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Abstract: Perovskite/silicon tandem solar cells are of great interest due to their potential for breaking
the Shockley-Queisser limit of single-junction silicon solar cells. Perovskite solar cells are widely
used as the top subcells in perovskite/silicon tandem solar cells due to their high efficiency and
lower fabrication cost. Herein, we review the semi-transparent perovskite solar cell in terms of
the mechanisms of their translucent structure, transparent electrodes, charge transport layer, and
component modification. In addition, recent progress in the research and development of 4T per-
ovskite/silicon tandem solar cells is summarized, with emphasis on the influence of perovskite
structure and silicon cells on the progress of tandem solar cells. Finally, we discuss the challenges
associated with 4T perovskite/silicon tandem solar cells and suggest directions for the development
of perovskite/silicon commercialization.
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1. Introduction

The demand for renewable energy has steadily increased with the transition to a
carbon-neutral economy. Among various solutions, low-cost and high-performance solar
cells have been considered as one of the most effective options [1–5]. In recent years,
perovskite solar cells have emerged as a promising candidate in the photoelectric field due
to their high efficiency, solution process, and low cost. Perovskite materials are widely used
in various fields and have exceptional optoelectronic properties such as a high absorption
coefficient [6], high carrier mobility [7], long charge diffusion length [8], and relatively
expansive and tunable band gap [9].

Silicon is an important semiconductor material, and it can absorb photons with ener-
gies higher than its band gap. However, any excess energy from these photons above the
band gap not only undergoes thermalization as excited electrons relax to the bottom of the
conduction band, but also causes undesirable heating effects in the system. In addition,
photons with energies below the bandgap are also absorbed, leading to unwanted heat
generation. It is necessary to balance the capture of photons with the minimization of
thermalization losses. After more than 70 years of development, the laboratory efficiency
of silicon solar cells has reached 27%, which is close to the theoretical Shockley-Queisser
(SQ) efficiency limit of 29.4% [10,11]. More importantly, perovskite solar cells (PSCs) have
achieved a record efficiency of 26.1%, which is comparable with Si solar cells [12].

Several innovative physical concepts such as multi-junction solar cells, hot carrier solar
cells, multiple exciton generation, and intermediate band solar cells have been proposed
to overcome the Shockley-Queisser limit in solar cells. Among these concepts, multi-
junction cells have been experimentally proven to overcome the development bottleneck.
A GaAs/GaInP/Ge triple-junction solar cell has been shown to achieve an efficiency above
40% under concentrated sunlight by using three component cells with different band gaps.
Multijunction cells optimize photon absorption by utilizing different bandgaps, resulting in
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higher Voc and broader spectrum utilization [13]. Among them, perovskite/silicon tandem
solar cells have greatly promoted the development of highly efficient multi-junction solar
cells. The combination of PSCs and silicon cells enable more efficient utilization and break
the SQ efficiency limit of single-junction cells, further promoting the industrialization of
perovskite solar cells. The efficiency chart of reported ST-PVK solar cells and 4T PVK/Si
tandem solar cells is shown in Figure 1.
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Figure 1. The efficiency chart of reported ST-PVK solar cells and 4T PVK/Si tandem solar cells.

Typical perovskite/silicon (PVK/Si) tandem solar cells include two structures: a four-
terminal (4T) mechanically integrated structure and a two-terminal (2T) monolithically
integrated structure, as shown in Figure 2 [14,15]. For 2T PVK/Si tandem solar cells, the
current alignment is governed by Kirchhoff’s law. This law states that the photocurrent
is limited by the subcell with the lower current. To achieve matched photocurrents at the
maximum power point, it is essential to design the bandgap and thickness of each subcell.
However, the manufacturing process of 2T multijunction cells is much more complex than
that of 4T tandem solar cells. The surface conditions of the bottom cell directly affect the
film quality of the top cell. It is a significant challenge to prepare high quality perovskites
on the textured Si cell in 2T tandem solar cells [16].

