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Abstract: In this study, an optimized dual-layer configuration model is proposed to address voltages
that exceed their limits following substantial integration of photovoltaic systems into distribution
networks. Initially, the model involved segmenting the distribution network’s voltage zones based on
distributed photovoltaic governance resources, thereby elucidating the characteristics and governance
requisites for voltages across distinct regions. Subsequently, a governance model for voltage limit
exceedances, grounded in optimizing energy storage configurations, was formulated to mitigate
photovoltaic power fluctuations by deploying energy storage systems. This model coordinates the
reactive power output of photovoltaic installations with the active power consumption of energy
storage systems, thereby augmenting voltage autonomy in the power grid. This study leveraged
Karush–Kuhn–Tucker (KKT) conditions and the Big-M method to transform the dual-layer model
into a single-layer linear model, thereby enhancing solution efficiency and precision. Finally, a
simulation was carried out to demonstrate that the strategy proposed from this research not only
achieves commendable economic efficiency, but also significantly improves the regional voltage effect
by 28.7% compared to the optical storage capacity optimization model.

Keywords: distribution network; distributed photovoltaics; zone governance; energy storage
configuration; voltage regulation

1. Introduction

As the penetration of distributed generators (DGs) continues to expand, the discrep-
ancy between their variable output and the inadequate alignment with distribution network
loads in both spatial and temporal dimensions has become increasingly salient. Restricting
the output of such generators would lead to the wastage of renewable resources [1–3].
While optimizing the placement and capacity of DG access offers some mitigation, its
efficacy remains limited; achieving on-site consumption of renewable energy proves chal-
lenging [4]. Early domestic distribution network planning often overlooked the integration
of large-scale distributed power sources, particularly within rural grids characterized by
limited robustness. The high penetration rates of photovoltaic systems in such contexts
exacerbate operational safety concerns, notably the phenomenon of power reverse flow [5].
This transition from a passive to a complex multi-source distribution network heightens
the risk of voltages exceeding their limits [6], thereby impinging upon both the utilization
of renewable energy within the network, as well as the safe and stable operation of its
infrastructure. Consequently, there exists a pressing need for research aimed at optimizing
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management strategies to address node voltage limit violations that have resulted from the
high penetration of photovoltaics into distribution networks.

In response to the voltage over-limit issue induced by distributed photovoltaics,
control strategies have been categorized into three main methods: reactive power compen-
sation [7,8], active power output limitation [9], and comprehensive regulation of active–
reactive power [10,11]. With the high penetration rate of photovoltaics, the power output
within distribution networks exhibits pronounced cyclical patterns, exacerbating the per-
sistence of voltage over-limit occurrences and leading to inefficiencies in photovoltaic
power generation. Given the imperative of maintaining active power generation in DGs,
surplus inverter capacity can be harnessed for voltage regulation purposes, while energy
storage technologies can facilitate on-site consumption of DG power. Refs. [12,13] under-
score the synergistic control of diverse distributed energy resources, including DGs and
energy storage, as being pivotal for enhancing the distribution network’s capacity to inte-
grate renewable energy sources and achieve comprehensive voltage regulation. Moreover,
refs. [14,15] emphasize the critical role of leveraging energy storage to augment the DG
consumption ratio, thereby advancing the evolution of smart grid infrastructures.

To attain regional voltage autonomy within distribution networks and streamline
network operation and dispatch complexity, it is imperative to strike a balance in system
energy by enhancing voltage regulation capabilities. The implementation of grid zoning
control facilitates the localized utilization of regional resources, and mitigates the impact of
inter-regional power flow on the network. In the context of power grid area division, the
authors of [16] propose a comprehensive index framework that considers regional structure
and resource allocation, and incorporates modularity indices based on electrical distances
to facilitate regional segmentation. Meanwhile, researchers in [17] devised area division
indicators that consider factors like electrical distances, regional power balance, and scale.
These approaches aim to establish effective power grid partitions for subsequent voltage
control studies. Additionally, [18] focuses on cluster-based distribution network divisions,
utilizing Newton’s method to coordinate reactive power output for voltage control. The
researchers in [19] introduced a double-layer voltage control strategy to minimize losses
and regulate voltage in distribution networks. Furthermore, [20] presents a simulated
annealing-quasi-opposition teaching and learning optimization algorithm for efficient DG
configuration within distribution systems. Its objectives include minimizing voltage loss,
reducing costs, and curbing greenhouse gas emissions. In the context of study [21], cluster-
ing is based on electrical distance modularity, with energy storage employed for voltage
control in clusters experiencing pronounced voltage violations. However, prevailing energy
storage methods for voltage regulation predominantly rely on straightforward on-site con-
sumption, and they exhibit limited regional integration capabilities. While extant control
strategies regulate voltage through regional division, traditional voltage regulation meth-
ods primarily hinge on the system’s reactive power regulation capabilities, thereby falling
short of fundamentally addressing the issue of photovoltaic power generation wastage.
Such methods may also render conventional voltage regulation resources susceptible to loss
during system disturbances. Notably, when regulating voltage through energy storage, the
prevailing strategies often overlook the interplay between indicators and clusters during
area segmentation [22]. Concurrently, there exists a relative paucity of research on the
annual operation of multi-node distribution networks.

