is kth realization of X and M denotes number of samples of MCS. s(1)di
(X)

represents the first-order score function, if design variables are statistically independent
each other, it can be expressed as follows [37]:

s(1)di
(X) ≡ ∂lnhX(X)

∂di
=

∂lnhXi (Xi)

∂di
(65)

The marginal probability density function (Marginal PDF) and the cumulative distri-
bution function (CDF) of normal distribution can be obtained analytically, and are shown
in Equations (66) and (67) respectively.

hX(X) =
1√
2πσ

e−0.5[ x−µ
σ ]

2

(66)

HX(X) =
1√
2π

∫ x−µ
σ

−∞
exp

(
−1

2
ζ2
)

dζ (67)
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Therefore, using the sampling-based analysis method, the probability of failure or sensitivity
of the probabilistic constraint can be directly obtained through Equations (63) and (64). More
importantly, the actual values for M samples of MCS should be obtained, however it might
be impossible to obtain the actual value through experiment. In the case of simulation, it is
extremely inefficient to obtain simulation results at M points in every step. Hence, a surrogate
model was employed for replacing CFD simulation or experiments [38,39]. The general flow of
sampling-based RBDO using a surrogate model is shown in Figure 3.
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3.3. Metamodeling (Surrogate)

MLP is considered one of the best surrogate models based on a neural network’s
structure. Over the past few years, the model has been seen to be used exclusively for
predictions in the field of product design and engineering. The MLP as seen in Figure 4a is
generally a three-layered model which consists of the input layer, hidden layer, and output
layer. In the present study, an MLP having a sigmoid activation function in the hidden
layer was constructed, trained, and tested. The complete framework of the model and the
set of equations that constitute them are explained as follows:

sigmoid =
1

1 + e−x (68)
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Since the MLP works based on matrix calculations in general, the inputs which usually
consist of training data are represented in the form of a matrix which is presented in
Equation (69).

X =

x11 · · · xN1
...

. . .
...

x1d · · · xNd

 (69)

where, X represents the matrix of N training data and d represent the number of design
variables considered in the optimization problem.

The second layer, also known as the hidden layer, consists of nodes that are connected
to the nodes of the input layer and have weights between them. The weights are represented
as a matrix and are given in Equation (70) as follows,

Winput−hidden layer =

w11 · · · wd1
...

. . .
...

w1p · · · wdp

 (70)

where, p represents the number of weights in the hidden layer.



Energies 2024, 17, 1882 12 of 27

The movement of data from the input to the hidden layer is known as the feed-forward
process. The input to the hidden layer is nothing but the product of weights and the training
data and is given in Equation (71).

net =

w11 · · · wd1
...

. . .
...

w1p · · · wdp




xn1
xn2

...
xnd

 =


xn1w11 + xn2w21 + . . . xndwd1
xn1w12 + xn2w22 + . . . xndwd2

...
xn1w1p + xn2w2p + . . . xndwdp

 (71)

As discussed earlier, the nodes of the hidden layer are embedded with a sigmoid
activation function as a result of which, the data (net) entering the nodes of the hidden
layer become activated and can be represented in Equation (72) as follows:

h = sigmoid(net) =


h1
h2
...

hp

 =


sigmoid(xn1w11 + xn2w21 + . . . xndwd1)
sigmoid(xn1w12 + xn2w22 + . . . xndwd2)

...
sigmoid

(
xn1w1p + xn2w2p + . . . xndwdp

)
 (72)

where, h represents the output of the hidden layer upon activation. The output h of the
hidden layer is further processed to the output layer by linearly combining them with the
weights between the output layer and the hidden layer. The weights between the output
and hidden layer are given in Equation (73) as,

Whidden layer−output =

w11 · · · wp1
...

. . .
...

wm1 · · · wmp

 (73)

Furthermore, the linear summation of Whidden layer−output × h to the output layer is
activated by a sigmoid function and then presented as the outputs of the MLP and is given
in Equation (74) as follows:

outputk = sigmoid
(

wk1h1 + wk2h2 + . . . wkphp

)
(74)

where, k denotes the kth objective function.
The learning process of MLP includes multiple feed-forward and back-propagation

processes. Each pass of feed-forward and back-propagation is called an epoch that can be
considered a hyperparameter. The model is able to minimize the error and predict approxi-
mate results by performing multiple epochs and optimizing the model’s hyperparameters
like the learning rate and number of nodes in the hidden layers.

