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Abstract: This review underscores the pivotal role of Cognitive Systems (CS) in enhancing energy
efficiency within the industrial sector, exploring the application of sophisticated algorithms, data
analytics, and machine learning techniques to the real-time optimization of energy consumption. This
methodology has the potential to reduce operational expenses and further diminish environmental
repercussions; however, it also leverages data-driven insights and predictive maintenance to foresee
equipment malfunctions and modulate energy utilization accordingly. The viability of integrating
renewable energy sources is emphasized, supporting a transition towards sustainability. Furthermore,
this research includes a bibliometric literature analysis from the past decade on the deployment of CS
and Artificial Intelligence in enhancing industrial energy efficiency.

Keywords: cognitive systems; energy efficiency industry; cognitive computing applications; artificial
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1. Introduction

In the continuously evolving landscape of industrial technology, the quest for en-
ergy efficiency has emerged as a cornerstone for sustainable and responsible operational
practices. As various sectors confront the dual challenges of accommodating increasing
demands while concurrently striving to reduce environmental impacts, the incorporation
of avant-garde technologies has been recognized as a hallmark of innovation. Cognitive
Systems (CS) are leading this technological advancement and stand at the cusp of trans-
forming how industrial entities manage and refine their energy consumption strategies.
By harnessing the potential of Artificial Intelligence (AI) and Machine Learning (ML),
these systems offer a promising path for enhancing energy utilization efficiency, thereby
contributing significantly to the global trend toward sustainability.

According to the European Parliament, energy efficiency involves minimizing en-
ergy consumption for equivalent activities or results, thereby enhancing the efficiency
of energy use. Achieving this requires adopting more efficient technologies, improving
consumption processes and practices, and optimizing energy systems. Crucially, energy
efficiency plays a fundamental role in reducing greenhouse gas emissions, decreasing
energy expenditures, and promoting sustainable development. This concept underscores
the importance of strategic investments in technology and process optimization to achieve
broader environmental and economic benefits.

A Cognitive System is engineered to simulate the operational dynamics of the human
brain, aiming to achieve objectives that include learning, reasoning, perception, and infer-
ence. It is designed to facilitate decision-making processes and, in specific scenarios, to
execute those decisions autonomously. Furthermore, such systems are able to interact with
their environment in ways that are considered intelligent. CS can be embodied in various
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forms, including applications, agents, services, and Application Programming Interfaces
(APIs), thereby offering a versatile framework for enhancing computational intelligence
across diverse sectors.

The multifaceted capabilities of these systems enable them to process vast amounts of
data, recognize patterns, and make informed decisions, thus serving as a pivotal technology
in advancing energy efficiency and operational optimization in industrial settings. CS
allow for cooperation between humans and computers in decision-making and controlling
complex situations without an inflexible reliance on predetermined programs. From the
beginning of this research field, studies suggest that this symbiotic partnership performs
intellectual operations much more effectively than any human could without a performance
enhancer [1].

In this line of argument, according to Kelly and Hamm [2], a new frontier has been
crossed in the evolution of computing over the last decade, entering the era of CS. These
systems promise to navigate complexity and assist individuals and organizations in making
better decisions. Christensen et al. [3] observed that to achieve this objective, information
from multiple sensory modalities must be used for decision-making, including simple
haptics, vision, proprioception, and speech. The tasks related to speech and Natural
Language Recognition (NLR), as well as vision and haptic senses, are addressed through
ML systems, based on Deep Learning Networks (DLNs), which are able to provide the
necessary features for the proper performance of these tasks.

Despite the aforementioned, Elnagar and Thomas [4] argue that Cognitive Computing
(COC) seeks to integrate human cognition into computerized models. However, there are
currently no scientific classifications to accurately outline the essence of COC. They argue
that the absence of a unified interpretation of what constitutes COC has resulted in subpar
COC research within information systems. Consequently, it is imperative to initially establish
a clear identification of COC as a phenomenon to guide and pinpoint potential research
areas within information systems, before starting to generate a programming code capable
of solving certain problems. This is what Visvizi [5] highlights in his brief definition of AI,
offering a nuanced perspective on the terminology of computational intelligence. When coded
in Python, it is termed ML; conversely, when conceptualized in PowerPoint, it is designated
as AI, to which the term Cognitive System can also be added for a broader interpretation.

Gamez [6] propels the conversation on CS and COC forward by devising approaches
and methodologies aimed at delineating the phenomenology of Machine Consciousness:
a machine endowed with the capability to perform processes akin to consciousness, by
integrating various data sources to deduce outcomes, possesses the capacity to analyze and
comprehend industrial processes, thereby pinpointing areas for enhancement and boosting
operational efficiency. Equipped with an awareness of energy consumption and an insight
into system operations, such a machine could devise strategies to diminish energy usage
without compromising efficiency. Simultaneously, it could foresee potential failures in
equipment and systems, facilitating the adoption of predictive maintenance strategies
to forestall unforeseen interruptions. These disruptions detrimentally impact the energy
consumption, as the initiation and cessation phases of industrial machinery are highly
energy-intensive. A conscious machine could foresee these scenarios and proactively adjust
to shifts in operational conditions or energy requirements, thereby optimizing performance.
Furthermore, it could effectively interact with other systems and machines, encouraging
collaboration and coordination in intricate industrial settings.

The component of the systems that oversee AI, alongside COC, must conform to a
specific framework referred to as Cognitive Architecture (CA). Therefore, a prerequisite for
achieving Machine Consciousness, also known as Artificial Consciousness, is to use a CA
that is capable of COC as a basis.

The subsequent diagram (Figure 1) illustrates the interrelationship among Artificial
Consciousness, COC, AI, and additional pertinent disciplines within the scope of this research.
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Regarding COC, this research is confronted with the challenge of achieving a COC 
capable of leading to CS and, ultimately, what is termed Artificial Consciousness. For this 
purpose, a foundational CA, capable of facilitating the desired COC, is needed. 