Addressing the voltage over-limit challenge resulting from the high penetration of
photovoltaic systems into the distribution network, this paper introduces a dual-layer opti-
mal configuration model tailored for independently managing voltage zones. Initially, the
distribution network voltage area was delineated considering the resources of distributed
photovoltaic management. Subsequently, an optimized dual-layer configuration model, in-
corporating energy storage planning and operation, was formulated. Then, this dual-layer
model was transformed into a single-layer linear model, employing KKT conditions and
the Big-M method for resolution. Ultimately, a simulation example is presented for analysis,
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demonstrating commendable regional autonomy and flexibility, facilitating efficient voltage
regulation. The innovations of this study can be outlined as follows:

(i) By considering regional functionality, the distribution grid voltage area is partitioned,
and energy storage is optimally configured to mitigate power fluctuations. This
approach allows for the synchronization of photovoltaic output reactive power and
energy storage consumption active power based on voltage characteristics and gover-
nance requirements, consequently enhancing the regional voltage autonomy of the
power grid.

(ii) The upper-level model focuses on planning the configuration with the optimal annual
operating costs of the energy storage power station, while the lower-level model
prioritizes optimal dispatch with the minimal regional node voltage offset. This
dual-level approach considers economic factors, while maximizing the effectiveness
of regional voltage governance in the distribution network.

2. Operational and Regulatory Dynamics of Photovoltaic Resources in Distribution
Networks

Conventional distribution networks typically adhere to a radial configuration. As
depicted in Figure 1, the model illustrates the structure of photovoltaic integration into the
distribution network.
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Based on equivalent circuit calculations, the voltage expression at the photovoltaic
grid connection point is derived as follows:

Un = Um −

(
k
∑

i=n
Pi,L − PPV

)
R +

(
k
∑

i=n
Qi,L − QPV

)
X

Um
(1)

where Un and Um denote the voltages of nodes n and m, respectively, and PPV and QPV
denote the active and reactive power outputs of the photovoltaic system, respectively; R
and X represent the resistance and reactance in the circuit, respectively.

From this analysis, it is evident that connecting photovoltaic systems to the grid ele-
vates the voltage level at the connection point. When photovoltaic power output surpasses
the load consumption at the grid connection point, it alters the direction of flow within the
system, potentially causing voltage levels to rise and even surpass the predefined limits
at the photovoltaic grid connection point. Conversely, if the grid-connected photovoltaic
inverter has the capability to modulate its capacity to absorb reactive power from the
distribution network or restrict the active power output of photovoltaic systems, it can
effectively mitigate voltage fluctuations at the grid connection point.

Regional division is aimed at optimizing the regulatory potential of diverse resources
within distribution networks, while enhancing voltage limit control across different opera-
tional scenarios. Considering the temporal and seasonal variations inherent in photovoltaic
power generation, light intensity data exhibit minimal fluctuation within the same sea-
son, but vary notably across seasons. Therefore, the entire year is segmented into four
seasonal time series: spring, summer, autumn, and winter, with a Beta distribution model
employed for light intensity characterization [23]. By deriving probability density function
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parameters from historical light intensity data for each season and fitting them into a Beta
distribution curve, corresponding power generation output curves can be computed using
a photovoltaic power generation model.

The aggregate capacity of the photovoltaic grid-connected inverter is denoted as SN,
where SDG represents the capacity utilized by grid-connected power generation, and SRE
denotes the adjustable capacity, shown as follows:{

S2
N = S2

DG + S2
RE

SDG = 3UI1
(2)

where U represents the voltage of the distribution network, and I1 denotes the active
current output of the inverter.

Consequently, this section initially delineates operational characteristics based on the
time series model of DGs, and is followed by an assessment of the adjustable regulatory re-
sources within the distribution network capable of mitigating voltage exceedance occurrences.

3. Voltage Partitioning Strategy Considering Distributed Photovoltaic Governance
Resources
3.1. Index System for Regional Division of Distribution Network

Our research endeavored to mitigate voltage deviations and present a comprehensive
indicator system that considers regional functionality. The system comprises modular
indicators used to evaluate the structure of the distribution network, and voltage regulation
capacity indicators aimed at enhancing voltage deviation mitigation. The overarching aim is
to maximize the regional voltage governance capacity within the distribution network [24].

3.1.1. Improved Modularity Metrics

In the distribution network structure, nodes within a region exhibit tight electrical
coupling, while connections between regions are more loosely integrated. This configura-
tion facilitates the operational and managerial aspects of regional voltage control. A higher
modularity index indicates a more favorable structure for the distribution network [25],
as follows:

ρ =
1

2m ∑
i

∑
j

(
Aij −

kik j

2m

)
δ(i, j) (3)

where Aij represents the edge weight between node i and node j, signifying the electrical

distance between these nodes as depicted in Equations (3)–(5). m =
(

∑i ∑j Aij

)
/2 repre-

sents half of the total edge weights within the region. Specifically, ki = ∑i Aij signifies the
aggregate weight of all edges linked to node i. Where both node i and node j reside within
the same region, δ(i, j) = 1; otherwise, δ(i, j) = 0.

Given the symmetric nature of electrical distance, a logarithmic form was adopted as
the mapping function, where the electrical distance is denoted as L. The magnitude of the
electrical distance exhibits an inverse relationship with the degree of coupling between
nodes. Increased coupling corresponds to a diminished electrical distance, indicating a
closer electrical connection, as shown in the following:

Aij = 1 −
Lij

max
i,j∈N

{
Lij

} (4)

Lij =
√

∑ [(din − djn)]
2 (5)

dij = lg
SVP,jj + SVQ,jj

SVP,ij + SVQ,ij
(6)

where SVP and SVQ represent the matrices for active and reactive voltage sensitivities in
the formula, respectively. dij quantifies the extent of node j’s influence on node i, where
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a larger value of dij indicates a diminished impact of node j on node i, with an increased
distance separating the two nodes. Lij denotes the degree of correlation between two nodes,
considering the influence of other nodes within the region [26].