4. Results and Discussion
4.1. Experimental Validation of a 3D PEMFC Model and Construction of the MLP Models

The 3D, multi-scale, and multi-phase PEMFC model, delineated in Section 2, under-
went validation against experimental data to establish its accuracy. Figure 5 provides visual
depictions of the intricate experimental configuration and the individual cell hardware.
This PEMFC single cell consisted of anode and cathode GDLs, a catalyst-coated membrane
(CCM), gaskets, and BPs, which included a machined flow field. The anode and cath-
ode GDLs employed SGL 25 BC with a thickness of 235 µm, provided by SGL Carbon,
Germany. The CCM, supplied by Vinatech in South Korea, had an overall thickness of
38 µm. It comprised a PEM (Nafion NR212 with a thickness of 20 µm), and anode and
cathode catalyst CLs with a Pt loading of 0.4 mg/cm2. Teflon gaskets and sub-gaskets
were applied to seal the cell (active area was 3 × 3 cm2), with thicknesses of 105 µm and
170 µm, respectively. These PEMFC components were assembled with a clamping pressure
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of 20 kgf/cm2, taking into account the compression of the GDLs to prevent any leakage.
The experimental conditions are represented in Table 7 and the 3D PEMFC simulation
was conducted to secure the validity of the model. As depicted in Figure 6, the PEMFC
model precisely replicated the polarization characteristics of the experimental cell, thereby
substantiating the model’s accuracy and validity. This validated 3D PEMFC model was
subsequently employed to produce sample data essential for the training of MLP-based
surrogate models. The MLP was trained within a defined effective design space, which is
characterized as follows.

Maximize Vcell = f (wland, wch, dch) (75)

Minimize ∆P = f (wland, wch, dch) (76)

subjected to


wland, 0.3 mm ≤ wland ≤ 1.00 mm
wch, 0.3 mm ≤ wch ≤ 2.00 mm
dch, 0.3 mm ≤ dch ≤ 2.00 mm

(77)
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Figure 6. Comparison between the simulated polarization curves and the corresponding experimental
data under specified anode and cathode operational conditions: anode/cathode pressure (Pa/Pc) at
2/2 bar, stoichiometry (ξa/ξc) at 1.5/2.0, and relative humidity (RHa/RHc) at 100%/100%. The cell
temperature was consistently maintained at 333.15 K [40].
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After establishing the optimization problem, our focus shifted to the construction of
surrogate models based on MLP networks. Using Latin hypercube sampling (LHS) depicted
in Figure 7, we generated 121 sample points. For each, the cell voltage (Vcell), pressure
drop (∆P), and standard deviation of current density distribution (σI) were computed via a
comprehensive 3D, two-phase, multi-scale PEMFC model. In particular, σI was estimated
by using local current density values (Ii) within the membrane as follows:

σI =

√
∑N

i=1
(

Ii − Iavg
)2

N − 1
(78)
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Figure 7. Cont.
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The resulting dataset, comprising V_cell, ∆P, and σ_I, was divided into training
(100 samples) and testing (21 samples) subsets to train and validate three surrogate models,
respectively, for each output variable. Model performance was evaluated using adjusted
R-squared and root mean square error (RMSE) metrics, as shown in Figure 7. As expounded in
Section 3.3, the MLP models demonstrated robust prediction capabilities for highly nonlinear
datasets compared to alternative surrogate models. The training set achieved an adjusted
R-squared value of 0.9897 and RMSE values of 25 mV for V_cell, 0.9921 and 0.8464 Pa/cm
for ∆P, and 0.9324 and 0.0694 A/cm2 for σ_I. Furthermore, the MLP’s efficacy was tested
against 21 randomly generated LHS data points, with the error analysis presented in Figure 7.
The test data exhibited an adjusted R-squared value of 0.9961 with RMSE values of 8 mV for
V_cell, 0.9920 and 0.4979 Pa/cm for ∆P, and 0.9589 and 0.0462 A/cm2 for σ_I. These error
metrics decisively confirmed the MLP’s adeptness at processing nonlinear data.