Christensen et al. [3] adds evidence concerning the structure and nature of COC, 
highlighting that researchers engaged in the CoSy project did not set long-term objectives 
for their project, or even a significant subset thereof to cover the scope of their work. None-
theless, they emphatically asserted that unless researchers focus on synthesizing the dis-
parate elements of the puzzle they have been examining in isolation, they will fail to ef-
fectively grasp the broader context, akin to missing the forest for the trees. They acknowl-
edged that the challenges are so formidable that some may even look futile. The approach 
recommended in addressing this conundrum involves a meticulous analysis of the long-
term goal, using it as a cornerstone to establish attainable objectives. This strategy facili-
tates establishing short- and medium-term goals that are both realistic and directional, 
guiding us towards the correct trajectory. Consequently, the following question arises: 
what CA are currently available with the capability of supporting such a comprehensive 
integration of COC? 

Scarcello and Mastroianni [7] highlight that one of the earliest systems designed for 
controlling energy consumption through temperature regulation is the Heating, Ventila-
tion, and Air Conditioning (HVAC) system. In contemporary settings, climate control is 
managed via the Internet, utilizing equipment such as temperature sensors and actuators 
for air conditioner activation. These components are interconnected through Internet of 
Things (IoT) gateway hardware, employing Wi-Fi and Bluetooth for internal communica-
tions. This configuration leverages cloud computing architecture and IoT support to en-
hance the traditional HVAC system, contributing to the development of cognitive build-
ings. Furthermore, the traditional HVAC system’s capabilities can be expanded with IoT 
integration. By combining HVAC systems with sensors and AI, more sophisticated HVAC 
solutions can be created. In this context, Amadeo et al. [8] demonstrate the efficacy of the 
COGITO platform in managing temperature and, consequently, reducing energy con-
sumption in smart buildings. Similarly, Cicirelli et al. [9] explores thermal comfort man-
agement within buildings, which also contributes to reducing energy consumption by ad-
dressing various environmental factors. 

Likewise, CS within the industry, particularly those focused on enhancing energy 
efficiency, hold a transformative potential. Leveraging data-driven insights and advanced 
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A series of technological layers that progressively approximate the outcomes of pro-
cesses inherent to human cognition can be observed therein.

2. State of the Art
2.1. Cognitive Computing

Regarding COC, this research is confronted with the challenge of achieving a COC
capable of leading to CS and, ultimately, what is termed Artificial Consciousness. For this
purpose, a foundational CA, capable of facilitating the desired COC, is needed.

Christensen et al. [3] adds evidence concerning the structure and nature of COC,
highlighting that researchers engaged in the CoSy project did not set long-term objectives
for their project, or even a significant subset thereof to cover the scope of their work.
Nonetheless, they emphatically asserted that unless researchers focus on synthesizing
the disparate elements of the puzzle they have been examining in isolation, they will fail
to effectively grasp the broader context, akin to missing the forest for the trees. They
acknowledged that the challenges are so formidable that some may even look futile. The
approach recommended in addressing this conundrum involves a meticulous analysis of
the long-term goal, using it as a cornerstone to establish attainable objectives. This strategy
facilitates establishing short- and medium-term goals that are both realistic and directional,
guiding us towards the correct trajectory. Consequently, the following question arises:
what CA are currently available with the capability of supporting such a comprehensive
integration of COC?

Scarcello and Mastroianni [7] highlight that one of the earliest systems designed for
controlling energy consumption through temperature regulation is the Heating, Ventilation,
and Air Conditioning (HVAC) system. In contemporary settings, climate control is man-
aged via the Internet, utilizing equipment such as temperature sensors and actuators for air
conditioner activation. These components are interconnected through Internet of Things
(IoT) gateway hardware, employing Wi-Fi and Bluetooth for internal communications.
This configuration leverages cloud computing architecture and IoT support to enhance the
traditional HVAC system, contributing to the development of cognitive buildings. Further-
more, the traditional HVAC system’s capabilities can be expanded with IoT integration.
By combining HVAC systems with sensors and AI, more sophisticated HVAC solutions
can be created. In this context, Amadeo et al. [8] demonstrate the efficacy of the COGITO
platform in managing temperature and, consequently, reducing energy consumption in
smart buildings. Similarly, Cicirelli et al. [9] explores thermal comfort management within
buildings, which also contributes to reducing energy consumption by addressing various
environmental factors.

Likewise, CS within the industry, particularly those focused on enhancing energy
efficiency, hold a transformative potential. Leveraging data-driven insights and advanced
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analytics, these systems have the capability to optimize energy consumption in real-time,
thereby significantly reducing operational costs and minimizing environmental impact.
Moreover, predictive maintenance capabilities facilitate the early detection of potential
equipment failures, allowing for timely repairs during off-peak hours, which further
contributes to energy savings.

Overall, the adoption of CS in industrial settings heralds a future where energy effi-
ciency is markedly improved, contributing to sustainability goals and fostering smarter,
more responsive environments. In our background research, we have identified and ana-
lyzed numerous CA. These architectures, while initially specialized on energy consumption
optimization related to maintaining stable temperatures in domestic environments, can
be adapted for industrial use, indicating broad applicability across sectors. These CA and
more are delineated across a wide range of papers and publications analyzed, among which
notable for their adaptability to various scenarios are “4CAPS: An Adaptive Architecture
for Human Information Processing” [10], “ACT-R: A cognitive architecture for modeling cogni-
tion” [11], “ADAPT: A Cognitive Architecture for Robots” [12], “Incremental Object Perception in
an Attention-Driven Cognitive Architecture” [13], “Attention in the ASMO Cognitive Architec-
ture” [14], “Consciousness: The science of subjectivity” [15], “Realistic Behavior Variation in a
BDI-based Cognitive Architecture” [16], “A Unified Architecture for Cognition and Motor Control
Based on Neuroanatomy Psychophysical Experiments and Cognitive Behaviors” [17], “Attention
Mechanisms in the CHREST Cognitive Architecture” [18], “The CLARION Cognitive Architec-
ture” [19], “Introduction to the Soar Cognitive Architecture” [20], “Companion Cognitive Systems:
A step towards human-level AI” [21], “Narrating System Intentionality: Copycat and the Artificial
Intelligence Hermeneutic Network” [22], “Dual Cognitive Architecture” [23], and “A Minimal
Architecture for General Cognition” [24]. These, along with a wide range of additional CA
delineated by Elnagar et al. [25], constitute a pyramidal structure comprising four distinct
sections: at the bottom, the representation of intelligence followed by brain-like hardware,
cognitive algorithms and software, and finally CS at the top of the pyramid.