3.1.2. Voltage Regulation Capability Indicators

The primary challenge encountered with the large-scale integration of photovoltaics
into distribution networks is when voltages exceed their limits. The voltage regulation
capability index is defined as the capacity of active and reactive power, adjustable by
photovoltaics, energy storage, and load resources within a given region, to regulate the
maximum voltage deviation. To minimize power loss across regions, adjustments to the
voltage limit should be made by optimizing the active and reactive power of internal
adjustable resources within regions, based on the following:

φi,t
V =

{
1, ∆Vi < ∆Vi

max
∆Vi

max/∆Vi, otherwise
(7)


∆Vi

max = ∑
(

Svp,ij ∑ ∆Pj,t
max + SvQ,ij ∑ ∆Qj,t

max

)
∆Pj,t

max = ∑ ∆Pj,t
pv

∆Qj,t
max = ∑ Qj,t

pv

(8)

where φi,t
V represents the voltage regulation capability index of region i; n signifies the total

number of nodes within the region; ∆Vi denotes the voltage deviation of node i with the
maximum voltage deviation observed at the highest node in the region; ∆Vi

max signifies
the maximum voltage regulation amount of node i, accounting for the active and reactive
power margin within the region; and ∆Pj,t

pv and Qj,t
pv denote the active and reactive powers

of node j’s photovoltaic at time t, respectively.

3.2. Voltage Comprehensive Zoning Index

In light of the aforementioned regional division indicators within the distribution
network and a comprehensive assessment of the regulatory capacity of existing governance
resources within each region, coupled with an analysis of the voltage limit zoning gov-
ernance characteristics, this article proposes the following formulation of comprehensive
zoning indicators for the distribution network:

σ = (1 − τ)ρ + τφV (9)

where τ denotes the weight coefficient.
Initially, the source load prediction data are utilized to compute the power flow within

the distribution network. Subsequently, considering the instances of voltages exceeding
their limits, the index weight is computed to formulate the comprehensive zoning index
for the distribution network, as follows:

τ =
1
N

N

∑
i=1

∣∣∣∣ Ui(t)− U∗
i (t)

Ui,max(t)− Ui,min(t)

∣∣∣∣ (10)

where N represents the number of distribution network nodes; Ui(t) signifies the voltage of
node i; Ui, max(t) denotes the upper voltage limit value of node i; Ui, min(t) represents the
lower voltage limit value of node i; and U∗

i (t) denotes the voltage rating of node i.
In addressing the challenge of excessive voltages resulting from high photovoltaic

penetration rates in distribution networks, the strategic selection of energy storage power
station locations is paramount. This study designates photovoltaic grid connection points
as pivotal nodes, and strategically situates energy storage power stations around them
to effectively mitigate photovoltaic output fluctuations. This approach facilitates the
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absorption of surplus electrical energy to curb voltage escalation, as well as the timely
release of stored energy to elevate voltage levels as required.

4. A Voltage Over-limit Governance Model Based on Optimized Energy Storage
Configuration

Conventional distribution networks manifest unidirectional power flow. However,
the escalating penetration of photovoltaics has induced a notable surge in bidirectional
power flow, leading to challenges such as overvoltage issues and an increase in discarded
solar energy. Since 2020, numerous provinces in China have advocated for the integration
of energy storage equipment within photovoltaic power generation projects, in order to
diminish curtailment rates [27]. In response to this paradigm shift, our research, grounded
in the service model of energy storage power stations, delineates a methodology involving
site selection, investment, and construction of energy storage facilities within distribution
networks. This framework aims to provide users with energy storage charging and dis-
charging services while charging service fees, ensuring economic viability and fulfilling
voltage regulation requisites.

4.1. Planning Model for Upper-Level Energy Storage Power Stations

The upper-level model is tasked with resolving the optimal annual operating cost
conundrum pertaining to energy storage power stations over the planning horizon. The
decision variables encompass the capacity configuration and maximum charging and
discharging power parameters of energy storage power stations.

4.1.1. Upper-Level Model Objective Function

The primary objective of the upper optimization is to minimize the annual operational
costs incurred by energy storage power stations, defined as follows:

minC =
W

∑
w=1

[Tw(Cinv,w + Cess,s,w − Cess,b,w − Cserve,w)] (11)

where w represents the typical number of days; Tw signifies the number of days correspond-
ing to the w-th typical day; Cinv,w denotes the daily average investment and maintenance
cost of energy storage power stations; Cess,s,w stands for the cost of purchasing electricity
from microgrids for each typical daily energy storage power station; Cess,b,w represents the
cost of selling electricity to the microgrid for each typical daily energy storage power station;
and Cserve,w denotes the service fee for each typical daily energy storage power station.

(i) The daily average investment and maintenance cost of energy storage power
stations is defined as follows:

Cinv,w =
ηPPmax

ess + ηSEmax
ess

Ts
+ Mess (12)

where ηP and ηS represent the power cost and capacity cost of the energy storage power
station, measured in CNY/kW and CNY/(kW·h), respectively, while Pmax

ess and Emax
ess denote

the maximum charging and discharging power and the maximum capacity of the energy
storage power station, respectively. Additionally, Ts stands for the expected usage days of
the energy storage power station, and Mess denotes the daily maintenance cost.

(ii) The expenditure associated with procuring electricity from the distribution network
for each typical daily energy storage power station is defined as follows:

Cess,s,w =
N

∑
i=1

NT

∑
t=1

[δ(t) · Pess,s,w,i(t) · ∆t] (13)

where N represents the number of microgrids; NT signifies the number of scheduling cycle
periods; δ(t) denotes the electricity price at which the microgrid sells electricity to energy
storage stations during time period t; Pess,s,w,i(t) represents the power sold to the energy
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storage station during the i-th microgrid time period of each typical day; and ∆t is the
scheduling period.