To overcome these challenges, 4T perovskite/silicon tandem solar cells have been de-
veloped, using a mechanically stacked top and bottom cell. One of the attractive advantages
of this cell type is that current alignment is not necessary for 4T perovskite/silicon tandem
solar cells. In addition, it is easy to modify the transmittance of perovskites by altering the
film thickness. Moreover, the 4T PVK/Si tandem solar cells exhibit an independent process
for subcells, and the subcells are optically coupled without any electrical connection [16,17].
Importantly, degraded perovskite subcells in 4T PVK/Si tandem solar cells can be replaced
efficiently, which improves the potential of 4T PVK/Si tandem solar cells. The theoretical
efficiency of 4T PVK/Si tandem solar cells is expected to reach 45% (Figure 2e) [18–20].

This work reviews recent progress in the development of ST-PVK and 4T PVK/Si
tandem solar cells. The mechanisms of the translucent structure, transparent electrodes,
charge transport layer, and component modification in ST-PVK solar cells is systemati-
cally summarized. The development and challenges of 4T PVK/Si tandem solar cells are
further discussed.
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mechanically integrated. (c) 4T optical spectral splitting. (d,e) Theoretical maximum PCE for 2T
and 4T PVK/Si tandem solar cells [21]. Reproduced with permission: Copyright 2019, John Wiley
and Sons.

2. Translucent Structure Mechanisms

ST-PSCs are widely used to enhance light operational capability and fabricate tandem
solar cells. The structure of a ST-PSC directly affects its efficiency, transparency, and
stability. Therefore, it is essential to design a novel translucent structure and modify
the thickness of the perovskite film. The band gap of perovskites is modified using the
component ratio of halide elements (bromide, iodide, and chloride) [22]. It has been found
that the transparency of MAPb(I3−xBrx)3 perovskite can be adjusted by altering the ratio
of bromide and iodide, where x ranges from 0 to 3. Using more bromide for a constant
film thickness can achieve a higher average transparency. For a 300 nm film, the average
transparency ranges from 10% AVT to 24% [23]. Figure 3a shows that the absorption spectra
shifts to a short wavelength with additional bromide due to a wider band gap, resulting
in decreased PCE due to spectral losses. However, optimizing bromide content could
enhance perovskite film crystallinity and photovoltaic performance. Another strategy
for achieving semi-transparency is to adjust the thickness of the film by changing the
concentration of the solution with a constant bromide ratio. Thinner films may allow
partial light transmission depending on absorption coefficient and wavelength [24]. A
common approach to fabricating semi-transparent perovskite cells involves thinning the
film via low perovskite solution concentration. However, the lower solution concentration
process usually exhibits sub-optimal film coverage and pinhole problems. Quiroz et al.
proposed two fine-tuning approaches that maintain crystallinity and film quality to address
these issues [25]. The first approach is solvent-induced rapid crystallization deposition
combined with nitrogen flow quenching. The second approach is the solvent extraction
method, which produces active layers as thin as 40 nm by fast crystal deposition, as shown
in Figure 3b. Improved deposition techniques, such as vacuum deposition, allow for
precise control of the perovskite film thickness by adjusting the deposition rate. Roldan-
Carmona et al. [26] achieved a higher AVT of 22% and a PCE of 7.3% using co-evaporation
of CH3NH3I and PbI2 with an active layer thickness of 100 nm, as shown in Figure 3c. Chen
et al. developed a dual-source vacuum co-evaporation process to fabricate CsPbBr3 thin
films for planar architecture devices [27]. The dual-source vacuum co-evaporation process
involves simultaneous evaporation of CsBr and PbBr2, followed by annealing to achieve a
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single-phase perovskite structure. The evaporation rate is a critical parameter to modify
the crystallinity, grain size, and film thickness. The perovskite films produced by dual-
source vacuum co-evaporation are of high quality with no pinholes. The corresponding
semi-transparent CsPbBr3 solar cells have been shown to achieve a PCE of 5.98%. Surface
treatment and additives engineering help to improve the ultra-thin coverage and uniformity
of perovskite films. Bag et al. [28] obtained chalcogenide compounds from thiourea vapor
and fabricated uniformly prepared perovskite film with a thickness of 110 nm, as shown in
Figure 3d. Guo et al. introduced polyvinylpyrrolidone (PVP) as an additive in preparing
perovskite precursors and achieved a PCE of 5.36% with an active layer thickness of 90 nm,
shown in Figure 3e [29]. Recently, Wen et al. introduced dicyandiamide (DCD) as an
antioxidant additive to further improve film quality [30]. The robust coordination bond
between DCD and Pb/Sn could prevent Sn2+ oxidation at low temperatures. The optimized
ST-PSCs achieved a higher PCE of 14.17% with an active area of 0.1 cm2, as shown in
Figure 3f. Pon et al. prepared low-dimensional perovskite films with the composition
(PEA)2(MA)n−1PbnIn+1Br2n, where n = 1, 3, and 5. They found that the transparency of
the films decreased as the value of n increased, as shown in Figure 3g [30]. Reducing the
thickness of the photoactive layer increases the permeability; however, a thinner layer
absorbs less light, resulting in a lower device short-circuit current. Zhang et al. fabricated
compact and ultrathin perovskite films through thermal evaporation (Figure 3h) [31]. The
films had a smooth surface and directional crystal growth, resulting in 10 nm thin films
with a compact and continuous morphology and without any pinholes. Furthermore, low-
dimensional perovskites (R2n−1BnX3n+1) are widely used as the absorbing layer in ST-PSCs.
Yao et al. demonstrated that the introduction of ADDC could convert harmful I2 to I−