Based on our background research, seven pertinent criteria were identified regarding
energy efficiency in the industry, where cognitive systems can provide significant value,
detailed as follows:

1. Enhancing production processes through data analysis to pinpoint and correct ineffi-
ciencies.

2. Implementing energy management systems for real-time monitoring and optimization
of energy use.

3. Applying heat recovery technologies with predictive adjustments tailored to produc-
tion demands.

4. Utilizing predictive analytics for efficient machinery and equipment scheduling and
maintenance.

5. Assessing new, high-efficiency machinery investments based on energy performance.
6. Proactively identifying maintenance issues impacting energy efficiency.
7. Tailoring energy-saving training programs using behavioral analysis.

Nearly all the CA analyzed place significant emphasis on the concept of attention, a
concept that the discipline of Deep Learning (DL), particularly through the Transformers
model [26] has begun to explore and capitalize on with notable success. The attention
mechanism, which enables the model to assess the relative importance of different features
within a sequence, mirrors the human ability to focus our attention on specific aspects of
our environment while disregarding others. This process, utilizing our cognitive capacities
in a manner suggestive of consciousness, is an area of growing interest and application [27].

2.2. The Importance of Energy Efficiency in Industry

The World Energy Outlook [28] offers a thorough analysis and strategic perspectives
on the global energy scenario. The analysis for 2023 studied the consequences of structural
shifts in economies and energy consumption, illuminating the developing strategies for
addressing worldwide energy needs, including industrial energy usage.
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The industrial sector is highlighted in this report as the most energy-consuming and
CO2-emitting end-use sector, representing 38% of the total final energy consumption,
and 47% of CO2 emissions, including those from electricity and heat. Energy-intensive
industries, such as iron and steel, chemicals, nonmetallic minerals, nonferrous metals, and
the paper sector, are responsible for nearly 90% of the coal demand in the industry, over
70% of oil, and almost 55% for natural gas [28]. These industries share needs for high
temperatures and long-duration assets.

On the other hand, non-energy-intensive industries, including light industries such
as food and textiles, encompass small and medium enterprises (SME) and have lower
temperature requirements. These industries account for the remaining 30% of the industrial
sector’s demand, with an energy mix primarily composed of electricity (37%), natural gas
(20%), oil (15%), and bioenergy (14%) as shown in Figure 2 [28].
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According to the IEA report [28], 65% of the electricity used by the light industry today
powers motorized systems, which have been the largest source of electricity demand in these
industries over the past decade and are expected to continue to be so. The report notes that
62 countries have implemented energy performance standards for industrial electric motors
as of 2022, covering more than half of the global industrial motor fleet. It also highlights
the potential for improving energy efficiency not just through motor upgrades but also via
system enhancements, such as adjusting electrical capacity to match service requirements.
This can be automated through the use of CS, as reported in this research work.

Furthermore, electrification plays a crucial role in providing heating and cooling
systems, across a broad range of temperature levels, including the use of heat pumps for
low- temperature applications and electric arc furnaces for high-temperature applications.
This is an aspect where CS can also play a crucial role. Moreover, by relying on low-emission
energy sources, electrification additionally reduces the CO2 emissions of the industrial
sector, a goal of vital importance in the current operational framework seeking the smallest
possible ecological footprint in industrial activity.

Various international statutes mandate the implementation of measures to enhance
energy efficiency. DSIRE (Database of State Incentives for Renewables & Efficiency) serves
as a comprehensive repository of information on incentives and policies supporting renew-
able energy and energy efficiency across the United States, making it a key resource for
understanding state-specific financial incentives and policy details.

Furthermore, it is important to highlight Directive (EU) 2023/1791 of the European
Parliament and of the Council, dated 13 September 2023, which sets a compulsory goal
for the EU to reduce its final energy consumption by 11.7% by 2030. This directive also
introduces several strategies to boost energy efficiency within the industry. These strategies
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can effectively utilize the unique capabilities of Cognitive Systems (CS) under discussion.
Generally, these strategies are categorized into two main groups aimed at enhancing
industrial energy efficiency, thereby contributing to global emission reduction and energy
sustainability goals:

It should also be emphasized that Directive (EU) 2023/1791 of the European Parliament
and of the Council, dated 13 September 2023 [29] outlines several measures aimed at
enhancing energy efficiency within the industry. These measures can effectively leverage
the unique capabilities of CS discussed throughout the study. Broadly, these measures fall
into two major categories designed to improve energy efficiency in the industry, thereby
supporting the global goals for emission reduction and energy sustainability:

1. Development of programs that encourage and support SMEs to conduct energy audits
and implement the recommendations derived from such audits. These energy audits,
based on the massive and intelligent collection of data, should be mandatory and
regular for companies with an average annual energy consumption above a certain
threshold, as the energy savings can be significant.

2. Implementation of energy management systems promoting high-efficiency cogen-
eration, allowing the simultaneous production of electric energy and useful heat in
an efficient manner, thereby saving costs. Furthermore, efficient heating and cooling
should be prioritized, evaluating the potential of high-efficiency cogeneration and
efficient heating and cooling in long-term renovation strategies.

Given the potential effectiveness of CS in enhancing industrial energy efficiency, this
raises the question of our research focus on their applications in this sector over recent years.

3. Materials and Methods

This research focuses on identifying documents from the past ten years in the Scopus
database that are related to the use of CS or general AI systems and their applications in
improving energy efficiency within the industry. Titles, common keywords, and abstracts
are utilized in the research as criteria to gain a clear perspective on the trends and directions
of studies in this field.