(iii) The revenue derived from the sale of electricity to the distribution network for
each typical daily energy storage power station is defined as follows:

Cess,b,w =
N

∑
i=1

NT

∑
t=1

[λ(t) · Pess,b,w,i(t) · ∆t] (14)

where λ(t) signifies the electricity price for purchasing electricity from energy storage
power stations for the microgrid during time period t, and Pess,b,w,i(t) represents the power
purchased from the energy storage power station during the i-th microgrid time period of
each typical day.

(iv) The service fee levied by each typical daily energy storage power station on the
microgrid is defined as follows:

Cserve,w =
N

∑
i=1

NT

∑
t=1

{
θ(t) · [Pess,b,w,i(t) + Pess,s,wi(t)] · ∆t

}
(15)

where θ(t) represents the unit price of the service fee paid by the microgrid to the energy
storage power station during time t, measured in CNY/(kW·h).

4.1.2. Upper-Level Model Constraints

(i) Capacity constraints for energy storage power stations are delineated by their rated
power, as elucidated in reference [28]. Specifically, the capacity of energy storage power
stations exhibits a direct proportionality to their rated power, as follows:

Emax
ess = βPmax

ess (16)

where β represents the energy multiplier for energy storage power stations.
(ii) The state of charge for energy storage power stations, as well as the constraints on

charging and discharging power, are as follows:

Eess(t) = Eess(t − 1) +
[
ηabsPess,abs(t)− 1

ηrelea Pess,relea(t)
]
∆t

Eess(0) = 20%Emax
ess

10%Emax
ess ≤ Eess(t) ≤ 90%Emax

ess
0 ≤ Pess,abs(t) ≤ Uabs(t)Pmax

ess
0 ≤ Pess,relea(t) ≤ Urelea(t)Pmax

ess
Uabs(t) + Urelea(t) ≤ 1
Uabs(t) ∈ {0, 1}, Urelea(t) ∈ {0, 1}

(17)

where Eess(t) represents the energy stored in the energy storage power station; ηabs and ηrelea

denote the charging and discharging efficiencies of the energy storage device, respectively;
Pess,abs(t) and Pess,relea(t) signify the charging and discharging powers of the energy storage
power station, respectively; Eess(0) is the initial stored energy of the energy storage power
station; and Uabs(t) and Urelea(t) are the charging and discharging status bits of the energy
storage power station, respectively, which are 0–1 variables.

4.2. Voltage Optimization Model for Lower-Level Areas

Analysis of the lower-level areas involves optimizing the steady-state operation and
scheduling of photovoltaic and energy storage active control systems. An optimization
model was constructed that focuses on minimizing voltage offsets at regional nodes to
enhance the capacity for new energy consumption, mitigates grid losses, and enhances
power quality. This model was tasked with optimizing operation to minimize voltage
offsets at regional nodes. Its decision variables encompass the following: branch current,
node voltage, active and reactive power at the head end of branch ij, active and reactive
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power injected into node j by photovoltaic sources, power purchased from the power grid,
power procured from energy storage stations by the distribution network, and power sold
from microgrids to energy storage stations.

4.2.1. Lower-Level Model Objective Function

The lower-level objective function minimizes the voltage offset of each regional node
in the distribution network based on the participation of photovoltaic and energy storage
power stations, as follows:

minC =
W

∑
w=1

NT

∑
t=1

N

∑
i=1

TW∆t
∣∣∣U2

w,t,i(t)− 1
∣∣∣ (18)

where Uw,i(t) represents the voltage standard value of node i in the w-th typical day period.

4.2.2. Lower-Level Model Constraints

(i) The power balance constraints are as follows:
∑

i∈ak(j)
(Pw,ij(t)− lw,ijrij) + Pgrid,w,j(t) + Ppv,w,j(t) + Pess,b,w(t)− Pess,s,w(t)− Pload,w,j(t) = ∑

i∈ck(j)
Pw,jm(t) : λ1,t,w

∑
i∈ak(j)

(Qw,ij(t)− lw,ijxij) + Qgrid,w,j(t) + Qpv,w,j(t) + Qess,b,w(t)− Qess,s,w(t)− Qload,w,j(t) = ∑
i∈ck(j)

Qw,jm(t) : λ2,t,w
(19)

where ak(j) denotes the set of starting points of all branches in distribution network area k
with j as the endpoint, ck(j) represents the set of endpoints of all branches in distribution
network area k with j as the starting endpoint. Pw,ij(t), Pw,jm(t), Qw,ij(t), and Qw,jm(t) signify
the active and reactive power at the head end of branches ij and jm during typical daily
period t of w, respectively. lw,ij represents the square of the current amplitude of branch
ij. rij and xij denote the resistance and reactance of branch ij, respectively. Pgrid,w,j(t) and
Qgrid,w,j(t) denote the active and reactive power injected into node j of the power grid
during typical daily period t of w, respectively. Ppv,w,j(t) and Qpv,w,j(t) represent the active
and reactive power injected by photovoltaic at node j, and Pload,w,j(t) and Qload,w,j(t) denote
the active and reactive power of node j’s load, respectively.