4.2. Comparative Analysis of Single-Objective and Multi-Objective Optimization Methods

The procedure to identify the optimal design point on the response surface with the aid
of a trained MLP model was executed. Through simulation, the response surface, which was
informed by the single cell voltage objective function, was transformed to represent stack
power density,

.
Pstack in kW/L, incorporating geometric considerations. In order to optimize

the algorithm, PSO was employed to find the optimal point. As an algorithm optimization,
PSO provides efficient performance. In detail, in PSO, particles share information with each
other and seek the optimal solution, thus even if a particle is trapped in the local optimal,
it can escape through particles including the global optimal. Through PSO, a deterministic
optimization algorithm, the optimal point is represented in Table 1. The projected perfor-
mance at this design point was 3.252 kW/L at the operating current density of 1.43 A/cm2,
demonstrating a marked improvement of approximately 1.585 kW/L over the baseline stack
power density. This enhancement stems from a substantial narrowing of the land width
(wland) within the parallel channel flow configuration, which improved the oxygen transfer
beneath the land to the reactive zones, thereby diminishing concentration overpotentials.
Notably, the channel depth (dch) was reduced to less than a third of that of the reference stack,
yielding gains not only in oxygen supply efficiency to the GDL but also in reducing the stack’s
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overall volume. Nonetheless, this decrease in dch led to an increased pressure drop (∆P),
highlighting the necessity for multi-objective optimization to balance the enhancement of
stack power density against pressure drop mitigation. A decrease in dch is conducive to stack
power density improvements due to volume reduction, yet it exacerbates the ∆P, suggesting
a potential trade-off between these objectives. This interplay is analyzable via the construction
of a Pareto front using the NSGA-2 multi-objective algorithm. The fidelity of the MLP model
for pressure drop, employed in the Pareto front construction, is corroborated by Figure 7b,
and the resultant Pareto front is depicted in Figure 8.
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Figure 8. Comparison of the pareto front derived from multi-objective optimization, which focuses on
stack power density (

.
Pstack) and pressure drop (∆P), with the single-objective optimization’s optimal

point (OPsgl) achieved through particle swarm optimization (PSO). For all points considered, the
operating current density was maintained at 1.43 A/cm2.

As observed in Figure 8, the optimal solution obtained via single-objective optimiza-
tion resided at the extremity among the Pareto solutions, implying neglect of pressure drop
considerations. For instance, at a 4 Pa/cm pressure drop as depicted in the optimum point
via multi-objective optimization, OPmulti, the stack power density marginally decreased
from 3.252 kW/L to roughly 2.821 kW/L relative to the optimum point via single-objective
optimization, OPsgl , albeit with a substantial pressure drop advantage of approximately
26 Pa/cm. This observation indicates that an optimal solution predicated solely on stack
power density might not always be suitable, thereby affirming the utility of multi-objective
optimization that incorporates pressure drop as a concurrent objective function, offering a
more viable optimal design alternative.

4.3. RBDO Accounting for Output Constraints and Production Tolerances of Design Variables

To identify a design point that was both optimal and realistic, wes employed three MLP-
based surrogate models for

.
Pstack, ∆P, and σI, as illustrated in Figure 7. Furthermore, we

established the following constraints for ∆P and σI.

Maximize
.
Pstack(wland, wch, dch) (79)

Subject to
{

∆P < 8 Pa/cm
σI < 0.3 A/cm2 (80)

Following Equations (79) and (80), we performed constraint optimization on the
response surfaces developed using three MLP-based surrogate models wherein the con-
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strained optimal solution was traced using the SQP algorithm. Within the design space, the
constrained optimum point (COP) is detailed in Table 1, and the stack power density was
predicted to be 3.008 kW/L. Although this was approximately a 7.51% decrease compared
to the stack power density at the single-objective based deterministic optimum point (DOP),
it can be considered a realistic design value when other performance indicators (∆P and
σI) are taken into account. Figure 9 represents the contour of pressure drop and current
density distribution in DOP and COP. In terms of current density, both cases showed a
similar trend along the channel, thus the standard deviation of current density obtained
was 0.2217 in DOP and 0.2269 in COP, respectively. However, in terms of pressure drop,
the COP showed it had significantly improved compared with the DOP case. Constraint in
pressure drop was set around 8 Pa, the maximum pressure in COP represents under 8 Pa.
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∆P
[Pa/cm]

Reliability

wland
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Consequently, this study implemented an additional probabilistic optimization process
that accounted for potential production errors, thereby enhancing the reliability of the
results. In mass production, it is assumed that the distribution of errors in design variables
follows a normal distribution centered around the optimal values at the COP as depicted
in Figure 11. Process capability quantifies the variability in the quality of products from
a well-managed process, with the process capability index (Cp) serving as a method for
this quantification [41,42]. This index is a statistical measure that assesses if a process is
capable of consistently producing parts of high quality within predefined specification
limits. It calculates the ratio between the permissible variation, namely the specified limits
of quality, and the actual variation observed in the process. When specific upper and lower
specification limits are established, the process capability can be mathematically expressed,
typically illustrated in Equation (81),