3.1. ETL-like Methodology

The use of the ETL (Extract, Transform, Load) methodology as a reference in scientific
research provides the necessary tools for data integration, cleaning, and analysis. In our study,
we have outlined the three phases of this methodology according to the following steps.

3.1.1. Data Extraction

Given the purpose of the proposed research, the approach involves conducting a
bibliometric analysis, which includes a descriptive examination of publications over a
specific period. To this end, the query options in Scopus Advanced Search were used. A
ten-year period, from 2013 to 2023, was considered, with data beyond this range excluded
in some analyses, since only one month of 2024 had passed when the query was made,
rendering the data not sufficiently significant for these analyses. The search formula and
filters used in Scopus are based on the following parameters:

TITLE-ABS-KEY ((cognitive AND systems) OR (artificial AND intelligence));
AND TITLE-ABS-KEY (energy AND efficiency AND industry);
AND PUBYEAR > 2013 AND PUBYEAR < 2025;
AND LIMIT-TO (LANGUAGE, “English”);
AND (LIMIT-TO (DOCTYPE, “ar”));
AND (LIMIT-TO (SRCTYPE, “j”));
AND (LIMIT-TO (PUBSTAGE, “final”)).

This is equivalent to requesting all publications from January 2013 until the time of
the query, which was conducted on 31 January 2024. The keywords ‘cognitive systems’,
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‘artificial intelligence’, and ‘energy efficiency industry’ were used. After executing the
search, the metadata were exported in CSV format.

Regarding the quality of the obtained CSV data, Tim Berners-Lee, the father of the
Web, devised a 5-star development scheme for Open Data [30]. This scheme serves as
a benchmark for assessing the quality level of data publication, where more stars indi-
cate higher compliance with the scheme, and each level encompasses the qualities of the
preceding one. Although Scopus is a bibliographic database of abstracts and citations
for the academic literature and is not typically offered as Open Data—being owned and
managed by Elsevier, an academic publishing company—the data that has been utilized in
this academic field are freely accessible. Consequently, the principles of Open Data quality
can be applied to assess the quality of the data used in this bibliometric study.

Thus, to achieve one star, it is necessary to publish data on the Web in any format.
Scopus not only meets this criterion but also goes further by facilitating the linking to specific
articles through their unique identifiers (such as DOI or Scopus ID), thereby enhancing
integration with other web resources and earning it the second star for linkability. Further-
more, Scopus provides data in CSV (Comma-Separated Values) format, an open format not
owned by any company, which supports its accessibility. For the third criterion, Scopus’s
use of URIs (Uniform Resource Identifiers) to denote distinct entities (articles, authors, etc.)
provides precise identification and referencing, aligning with the four-star requirement of
using non-proprietary open formats. Finally, Scopus achieves the fifth star by facilitating
data interconnection and contextual understanding through its citation-linking features.
This allows users to trace citations forward and backward, offering insights into the context
of an article within the broader research landscape. This includes detailing the scientific
output of each author, their articles, and collaborations and allows for integration with other
platforms and services using standardized identifiers, such as linking with ORCID (Open
Researcher and Contributor ID) to connect an author’s work across various databases and
platforms. With all this in mind, it can be concluded that, although the five Open Data stars
cannot be strictly attributed to the quality of the data used for this bibliometric study—since
Scopus data are not Open Data in the strict sense—the high quality and characteristics of
the data justify an analogous assignment of these five stars.

3.1.2. Data Transformation and Loading

The data were initially processed using a spreadsheet to identify and remove records
with incorrect or incomplete information. Subsequently, a preliminary descriptive analysis
was conducted, focusing on countries, authors, and collaborators. The metadata were
further analyzed using VOSviewer software, version 1.6.20. VOSviewer, in addition to
processing numerical data, provides a graphical representation that closely aligns with
human cognitive processes, an alignment we aim to emulate with CS. Additionally, an
analysis of research collaborations between countries was conducted, requiring a minimum
of 10 publications and 25 references for inclusion. For keywords, a threshold of 15 citations
was established.

4. Results

The search in the Scopus database for articles related to CS and AI in energy efficiency
within the industry yielded a total of 814 articles. This indicates a growing trend in research
in this field, in line with the heightened focus on environmental concerns and the increased
use of AI technologies. Notably, in 2024, the number of articles published in just one month
has already surpassed the total for the entire year of 2014. As of 31 January, there were
22 articles published this year compared to 18 in 2014.

In the following graph (Figure 3), the data for 2024 have not been included, despite
surpassing the total number of articles produced in all of 2014 within just a single month.
This omission is due to its comparative insignificance relative to the results observed over
the past decade.
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The main research areas, cited in at least 35 articles, are presented in the table below
(Table 1). It is important to note that the sum of the articles from the listed areas exceeds
100% of the total selected articles in Scopus (814), because an article can be categorized
under more than one research area. For instance, an article might be classified as belonging
to both the Engineering and Mathematics fields.

Table 1. Documents by area.

Area Documents

Engineering 443
Computer Science 402

Energy 189
Mathematics 133

Environmental Science 94
Physics 84

Materials Science 74
Decision Sciences 66

Social Sciences 55
Business, Management and Accounting 53

Earth and Planetary Sciences 37

Among the 814 articles analyzed, participants from 49 countries were identified in
international scientific publications within the field of study. Of these countries, 17 had
20 or more publications each. The graph below (Figure 4) displays the top ten countries
ranked by the number of publications.

China, with 175 documents, has been the most prolific country in producing academic
material over the last two decades, followed by India with a total of 130 documents, and the
USA with 88. However, although the number of documents produced by the USA amounts
to nearly a quarter (28.95%) of those generated by China and India combined, less than half
of the citations (47.52%) to articles from these three countries, which total approximately
10,000 (10,034), are attributed to China and India combined. The remainder pertains to
citations of articles from the USA. This underscores two significant considerations: the
quality of the articles produced and the influence of publications depending on their
country of origin, as can be seen in Figure 5.
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A bibliometric map, based on published articles and illustrating cooperation between
participating countries in this analysis, is depicted in Figure 6. This map is derived from
citations of articles from one country to another, specifically among those countries that have
published at least 20 articles. It reveals a cluster indicating a strong association between articles
published in the USA. Conversely, despite China’s significant number of published articles—a
trend observed across numerous scientific disciplines—it appears to remain proportionally
somewhat isolated in terms of its global influence on scientific production.