(ii) The power flow constraint is as follows:∥∥∥[2Pw,ij 2Pw,ij lw,ij − uw,i
]T

∥∥∥
2
≤ lw,ij + uw,i (20)

where relaxation parameters uw,i(t) = U2
w,i(t) and lw,ij(t) = I2

w,ij(t) are involved.
(iii) The node voltage and branch current constraints are shown as follows:

uw,j(t) = uw,i(t)− 2(rijPw,ij(t) + xijQw,ij(t)) + (r2
ij + x2

ij)lw,ij(t) : λ3,t,w (21)

{
(Umin

w,i )
2 ≤ uw,i(t) ≤ (Umax

w,i )2 : µmin
1,t,w, µmax

1,t,w
0 ≤ lw,ij(t) ≤ (Imax

w,ij )
2 : µmin

2,t,w, µmax
2,t,w

(22)

where Umax
w,i and Umin

w,i represent the maximum and minimum voltage amplitudes of node i
during the typical day t period of w, respectively. According to the national standard 10 kV
voltage deviation limit of 7%, it can be seen that they are 1.07 and 0.93, respectively; and
Imax
w,ij denotes the safe current of branch ij during the typical day t period of w.

(iv) The constraints on the upper and lower limits of photovoltaic output are
the following: 

Pmin
pv ≤ Ppv,w,i(t) ≤ Pmax

pv : µmin
3,t,w, µmax

3,t,w
Qmin

pv ≤ Qpv,w,i(t) ≤ Qmax
pv : µmin

4,t,w, µmax
4,t,w√

(Pmax
pv )2 + (Qmax

pv )2 = Smax
pv

(23)

where Pmax
pv , Pmin

pv , Qmax
pv , and Qmin

pv denote the upper and lower limits of the active and
reactive power outputs of the photovoltaic system, respectively, while Smax

pv represents the
total capacity of the photovoltaic grid-connected inverter.
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(v) The power balance constraints for charging and discharging of energy storage
power stations are the following:

Pess,b,w(t)− Pess,s,w(t) = Pess,realea(t)− Pess,abs(t) : λ4,t,w (24)

(vi) The power constraints for purchasing electricity from the power grid are as follows:

0 ≤ Pgrid,w(t) ≤ Pmax
grid,mg : µmin

5,t,w, µmax
5,t,w (25)

where Pmax
grid,mg represents the maximum power purchased by the distribution network from

the power grid.
(vii) The power purchase and sale constraints between low-voltage distribution net-

works and energy storage power stations are represented as follows:
0 ≤ Pess,s,w(t) ≤ Pmax

ess,mg : µmin
6,t,w, µmax

6,t,w
0 ≤ Pess,b,w(t) ≤ Pmax

ess,mg : µmin
7,t,w, µmax

7,t,w
Ubuy,w(t) + Usale,w(t) ≤ 1 : µmin

8,t,w, µmax
8,t,w

(26)

where Pmax
ess,mg represents the maximum interaction power between the distribution network

and the energy storage power station, while Ubuy,w(t) and Usale,w(t) denote the purchasing
and selling statuses of electricity between each typical day and the energy storage power
station. The variables λ1,t,w, λ2,t,w, λ3,t,w, λ4,t,w, λ5,t,w, λ6,t,w, λ7,t,w, and λ8,t,w denote the La-
grange multipliers associated with the equality constraints, while µmin

1,t,w, µmax
1,t,w, µmin

2,t,w µmax
2,t,w,

µmin
3,t,w, µmax

3,t,w, µmin
4,t,w, µmax

4,t,w, µmin
5,t,w, µmax

5,t,w, µmin
6,t,w, µmax

6,t,w, µmin
7,t,w, µmax

7,t,w, µmin
8,t,w, and µmax

8,t,w denote the
Lagrange multipliers corresponding to the inequality constraints.

4.3. Voltage Optimization Model for Lower-Level Areas

Figure 2 illustrates the solution methodology employed in this study. The proposed
two-layer model encompasses upper-level integer variables, continuous variables, and
nonlinear constraints. The lower-level areas pose a challenge as they involve a mixed-
integer linear programming problem that is not directly solvable. To address this, a
Lagrangian function was established for the lower-level model, and then transformed
into a constraint for the upper-level model, leveraging KKT complementary relaxation
conditions. This transformation converts the lower-level model into a single-layer nonlinear
model. The Big-M method is applied to linearize the nonlinear term, resulting in a mixed-
integer linear programming problem [24]. For modeling, the YALMIP toolkit was utilized,
and the Gurobi solver was invoked for solving purposes.
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To elaborate, construction of the Lagrangian function Equation (27) for the lower model
was delineated. Subsequently, leveraging of the constructed Lagrangian function (27) was
carried out, alongside the KKT complementary relaxation condition of the lower-layer
model and the additional constraints (A3) and (A4) for the upper-layer model. The result-
ing transformed single-layer model is presented in Equations (A1)–(A4) in Appendix A,
where (A1) and (A2) denote the optimization objectives and constraints of the original
upper model.

L =
W
∑

w=1

N
∑

i=1

NT

∑
t=1

TW∆t(Uw,i(t)− 1)2

+λ1,t,w[ ∑
i∈ak(j)

(Pw,ij(t)− lw,ijrw,ij) + Pgrid,w,j(t) + Ppv,w,j(t) + Pess,b,w(t)− Pess,s,w(t)− Pload,w,j(t)− ∑
i∈ck(j)

Pw,jm(t)]

+λ2,t,w[ ∑
i∈ak(j)

(Qw,ij(t)− lw,ijxw,ij) + Qgrid,w,j(t) + Qpv,w,j(t) + Qess,b,w(t)− Qess,s,w(t)− Qload,w,j(t)− ∑
i∈ck(j)

Qw,jm(t)]

+λ3,t,w[uw,i(t)− uw,j(t)− 2(rijPw,ij(t) + xijQw,ij(t)) + (r2
ij + x2

ij)lw,ij(t)]
+λ4,t,w(Pess,b,w(t)− Pess,s,w(t)− Pess,realea(t) + Pess,abs(t))
+µmin