Cp =
USL − LSL

6σ
(81)

where USL and LSL denote the upper and lower specification limits for process quality.
When Cp exceeds 1, the output of the process is well within the acceptable range, surpassing
the defined specification limits. A Cp of exactly 1 signifies that the process output is at the
threshold, precisely meeting the specification limits. Conversely, a Cp below 1 indicates
that the process output fails to achieve the established specification limits. In this study,
we established the minimum acceptable criterion within the permissible range as a Cp
of 1. We assumed that the upper and lower specification limits for all design variables
(wland, wch, dch) were ±0.1 mm. Based on these limits, we calculated the standard deviation
(σ) to determine the distribution of the input variables.
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Figure 10. 2D surface plot including deterministic optimal point (DOP) and constrained optimal
point (COP) with feasible and infeasible regions: (a) channel depth (dch) vs. land width (wland),
(b) channel depth (dch) vs. channel width (wch), and (c) channel width (wch) vs. land width (wland).
For all points considered, the operating current density was maintained at 1.43 A/cm2.

At this design point, variables adhered to numerical distributions inclusive of toler-
ances, consequently shaping the distribution of the objective function values. This distribu-
tion reflected the probability of constraint satisfaction at the optimal point, as illustrated in
Figure 12. For the baseline case of an unconstrained optimum (DOP), constraints were ig-
nored, resulting in a distribution within the infeasible region. In contrast, for COP, solutions
complied with the constraint surface, yielding approximately half of the solutions within
the feasible region, and the remainder distributed across the infeasible domain. Upon ele-
vating the constraint satisfaction probability to 99% for all parameters (i.e., ∆P < 20 Pa/cm
and σI < 0.3 A/cm2), a notable shift from COP to reliability based optimum point with
target reliability 99% (OP99%) occurred, detailed in Figure 11 and Table 1. Subsequently,
the solutions for OP99% predominantly resided in the feasible region, as shown by the
objective function outcomes in Figure 12, with a near-universal compliance (approximately
99%). The reliability calculations indicated a 99.1% confidence level for ∆P < 8 Pa/cm
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and a propensity to fully meet σI < 0.3 A/cm2. Addressing the errors inherent in actual
production led to a verified reduction in stack power density, necessitating a performance
compromise from 3.008 kW/L at COP to 2.918 kW/L at OP99%, a reduction of about 3.0%.
This finding elucidated the intrinsic trade-off between the reliability of objective func-
tion constraints and the system’s operational efficacy. Key simulation results at various
optimum points are compared in the Section 2.
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Figure 12. 3D scatter plot illustrating the normal distribution of the DOP, the COP, and the OP99%

(RBDO with a target reliability greater than 99%). These distributions were modeled using the
specification limits of ±0.1 mm and a process capability index (Cp) of 1.

Moreover, Figure 13 compares and analyzes the performance under constraint con-
ditions at reliabilities of 90% and 80%. The corresponding optimal solutions are detailed
in Table 1, from which 50,000 samples were generated, taking into account the tolerances
at these optimal points. The results, illustrated in Figure 13a and 13b for 90% and 80%
reliability, respectively, showed an increase in the number of design points within the
infeasible region when compared to the 99% reliability case. Conversely, as reliability
decreased, a marginal improvement in stack power density was noted, with values rising
to 2.958 kW/L and 2.974 kW/L for 90% and 80% reliability, respectively. To facilitate a
more instinctive comprehension, Figure 14 depicts a 2D distribution of the 50,000 samples
according to ∆P and

.
Pstack, elucidating the trade-off between the reliability of the constraint

conditions and the objective function.

Energies 2024, 17, x FOR PEER REVIEW 22 of 27 
 

 

 
Figure 12. 3D scatter plot illustrating the normal distribution of the DOP, the COP, and the OP99% 

(RBDO with a target reliability greater than 99%). These distributions were modeled using the spec-
ification limits of ±0.1 mm and a process capability index (Cp) of 1. 