In addition, an analysis of the total number of keyword occurrences within the articles
reveals that, out of 7157, only 5 exceed the threshold of 100 occurrences (Table 2).
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Table 2. Keywords occurrences.

Keywords Occurrences

Artificial Intelligence 438
Energy Efficiency 380
Energy Utilization 162
Machine Learning 129
Internet of things 106

This is understandable because, as Elnagar and Thomas [4] have indicated, there lacks
a clear and precise scientific classification that unequivocally delineates the functionalities
and characteristics of CS. Consequently, other prevalent technologies such as ML and IoT
are identified as keywords that have a greater impact compared to CS.

Regarding the sources of publication (Table 3), an analysis was conducted on those
with at least ten publications, which identified six main sources.

Table 3. Sources and number of publications.

Source Number of Publications

Energies (MDPI) 23
IEEE Access 16

Advances in intelligent systems and computing 15
Sustainability (Switzerland) 12

IFIP advances in information and
communications 11

Notably, the top two sources of documents contribute to less than 5% of the total
publications (4.79%), despite the existence of a total of 552 sources. The 10 most cited
documents out of the 814 analyzed account for a total of 4802 citations, representing 37.66%
of the overall total of 12,752 citations. This indicates that just over 1% of the articles are
responsible for nearly 40% of the citations (Table 4).

It is noteworthy that the articles in question are not recent, all dating from 2021 and
earlier. Between 2014 and 2021, a total of 407 articles were published, and an identical
number, another 407 articles, have been published from 2022 to the present day. However,
none of the articles released in the last two years rank among the top 10 most cited.
Furthermore, this study reveals that among the 814 articles analyzed, only 12 authors have
published 3 or more articles, out of a total of 3193 authors, suggesting a lack of strong
specialization among authors in the field of energy efficiency research.
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Table 4. Articles and citations.

Document Citations

Sze (2017) [31] 2136
Wang (2019) [32] 741
Peng (2016) [33] 326

Touzani (2018) [34] 255
Yuan (2020) [35] 247
Yang (2020) [36] 237

Mondejar (2021) [35] 233
Ahmad (2021) [37] 219
Sodhro (2019) [38] 209

Ni (2019) [39] 199

The authors with the highest number of published documents are shown in Table 5.

Table 5. Citations and documents by author.

Autor Document Citations

eftekhari-zadeh, ehsan 5 92
alizadeh, seyed mehdi 4 63

chochliouros, ioannis p. 4 24
ahmad, iftikhar 3 9
chebak, ahmed 3 38
cho, keonhee 3 2

colla, valentina 3 27
fatahi, rasoul 3 42

nazemi, ehsan 3 84
perera, lokukaluge p. 3 40

rezgui, yacine 3 82
yoon, guwon 3 2

Upon conducting a thorough examination of the findings delineated within the schol-
arly articles listed in Table 5, it becomes evident that there is a distinct lack of pertinent and
accurate information regarding the deployment of CS within particularized processes of
the industrial sector. Nonetheless, it is worth noting that certain foundational principles
related to data management and analytical methodologies exhibit a degree of universal
applicability. Five principal dimensions were delineated, pivotal to the enhancement and
integration of cognitive systems for energy efficiency in industrial operations:

1. Data Collection and Cleansing: Highlights the direct impact of data quality and
quantity on the performance of cognitive systems.

2. Predictive Analysis: Emphasizes the application of Machine Learning and Deep
Learning to anticipate consumption patterns and identify inefficiencies.

3. Process Optimization: Focuses on algorithmic strategies to achieve optimal opera-
tional efficiency.

4. Supervised and Unsupervised Learning: Addresses the role of these learning paradigms
in classifying data and revealing hidden consumption patterns.

5. Deep Neural Networks: Stresses their significance in simulating complex processes
for energy efficiency improvement.

These categories reflect a comprehensive strategy necessary for the effective deploy-
ment of cognitive systems in industrial energy management.

However, a notable exception is a single article titled “Efficient Processing of Deep Neural
Networks” [31] which has garnered 2151 citations. This publication represents the authors’
sole contribution to this line of research. It discusses the pervasive adoption of Deep Neural
Networks (DNNs) in AI applications and explores strategies for optimizing their design to
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enhance performance and energy efficiency. It is noteworthy that the articles in question
are not recent, all dating from 2021 and earlier.

5. Discussion

This research delineates the foundational principles of CS and their value in extend-
ing the efficiency of energy consumption within the industrial sector. A comprehensive
exploration has revealed a diverse array of CA. From this array, two primary functions
have been pinpointed where CS exhibit optimal performance: the regulation of energy
usage in climate control systems and the execution of preventive maintenance on industrial
machinery. To address the imperative of optimizing energy consumption, this review has
included global datasets sourced from the International Energy Agency and the European
Commission, both of which emphatically underscore the critical nature of this requirement.
It becomes evident that leveraging international cooperation presents a more feasible ap-
proach to fulfilling this demand. The analysis further discerns that in the realm of scholarly
article production pertinent to this topic, such collaborative efforts are indeed flourishing,
thereby fostering the essential synergies needed to advance in this area.

There are pronounced collaborative clusters demonstrating a robust link between
research outputs, particularly from research originating in the USA. This interconnection
underscores the synergistic academic efforts between nations in advancing the field of
energy efficiency and CS. In contrast, despite China’s substantial contribution to the body
of literature, as evidenced by its high volume of publications—a phenomenon consistent
across a broad spectrum of scientific disciplines—it exhibits a relative degree of isolation
concerning its impact on global scientific collaboration. This observation suggests a poten-
tial area for further research into the dynamics of international research networks and their
influence on the dissemination and development of scientific knowledge.