1,t,w((Umin
w,i )

2 − uw,i(t)) + µmax
1,t,w(uw,i(t)− (Umax

w,i )2)

−µmin
2,t,wlw,ij(t) + µmax

2,t,w(lw,ij(t)− (Imax
w,i )2)

+µmin
3,t,w(Pmin

pv − Ppv,w,i(t)) + µmax
3,t,w(Ppv,w,i(t)− Pmax

pv )

+µmin
4,t,w(Qmin

pv − Qpv,w,i(t)) + µmax
4,t,w(Qpv,w,i(t)− Qmax

pv )

−µmin
5,t,wPgrid,w(t) + µmax

5,t,w(Pgrid,w(t)− Pmax
grid,mg)

−µmin
6,t,wPess,s,w(t) + µmax

6,t,w(Pess,s,w(t)− Pmax
ess,mg · Usale,w(t))

−µmin
7,t,wPess,b,w(t) + µmax

7,t,w(Pess,b,w(t)− Pmax
ess,mg · Ubuy,w(t))

+µmax
8,t,w(Ubuy,w(t) + Usale,w(t)− 1)

(27)

5. Case Study

This study employed the IEEE-33 nodes for analysis, with the system composition
and detailed parameters outlined in reference [29]. As the distributed power grid attains
uniform power quality levels, nodes with higher load levels at the termini of each branch
accommodate larger allowable power capacities for connection. Consequently, nodes 17,
21, 24, and 32, characterized by elevated load levels, were selected as access points for the
photovoltaic system.

The network voltage level in this study was set at 10 kV. The photovoltaic system’s unit
power in the calculation example corresponds to typical daily output, and the distribution
network connects to the external power grid via node 1. Market price fluctuations in
electricity were disregarded in this analysis. The electricity purchase price from the power
grid followed the ordinary user time-of-use electricity price in Jiangsu Province, while the
purchase and sale electricity prices between the distribution network and energy storage
power stations are detailed in reference [30], and are shown in Table 1. The service fee
paid by the distribution network for energy storage power station services was set at CNY
0.05/(kW h). The charging and discharging efficiencies of the energy storage power station
were 0.95, with an operating range for stored energy between 10% and 90%, and an initial
stored energy of 20%. The capacity cost of an energy storage power station was based on
the average bid price of a lithium iron phosphate battery in a specific energy storage project,
which amounted to CNY 1897/(kW h), along with a power cost of CNY 1000/kW and an
operation and maintenance cost of CNY 72/(year kW) [31]. The service life expectancy of
the energy storage power station was set at 8 years.

Figure 3 depicts the active power curves of photovoltaic units at nodes 17, 21, 24,
and 32 on typical days of different seasons, with a time granularity of 15 min. Typical
solar energy and distribution network load forecasting data for summer were selected and
combined with power flow calculations to predict the operating state of the distribution
network, and to determine the voltage variations at each node. Based on the aforementioned
process, an assessment of the voltage levels in the distribution network was conducted,
thereby delineating the voltage zones within the distribution network. Table 2 shows the
photovoltaic capacities at each grid-connected node.
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Table 1. Electricity price parameters.

Period

Electricity Price/(CNY/(kW·h))

Price of Electricity
Purchased from the Grid

Price of Electricity
Purchased from Energy
Storage Power Station

Price of Electricity Sold to
Energy Storage Power

Stations

Peak
08:00–12:00

1.36 1.15 0.9517:00–21:00

Off-peak 12:00–17:00
0.82 0.75 0.5521:00–24:00

Valley 00:00–08:00 0.37 0.40 0.20
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Figure 3. Active photovoltaic power output in four seasons: (a) active photovoltaic power output at
nodes 17 and 21; (b) active photovoltaic power output at nodes 24 and 32.

Table 2. Photovoltaic capacities of each grid connection point.

Node Number 17 21 24 32

Photovoltaic Capacity/MW 1.5 1.5 1 1

Significantly, during peak afternoon power generation from photovoltaic sources, a
notable voltage exceedances were observed at the termini of the distribution network line,
particularly at nodes 17 and 18. Conversely, during the evening peak load period, instances
of voltages exceeding their limits diminished. The distribution network’s voltage levels at
different time intervals are illustrated in Figure 4. Based on Equation (9), computed with an
index weight of 0.691 derived from the voltage level of each node within the distribution
network, the comprehensive zoning index of the distribution network was established,
resulting in a division of the distribution network areas illustrated in Figure 5.

Figure 5 illustrates the comprehensive division of the distribution network into five
regions. Region III, lacking photovoltaic integration, maintains a satisfactory voltage level
without requiring additional adjustment resources. In contrast, Regions I, II, IV, and V
experience photovoltaic power injection impacts at their terminal ends, resulting in varying
degrees of voltage deviation.