Moreover, Figure 13 compares and analyzes the performance under constraint con-
ditions at reliabilities of 90% and 80%. The corresponding optimal solutions are detailed 
in Table 1, from which 50,000 samples were generated, taking into account the tolerances 
at these optimal points. The results, illustrated in Figure 13a and 13b for 90% and 80% 
reliability, respectively, showed an increase in the number of design points within the 
infeasible region when compared to the 99% reliability case. Conversely, as reliability de-
creased, a marginal improvement in stack power density was noted, with values rising to 
2.958 kW/L and 2.974 kW/L for 90% and 80% reliability, respectively. To facilitate a more 
instinctive comprehension, Figure 14 depicts a 2D distribution of the 50,000 samples ac-
cording to ∆𝑃 and 𝑃ሶ௦௧௔௖௞, elucidating the trade-off between the reliability of the constraint 
conditions and the objective function. 

 
(a) 

Figure 13. Cont.



Energies 2024, 17, 1882 22 of 27Energies 2024, 17, x FOR PEER REVIEW 23 of 27 
 

 

 
(b) 

Figure 13. 3D scatter plot displaying the normal distributions for (a) OP90% with a target reliability 
greater than 90%, and (b) OP80% with a target reliability greater than 80%, in comparison to OP99% 
which had a target reliability of greater than 99%. These distributions were constructed within the 
specification limits of ±0.1 mm and under a process capability index (Cp) set at 1. 

  
(a) (b) 

Figure 14. The distributions and histograms of the output at (a) OP90% with a target reliability of 
greater than 90%, and (b) OP80% with a target reliability of greater than 80%, in comparison to OP99% 
which had a target reliability of greater than 99%. 

5. Conclusions 
The study presents a comprehensive 3D, multi-scale, and multi-phase model of PEM-

FCs, validated against experimental data. The model accurately replicated polarization 
characteristics, establishing its validity. It was then used to generate sample data for train-
ing MLP surrogate models. LHS generated 121 sample points, computing cell voltage, 
pressure drop, and standard deviation of current density distribution for each. The MLP 
models showed robust prediction capabilities for nonlinear datasets, with high adjusted 
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and PSO to maximize stack power density. This yielded a significant improvement over 
baseline density by narrowing channel width and reducing channel depth. 

Figure 13. 3D scatter plot displaying the normal distributions for (a) OP90% with a target reliability
greater than 90%, and (b) OP80% with a target reliability greater than 80%, in comparison to OP99%

which had a target reliability of greater than 99%. These distributions were constructed within the
specification limits of ±0.1 mm and under a process capability index (Cp) set at 1.

Energies 2024, 17, x FOR PEER REVIEW 23 of 27 
 

 

 
(b) 

Figure 13. 3D scatter plot displaying the normal distributions for (a) OP90% with a target reliability 
greater than 90%, and (b) OP80% with a target reliability greater than 80%, in comparison to OP99% 
which had a target reliability of greater than 99%. These distributions were constructed within the 
specification limits of ±0.1 mm and under a process capability index (Cp) set at 1. 

  
(a) (b) 

Figure 14. The distributions and histograms of the output at (a) OP90% with a target reliability of 
greater than 90%, and (b) OP80% with a target reliability of greater than 80%, in comparison to OP99% 
which had a target reliability of greater than 99%. 

5. Conclusions 
The study presents a comprehensive 3D, multi-scale, and multi-phase model of PEM-

FCs, validated against experimental data. The model accurately replicated polarization 
characteristics, establishing its validity. It was then used to generate sample data for train-
ing MLP surrogate models. LHS generated 121 sample points, computing cell voltage, 
pressure drop, and standard deviation of current density distribution for each. The MLP 
models showed robust prediction capabilities for nonlinear datasets, with high adjusted 
R-squared and low RMSE values. An optimal design point was identified using the MLP 
and PSO to maximize stack power density. This yielded a significant improvement over 
baseline density by narrowing channel width and reducing channel depth. 
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which had a target reliability of greater than 99%.