In this research, the content of the first 10 referenced articles has also been analyzed to
gather specific data on the use of CS or AI in general for optimizing energy consumption in
industry, as well as references to any of the main CA.

The most cited article [31], receiving 2136 citations, explores the optimization of DNN
designs for improved performance and energy efficiency. It emphasizes techniques for
efficient DNN processing, aiming to enhance energy efficiency without sacrificing accuracy
or incurring additional hardware costs. This aspect is vital for the widespread application
of DNN in AI systems, highlighting the potential alignment with CS or AI in optimizing
energy consumption, especially in sectors where efficiency is paramount. However, it
does not explicitly mention CS. The second top-rated article [32], with 741 citations, delves
into smart meter data analytics, concentrating on its applications, methodologies, and
challenges in boosting power grid efficiency and sustainability. This research indirectly
contributes to advancements in industrial energy efficiency through smart meter data for
load management, yet it does not directly refer to energy efficiency in the industry or CS.

The remaining articles, despite collectively garnering fewer citations than the first
two, subtly contribute to the research objective of this work regarding the role of CS in
industrial energy efficiency. One article [33] examines Cloud Radio Access Networks
(C-RANs) and their potential in improving spectral and energy efficiency within wireless
networks. Although it primarily focuses on C-RAN architecture and its implications for
telecommunication networks’ efficiency, it indirectly hints at broader energy efficiency
considerations without delving into industrial applications or CS explicitly. Another article
introduces a baseline modeling approach using the Gradient Boosting Machine (GBM)
algorithm to analyze commercial building energy consumption data. This study, comparing
the GBM models performance against the Time-of-Week-and-Temperature (TOWT) and
Random Forest (RF) models, demonstrates the GBM model’s superior predictive accuracy.
It underscores the potential for refining energy savings estimation in buildings, suggesting
implications for broader energy efficiency efforts. Notably, it explores the feasibility of
shorter training periods for such models, which could impact measurement and verification
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(M&V) practices in energy management without explicitly addressing industrial contexts
or CS application.

In one of the analyzed articles [35], authors examine the development of all-organic
composites for high-temperature dielectric energy storage, aiming to enhance energy density
and efficiency up to 200 ◦C. Although the focus lies on technological advancements in materials
science for energy storage devices, there is no direct mention of applications in industrial
energy efficiency or CS. The article delves into the electrical properties, fabrication, and
potential uses of these materials in high-temperature environments, suggesting implications
for energy storage and management but not explicitly within the industrial sector.

Another highly cited article [40] explores digitization’s impact on sustainable devel-
opment goals, with a particular focus on addressing energy challenges. It thoroughly
examines energy efficiency in industrial and transportation sectors, highlighting the critical
role of distributed generation and smart grids in fostering a more sustainable energy supply.
The article points out the substantial energy consumption within these sectors and notes
that a significant portion of this energy is lost as residual heat due to process inefficiencies,
especially those requiring high temperatures commonly produced by burning fossil fuels.
Such inefficiencies lead to wasting precious energy resources and exacerbating global warm-
ing. Additionally, the article discusses how IoT can revolutionize industry by optimizing
processes. This optimization is facilitated through the adoption of standardized inline
sensors for process metering and the widespread use of logging systems and connectivity.

Discussions on the development of AI-enabled intelligent 6G networks [36] have
been found, highlighting high energy efficiency as a crucial requirement for these future
networks, and the application of AI in the sustainable energy industry, highlighting its role
in enhancing energy efficiency in various sectors including industry and transportation.
There are several discussions [37,38] about AI potential to optimize processes such as
solar and hydrogen power generation, supply and demand management, and predictive
maintenance, which indirectly contribute to energy efficiency in industrial settings. The
emphasis is on AI capability to improve operational performance and efficiency across the
energy sector, including industrial applications, by leveraging big data, ML models, and
smart grid technologies.

6. Conclusions

Advancing towards intricate cognitive models capable of emulating human decision-
making processes and improving energy efficiency represents a formidable and intricate
endeavor. The optimization of CS heralds a paradigm shift in industrial energy manage-
ment, promising to usher in an era of operations that are not only more sustainable but also
significantly more efficient, thereby offering mutual benefits to the corporate sector and
the environmental landscape alike. This prospective scenario underscores the pivotal role
of CS in mediating the confluence of technological progress and ecological stewardship.
Upgrading CS’s latent capacity to revolutionize industrial energy efficiency requires a
concerted effort involving synergistic collaborations among the corporate sphere, academic
institutions, and governmental bodies. Such cooperative engagements are crucial for the
rapid formulation and adoption of uniform standards and optimal practices concerning
the application of CS, ensuring their deployment is both efficacious and adheres to ethical
guidelines. Furthermore, substantial investments in educational initiatives and training
programs are imperative to equip the labor force with the requisite skills for interacting
with and administering these sophisticated systems, thus facilitating their seamless inte-
gration into pre-existing frameworks. Consequently, it becomes imperative to develop
novel theoretical constructs and at the same time implement pragmatic applications thereof.
These pragmatic applications are precisely the main deficiency in current cognitive systems.

Expanding on the need for ongoing research into developing more sophisticated
cognitive models, it has been argued that the future of industrial energy efficiency relies
heavily on the ability to enhance and refine these systems. Current advancements in
IA and ML provide a solid foundation; although, there is a significant gap between the
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decision-making capabilities of these systems and the nuanced context-aware decisions
made by humans. To bridge this gap, research must focus on creating cognitive models that
not only process information more efficiently but also understand and interpret complex
patterns and contexts in ways that mimic human cognitive processes. General-purpose CA
represent a promising direction in this endeavor. These systems, designed to be flexible
and adaptable, can potentially be applied across a variety of industrial settings, each with
their unique challenges and requirements. By developing architectures that can learn
from and adapt to their environment, researchers move closer to creating systems that
can independently identify areas for energy optimization, predict future trends, and make
informed decisions to enhance operational efficiency.