As depicted in Figure 6, regions IV and V exhibit relatively substantial voltage fluctua-
tions, manifesting voltage exceedances during peak noon periods. Notably, nodes 17 and
32 display the most pronounced overvoltage, with peak voltage fluctuations exceeding 8%.
Consequently, energy storage power stations were strategically positioned at these junc-
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tures to facilitate on-site consumption of photovoltaic power within the region. Meanwhile,
other regions rely on photovoltaic governance resources to enhance the self-sufficiency of
each distribution network region across various operational scenarios, thus optimizing
regional voltage control.
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Utilizing a dual-layer configuration model, the upper objective function determined
the upper limit of energy storage capacity to be 2.5 MW. The total configuration cost of en-
ergy storage amounted to CNY 12.248 million, with an annual income of CNY 2.316 million,
indicating promising potential for profitability. To facilitate observations of the energy
storage’s timing actions, one typical day’s energy storage activity was selected to elucidate
the pressure regulation process. The temporal output behavior of node 17’s energy storage
is depicted in Figure 7. Negative values denote energy storage discharge, while positive val-
ues denote energy storage charging. The graph illustrates energy storage charging during
peak photovoltaic output and discharging during off-peak periods, effectively facilitating
peak shaving and valley filling. Between 08:00 and 17:00, energy storage is charged to coun-
teract any node overvoltage attributed to distributed photovoltaic output, aligning with
the region’s power consumption requirements during this timeframe. Conversely, during
00:00–07:00 and 18:00–24:00, when distributed photovoltaics exhibit minimal or no output,
energy storage discharges to meet power demands during peak load intervals. Moreover,
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to balance state-of-charge (SOC), energy storage is discharged to mitigate reliance on main
grid power.
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When the energy storage configuration and photovoltaic output are optimally con-
nected to the grid for voltage regulation, the voltage amplitudes at each grid-connected
node result, as illustrated in Figure 7. After energy storage was implemented, notable
enhancements in the voltage levels were observed at nodes 17 and 32. Additionally, nodes
21 and 24, initially exhibiting high voltage amplitudes, experienced voltage deviation
reductions, and the power quality improved through the integration of adjustable-capacity
photovoltaics into the governance strategies. Notably, before and after energy storage inte-
gration into the distribution network, negligible variation resulted in the voltage levels of
each node within Region III, underscoring the imperative of power quality considerations
while endeavoring to ensure sustained high voltage levels across diverse time periods.

Table 3 illustrates that nodes 17 and 21 exhibit relatively high voltage fluctuations due
to their substantial grid-connected capacities, with similar fluctuation values. Despite node
32 having a smaller grid-connected capacity compared to node 24, its voltage fluctuations
remained higher. Analysis of the network architecture diagram reveals that node 32 is
distant from the distribution network bus, resulting in higher total line impedance and
increased voltage fluctuation. At 2.875%, its peak voltage fluctuation meets national
standards. The lower-level model minimizes regional voltage deviations, further limiting
grid voltage amplitudes and enhancing the voltage quality at each grid-connected node.
Node 17 experienced a maximum voltage deviation of 3.264%, which is 7% below the
10 kV grid deviation limit. Figure 8 illustrates typical intraday voltage fluctuations post-
governance across different regions, indicating the efficacy of the optimized control strategy.
This strategy optimally absorbs required power within regions, leading to reduced voltage
fluctuations in each area.

Table 3. The peak voltage fluctuations at different grid-connected nodes under various algorithms.

Strategy
Node Number

17 21 24 32

The algorithm proposed in this paper 3.26% 3.15% 2.03% 2.88%
Conventional voltage regulation 4.23% 5.86% 6.22% 5.43%

Algorithm in reference [27] 2.33% 5.74% 5.39% 4.12%
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Figure 7. Optimization of charging and discharging behaviors of the energy storage station at
node 17.

Through a comparative analysis of the voltage quality at grid-connected points, the
peak voltage fluctuations observed at each grid-connected node under the proposed al-
gorithm surpassed those of both traditional voltage regulation methods and the accurate
model algorithm outlined in study [28], as illustrated in Table 3. Furthermore, when
considering similar economic costs associated with global energy storage configurations,
a detailed examination of voltage fluctuations across different regions reveals a notable
enhancement in regional voltage by 28.7% through the approach presented in this paper.
This finding underscores the superior voltage regulation efficacy achieved by the optimized
double-layer energy storage configuration algorithm proposed herein.
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6. Conclusions

This study investigated a distribution network with a high penetration rate of pho-
tovoltaics, and proposed a two-layer optimal allocation method for distribution network
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energy storage based on voltage zoning governance. Specifically, the upper-level model
focuses on planning the configuration based on the optimal annual operating cost of the
energy storage power station, while the lower-level model focuses on optimizing dispatch
with the smallest regional node voltage offset. To bridge these layers, the lower-level
model was transformed into the constraint conditions of the upper-level model using KKT
conditions, and the Big-M method was employed to linearize the nonlinear model into a
mixed-integer linear programming problem. Through simulation verification, the following
conclusions were drawn:

(i) A distribution network regional division index system was proposed, incorporating
a modularity index considering the distribution network grid structure and a volt-
age regulation capability index to address voltage deviations. This system utilized
existing governance resource regulation capacities within the region, coupled with
voltage over-limit zoning governance, to obtain the comprehensive zoning index of
the distribution network.

(ii) Photovoltaic governance resources were shown to enhance the autonomy of each
distribution network region under different operating scenarios. Energy storage,
configured at grid connection points, enables 100% local consumption of photovoltaic
power in the region, and better serves regional voltage control through the coordina-
tion of active and reactive power.

(iii) The double-layer optimal configuration model accounted for the planned configura-
tion of energy storage power stations and optimized dispatch of regional voltages.
Case analysis demonstrated that the proposed strategy not only yields significant
economic benefits, but also outperforms the optical storage capacity optimization
model in terms of regional performance, achieving a notable 28.7% increase in voltage
improvement effect.