5. Conclusions

The study presents a comprehensive 3D, multi-scale, and multi-phase model of PEM-
FCs, validated against experimental data. The model accurately replicated polarization
characteristics, establishing its validity. It was then used to generate sample data for train-
ing MLP surrogate models. LHS generated 121 sample points, computing cell voltage,
pressure drop, and standard deviation of current density distribution for each. The MLP
models showed robust prediction capabilities for nonlinear datasets, with high adjusted
R-squared and low RMSE values. An optimal design point was identified using the MLP
and PSO to maximize stack power density. This yielded a significant improvement over
baseline density by narrowing channel width and reducing channel depth.
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However, single-objective optimization prioritized stack power density, while multi-
objective optimization considered pressure drop as well. Results showed that solely opti-
mizing for power density may neglect pressure drop concerns, highlighting the importance
of multi-objective optimization. Constraint optimization using surrogate models predicted
a COP considering both power density and pressure drop, which was 7.51% lower in per-
formance than the DOP. However, the COP may not always lie within feasible regions due
to statistical production variances. To address this, a probabilistic optimization process was
implemented to account for production errors, assessing process capability using the Cp.
This ensured reliability by quantifying the variability in product quality within predefined
specification limits, with a Cp of 1 indicating optimal process performance. The study es-
tablished upper and lower specification limits for design variables and calculated standard
deviations to determine the distribution of input variables, enhancing the reliability of
results in realistic production.

In terms of production process, at the COP, solutions adhered to constraints, with
approximately half within the feasible region. Increasing constraint satisfaction probability
to 99% shifted to a reliability-based optimum point (OP99%), where nearly all solutions
resided in the feasible region. Reliability calculations showed a 99.1% confidence level for
pressure drop and a tendency to meet current density distribution requirements. Account-
ing for production errors led to a slight reduction in stack power density from 3.008 kW/L
at COP to 2.918 kW/L at OP99%. Additionally, the study compared performance at reliabili-
ties of 90% and 80%, observing more design points within the infeasible region as reliability
decreased. However, a marginal improvement in stack power density was noted at lower
reliabilities. Overall, the analysis highlights the trade-off between constraint reliability and
system performance.
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Nomenclature

a Ratio of active surface area per unit electrode volume, m2/m3

or water activity
A Area, m2

C Molar concentration of species, mol/m3 or capability
COP Constrained optimal point
D Species diffusivity, m2/s
DOP Deterministic optimal point
d Diameter or vector of design variables or number of input

variables or depth
E Activation energy, kJ/mol or expectation operator
EW Equivalent weight of a dry membrane, kg/mol
F Faraday’s constant, 96,487 C/mol
f Objective function
G Global best or deterministic constraint function
H Joint cumulative density function
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h Joint probability density function or output of the
hidden layer upon activation

i0 Exchange current density, A/cm2

I Operating current density, A/cm2 or indicator function
j Transfer current density, A/cm3

k Thermal conductivity, W/m·K or relative permeability
K Hydraulic permeability, m2

M Number of Monte Carlo samples
MW Molecular weight, kg/mol
N Number of training points
n Number of electrons transferred in the electrode reaction
nc Number of probabilistic constraints
nd Number of design variables
net Product of weights and the training data
nr Number of random variables
OP Optimal point
P Pressure, Pa
P Waste product or probability function or power density, kW/L
p Number of weight coefficients in each second-order equation

or number of
weights in the hidden layer

q Interpolation coefficient
R Real space
s Liquid saturation or the first-order score function
S Source term in the transport equation
T Temperature, K
u Concentration of chemical species U
→
u Fluid velocity and superficial velocity in a porous medium, m/s
V Voltage
v Concentration of chemical species V
W Matrix of weights
w Width or weight
wt Weight ratio
X Vector of random variables or matrix of design variables
X Random variable
x Input variable
z Transport resistance coefficient
Greek symbols
α Transfer coefficient
γ Reaction order or local density
δ Thickness, m
ε Volume fraction
η Surface overpotential, V
θ Contact angle of the gas diffusion layer
κ Proton conductivity, S/m
λ Water content
µ Mean
ξ Stoichiometry flow ratio
ρ Density, kg/m
σ Electronic conductivity, S/m or standard deviation
τ Viscous shear stress, N/m2

Φ Standard normal cumulative density function or phase potential
Ω Oxygen transport resistance
Ω Failure set
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Superscripts
c Catalyst coverage coefficient
eff Effective
g Gas
l Liquid
mem Membrane
ref Reference value
Tar Target
Subscripts
a Anode
C Carbon
CL Catalyst layer
c Cathode
cell Cell
ch Gas channel
e Electrolyte
F Failure
gdl Gas diffusion layer
I Current density
i Species or ith random variables
in Channel inlet
int Interface
j jth constraint
k kth objective function
L Lower
land Land
mem Membrane
multi Multi objective optimization
p Process
s Solid or Surface
sgl Single objective optimization
stack Stack
T Temperature
U Upper
u Momentum equation
w Water
0 Initial conditions or standard conditions, i.e., 298.15 K

and 101.3 kPa (1 atm)
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