Furthermore, the integration of these CS with IoT and big data analytics amplifies their
potential, providing a wealth of real-time data from sensors and devices across industrial
operations and offering a detailed view of energy usage patterns. When combined with
CS capable of analyzing this data in real-time, it becomes possible to not only react to
current conditions but also predict and prepare for future energy needs, thereby ensuring
more sustainable and efficient energy use. However, the path to achieving these advanced
CS is fraught with challenges. One of the primary obstacles is the complexity of human
cognition itself. Developing systems that can truly understand and replicate the depth
of human decision-making requires a multidisciplinary approach, combining insights
from psychology, neuroscience, computer science, and engineering. Additionally, ethical
considerations and the need for transparency in AI decision-making processes must be
addressed to ensure these systems are trusted and widely accepted.

The journey towards more sophisticated cognitive models that can mimic human
decision-making and enhance energy efficiency is complex and challenging. The full
potential of CS can be unlocked to transform industrial energy management, leading to
more sustainable and efficient operations that benefit both businesses and the environment.
This vision for the future emphasizes the critical role of CS in achieving a balance between
technological advancement and sustainable development. To realize the full potential of CS
in industrial energy efficiency, collaboration across industries, academia, and government is
essential. Such a collaboration can accelerate the development of standardized frameworks
and best practices for implementing CS, ensuring they are both effective and ethical.
Moreover, investment in education and training is necessary to prepare the workforce
to interact with and manage these advanced systems, ensuring they can be integrated
smoothly into existing operations. In such a way, it is necessary to have not only new
theoretical models but also practical implementations.

Author Contributions: Conceptualization, J.A. and J.B.; methodology, J.A. and F.-J.F.-M.; software,
J.A.; validation, M.P.-P. and J.-I.L.-B.; formal analysis, J.-I.L.-B.; investigation, J.A. and F.-J.F.-M.;
resources, M.P.-P.; data curation, J.A.; writing—original draft preparation, J.A., F.-J.F.-M. and J.B.;
writing—review and editing, J.B. and J.-I.L.-B.; visualization, M.P.-P.; supervision, J.B.; project admin-
istration, M.P.-P. All authors have read and agreed to the published version of the manuscript version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Licklider, J.C.R. Man-Computer Symbiosis. In IRE Transactions on Human Factors in Electronics; Institute of Radio Engineers: New

York, NY, USA, 1960; pp. 4–11.
2. Kelly, J.E.; Hamm, S. Smart Machines: IBM’s Watson and the Era of Cognitive Computing; Columbia University Press: New York, NY,

USA, 2013.
3. Christensen, H.I.; Sloman, A.; Kruijff, G.-J.; Wyatt, J.L. Cognitive Systems Introduction; Springer: Berlin/Heidelberg, Germany, 2010.
4. Elnagar, S.; Thomas, M. Explaining Cognitive Computing Through the Information Systems Lens. arXiv 2022, arXiv:2201.05945.
5. Visvizi, A. Artificial Intelligence (AI): Explaining, Querying, Demystifying. In Artificial Intelligence and Its Contexts: Security,

Business and Governance; Springer: Cham, Switzerland, 2021; pp. 13–26.
6. Gamez, D. Human and Machine Consciousness; Open Book Publishers: Cambridge, UK, 2018.



Energies 2024, 17, 1860 15 of 16

7. Scarcello, L.; Mastroianni, C. Cognitive Systems for Energy Efficiency and Thermal Comfort in Smart Buildings. In IoT Edge
Solutions for Cognitive Buildings; Springer: Berlin/Heidelberg, Germany, 2022; pp. 329–345.

8. Amadeo, M.; Cicirelli, F.; Guerrieri, A.; Ruggeri, G.; Spezzano, G.; Vinci, A. When Edge Intelligence Meets Cognitive Buildings:
The Cogito Platform. Internet Things 2023, 24, 100908. [CrossRef]

9. Cicirelli, F.; Gentile, A.F.; Greco, E.; Guerrieri, A.; Spezzano, G.; Vinci, A. An Energy Management System at the Edge Based on
Reinforcement Learning. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), Prague, Czech Republic, 14–16 September 2020; pp. 1–8.

10. Varma, S.; Just, M.A. 4CAPS: An Adaptive Architecture for Human Information Processing. In Proceedings of the AAAI Spring
Symposium: Between a Rock and a Hard Place: Cognitive Science Principles Meet Ai-Hard Problems, Palo Alto, CA, USA, 21–23
March 2006; pp. 91–96.

11. Ritter, F.E.; Tehranchi, F.; Oury, J.D. ACT-R: A Cognitive Architecture for Modeling Cognition. Wiley Interdiscip Rev. Cogn. Sci.
2019, 10, e1488. [CrossRef] [PubMed]

12. Lonsdale, D.W.; Benjamin, D.P.; Lyons, D.M. ADAPT: A Cognitive Architecture for Robots; Lawrence Erlbaum Associates: Mahwah,
NJ, USA, 2004.

13. Bridewell, W.; Bello, P. Incremental Object Perception in an Attention-Driven Cognitive Architecture. In Proceedings of the
CogSci, Pasadena, CA, USA, 22–25 July 2015.

14. Novianto, R.; Johnston, B.; Williams, M.-A. Attention in the ASMO Cognitive Architecture. In Biologically Inspired Cognitive
Architectures 2010; IOS Press: Amsterdam, The Netherlands, 2010; pp. 98–105.

15. Revonsuo, A. Consciousness: The Science of Subjectivity; Psychology Press: London, UK, 2009.
16. Evertsz, R.; Ritter, F.E.; Busetta, P.; Pedrotti, M. Realistic Behaviour Variation in a BDI-Based Cognitive Architecture. In Proceedings

of the SimTecT; SIAA Ltd., Melbourne, Australia; 2008; Volume 8.
17. Rohrer, B. A Unified Architecture for Cognition and Motor Control Based on Neuroanatomy, Psychophysical Experiments, and

Cognitive Behaviors. In Proceedings of the AAAI Fall Symposium: Biologically Inspired Cognitive Architectures, Arlington, VA,
USA, 7–9 November 2008; p. 161.