The current study may not have comprehensively addressed all of the intricate factors
and constraints present in real-world scenarios. Therefore, a promising direction for
future research involves integrating electric vehicle energy storage for distribution network
regulation, in order to further optimize energy storage system operations. Additionally,
extending the optimal configuration methodology to larger-scale distribution network
systems will be crucial to validate its applicability and effectiveness across varying scales.
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Appendix A

Appendix A.1

minC =
W

∑
w=1

[Tw(Cinv,w + Cess,s,w − Cess,b,w − Cserve,w)] (A1)
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Emax
ess = βPmax

ess

Eess(t) = Eess(t − 1) +
[
ηabsPess,abs(t)− 1

ηrelea Pess,relea(t)
]
∆t

Eess(0) = 20%Emax
ess

10%Emax
ess ≤ Eess(t) ≤ 90%Emax

ess
0 ≤ Pess,abs(t) ≤ Uabs(t)Pmax

ess
0 ≤ Pess,relea(t) ≤ Urelea(t)Pmax

ess
Uabs(t) + Urelea(t) ≤ 1
Uabs(t) ∈ {0, 1}, Urelea(t) ∈ {0, 1}

(A2)



λ1,t,w − 2λ3,t,wrij − 2λ6,t,w= 0
λ2,t,w − 2λ3,t,wxij − 2λ6,t,w= 0
λ1,t,w − µmin

3,t,w + µmax
3,t,w= 0

λ2,t,w − µmin
4,t,w + µmax

4,t,w= 0
−λ1,t,wrw,ij − λ2,t,wxw,ij + λ3,t,w(r2

ij + x2
ij) + λ4,t,w + λ5,t,w + µmax

2,t,w= 0
TW + λ3,t,w − λ4,t,w + λ5,t,w − µmin

1,t,w + µmax
1,t,w= 0

−µmin
5,t,w + µmax

5,t,w= 0
λ1,t,w − µmin

7,t,w + µmax
7,t,w= 0

−λ1,t,w − µmin
6,t,w + µmax

6,t,w= 0
−µmax

7,t,w · Pmax
ess,mg + µmax

8,t,w= 0
−µmax

6,t,w · Pmax
ess,mg + µmax

8,t,w= 0
−λ4,t,w + λ6,t,w= 0

(A3)



0 ≤ µmin
1,t,w⊥(uw,i(t)− (Umin

w,i )
2
) ≥ 0

0 ≤ µmax
1,t,w⊥((Umax

w,i )2 − uw,i(t)) ≥ 0
0 ≤ µmin

2,t,w⊥lw,ij(t) ≥ 0
0 ≤ µmax

2,t,w⊥((Imax
w,i )2 − lw,ij(t)) ≥ 0

0 ≤ µmin
3,t,w⊥(Ppv,w,i(t)− Pmin

pv ) ≥ 0
0 ≤ µmax

3,t,w⊥(Pmax
pv − Ppv,w,i(t)) ≥ 0

0 ≤ µmin
4,t,w⊥(Qpv,w,i(t)− Qmin

pv ) ≥ 0
0 ≤ µmax

4,t,w⊥(Qmax
pv − Qpv,w,i(t)) ≥ 0

0 ≤ µmin
5,t,w⊥Pgrid,w(t) ≥ 0

0 ≤ µmax
5,t,w⊥(Pmax

grid,mg − Pgrid,w(t)) ≥ 0
0 ≤ µmin

6,t,w⊥Pess,s,w(t) ≥ 0
0 ≤ µmax

6,t,w⊥(Pmax
ess,mg · Usale,w(t)− Pess,s,w(t)) ≥ 0

0 ≤ µmin
7,t,w⊥Pess,b,w(t) ≥ 0

0 ≤ µmax
7,t,w⊥(Pmax

ess,mg · Ubuy,w(t)− Pess,b,w(t)) ≥ 0
0 ≤ µmax

8,t,w⊥(1 − Ubuy,w(t)− Usale,w(t)) ≥ 0

(A4)

The transformed single-layer model is represented by constraints (A1)–(A4), wherein
the nonlinear constraints within constraints (A2) and (A3) are reformulated using the Big-M
method. This involves the introduction of several 0–1 variables to linearize the original
nonlinear constraints. For instance, let us consider the conversion of the first equation in
constraint (A4) into constraint (A5). We elucidate this process as follows, noting that the
conversion methodology for other constraints follows a similar approach [24]:

0 ≤ µmin
1,t,w ≤ Mvmin

1,t,w

0 ≤ uw,i(t)− (Umin
w,i )

2 ≤ M(1 − vmin
1,t,w)

(A5)

where M represents a sufficiently large constant, and vmin
1,t,w denotes a binary variable.
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Appendix A.2

Algorithm A1: Voltage Partitioning Algorithm and Dual-Layer Energy Storage Configuration
Model

Regional partitioning algorithm:
RG = initPartition(); CMG = 0; %Initialize each node as its own community
1: while CMG > 0
2: For v in G %For each node v in G
3: For w of v %For each neighbor w of v
4: CMG = CMG(v, w);
%Calculate the modularity gain of v after moving to the community of w
5: VRC = VRC(v, w);
%Calculate the voltage regulation ability of v after moving to community w
6: vlacation = (1 − w) * CMG + w * VRC; %Determine comprehensive indicators based on weights
7: v = v + 1;
8: end
9: end
10: end
11: print(Partition (Region G))

Double-layer optimization model:
1: min Cost(x); %Upper-Level Model Objective Function
2: subject to: Constraints(x, y); % Upper-Level Model Constraints
3: min VoltageDeviation(y); % Lower-Level Model Objective Function
4: subject to: Constraints(y); % Lower-Level Model Constraints
5: y = argmin{VoltageDevia tion(y)};
6: SNLP = KKT(LM); %KKT transforms the lower-level model into a constraint condition for the
upper-level model, making it a single-layer nonlinear model
7: SMILP = BigM(SNLP); %The Big-M method linearizes the nonlinear terms in the transformed
single-layer nonlinear model
8: print(optimization)
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