18. Lane, P.C.R.; Gobet, F.; Smith, R.L. Attention Mechanisms in the CHREST Cognitive Architecture. In Attention in Cognitive Systems,
Proceedings of the 5th International Workshop on Attention in Cognitive Systems, WAPCV 2008 Fira, Santorini, Greece, 12 May 2008;
Revised Selected Papers 5; Springer: Berlin/Heidelberg, Germany, 2009; pp. 183–196.

19. Helie, S.; Wilson, N.; Sun, R. The Clarion Cognitive Architecture: A Tutorial. In Proceedings of the Annual Meeting of the
Cognitive Science Society, Washington, DC, USA, 23–26 July 2008; Volume 30.

20. Laird, J. Introduction to the Soar Cognitive Architecture; MIT Press: Cambridge, MA, USA, 2022.
21. Forbus, K.D.; Hinrichs, T.R. Companion Cognitive Systems: A Step toward Human-Level AI. AI Mag. 2006, 27, 83.
22. Zhu, J.; Harrell, D.F. Narrating System Intentionality: Copycat and the Artificial Intelligence Hermeneutic Network. Leonardo

Electron. Alm. 2012, 17, DAC09. [CrossRef]
23. Gowda, S.; Zonooz, B.; Arani, E. Dual Cognitive Architecture: Incorporating Biases and Multi-Memory Systems for Lifelong

Learning. arXiv 2023, arXiv:2310.11341.
24. Gashler, M.S.; Kindle, Z.; Smith, M.R. A Minimal Architecture for General Cognition. In Proceedings of the 2015 International

Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8.
25. Elnagar, S.; Thomas, M.A.; Osei-Bryson, K.-M. What Is Cognitive Computing? An Architecture and State of The Art. arXiv 2023,

arXiv:2301.00882.
26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

Adv. Neural. Inf. Process. Syst. 2017, 30, 5999–6009.
27. Kotseruba, I.; Tsotsos, J.K. 40 Years of Cognitive Architectures: Core Cognitive Abilities and Practical Applications. Artif. Intell.

Rev. 2020, 53, 17–94. [CrossRef]
28. IEA. World Energy Outlook 2023; International Energy Agency (IEA): Paris, France, 2023.
29. Garcia, S.G. Directiva (UE) 2023/1791, del Parlamento Europeo y del Consejo, de 13 de septiembre de 2023, relativa a la eficiencia

energética, y por la que se modifica el Reglamento (UE) 2023/955. Actualidad Juridica Ambiental 2023, 138, 152–155.
30. Colpaert, P.; Joye, S.; Mechant, P.; Mannens, E.; de Walle, R. The 5 Stars of Open Data Portals. In Proceedings of the 7th

International Conference on Methodologies, Technologies and Tools Enabling E-Government (MeTTeG13), University of Vigo,
Vigo, Spain, 17–18 October 2013; pp. 61–67.

31. Sze, V.; Chen, Y.-H.; Yang, T.-J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

32. Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges.
IEEE Trans. Smart Grid 2018, 10, 3125–3148. [CrossRef]

33. Peng, M.; Sun, Y.; Li, X.; Mao, Z.; Wang, C. Recent Advances in Cloud Radio Access Networks: System Architectures, Key
Techniques, and Open Issues. IEEE Commun. Surv. Tutor. 2016, 18, 2282–2308. [CrossRef]

34. Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial
buildings. Energy Build. 2018, 158, 1533–1543. [CrossRef]

35. Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/Molecular Semiconductor
All-Organic Composites for High-Temperature Dielectric Energy Storage. Nat. Commun. 2020, 11, 3919. [CrossRef] [PubMed]

https://doi.org/10.1016/j.iot.2023.100908
https://doi.org/10.1002/wcs.1488
https://www.ncbi.nlm.nih.gov/pubmed/30536740
https://doi.org/10.5900/SU_9781906897161_2012.17(2)_160
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/TSG.2018.2818167
https://doi.org/10.1109/COMST.2016.2548658
https://doi.org/10.1016/j.enbuild.2017.11.039
https://doi.org/10.1038/s41467-020-17760-x
https://www.ncbi.nlm.nih.gov/pubmed/32764558


Energies 2024, 17, 1860 16 of 16

36. Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K. Artificial-Intelligence-Enabled Intelligent 6G Networks. IEEE Netw.
2020, 34, 272–280. [CrossRef]

37. Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial Intelligence in Sustainable Energy Industry:
Status Quo, Challenges and Opportunities. J. Clean. Prod. 2021, 289, 125834. [CrossRef]

38. Sodhro, A.H.; Pirbhulal, S.; De Albuquerque, V.H.C. Artificial Intelligence-Driven Mechanism for Edge Computing-Based
Industrial Applications. IEEE Trans. Ind. Inf. 2019, 15, 4235–4243. [CrossRef]

39. Ni, K.; Yin, X.; Laguna, A.F.; Joshi, S.; Dünkel, S.; Trentzsch, M.; Müeller, J.; Beyer, S.; Niemier, M.; Hu, X.; et al. Ferroelectric
ternary content-addressable memory for one-shot learning. Nat Electron. 2019, 2, 521–529. [CrossRef]

40. Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.;
Prasad, K.A.; et al. Digitalization to Achieve Sustainable Development Goals: Steps towards a Smart Green Planet. Sci. Total
Environ. 2021, 794, 148539. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MNET.011.2000195
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1109/TII.2019.2902878
https://doi.org/10.1038/s41928-019-0321-3
https://doi.org/10.1016/j.scitotenv.2021.148539
https://www.ncbi.nlm.nih.gov/pubmed/34323742

	Introduction 
	State of the Art 
	Cognitive Computing 
	The Importance of Energy Efficiency in Industry 

	Materials and Methods 
	ETL-like Methodology 
	Data Extraction 
	Data Transformation and Loading 


	Results 
	Discussion 
	Conclusions 
	References