in the precursor solution, reducing the deep-level trap density in perovskite films. They
achieved a high-performance semi-transparent PSC with an impressive PCE of 18.6% and a
remarkable Voc of 1.24 V [32].
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Figure 3. Schematic diagram of achieving semitransparency by modulating perovskite thickness.
(a) Absorbance spectra of MAPb(I3−xBrx)3 perovskite films with varying bromine content (x) [23].
(b) Schematic representation of the SEE method showing a 5-s crystallization process [25]. Reproduced
with permission: Copyright 2012, Royal Society of Chemistry. (c) Transmittance spectra of different
thicknesses of perovskite layers on transparent electrodes, indicated by solid and open circles [26].
Reproduced with permission: Copyright 2008, Royal Society of Chemistry. (d) Schematic diagram of the
PEDOT:PSS surface passivation by thiourea [28]. Reproduced with permission: Copyright 2016, Elsevier
Ltd. (e) Surface morphology SEM is shown at the top, and AFM is at the bottom [29]. Reproduced with
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permission: Copyright 2016, John Wiley and Sons. (f) Schematic diagram of DCD molecular struc-
ture [30]. Reproduced with permission: Copyright 2023, Elsevier Ltd. (g) The UV-Vis absorption
spectra and film images of (PEA)2(MA)n−1PbnIn+1Br2n perovskite thin films (n = 1, 3, and 5) [31].
Reproduced with permission: Copyright 2011, Royal Society of Chemistry. (h) Schematic illustration
of perovskite film deposition via thermal evaporation method [33]. Reproduced with permission:
Copyright 2023, John Wiley and Sons.

Wide band gap perovskite films usually exhibit a yellowish-brown or reddish-brown
hue. However, neutral colors can be achieved by creating microstructures in the fully
transparent area of the perovskite material. The perovskite microstructure can be obtained
through a dehumidification strategy and microscopic mold. Giles et al. [34] created islands
of perovskite microstructure by using an excess of organic matter and a solvent with a low
vapor pressure. The solvent slowed perovskite crystallization, resulting in discontinuous
islands. Furthermore, they illustrated the simple coloring of these cells through dye
incorporation without any reduction in performance. The efficiency of the champion device
was 3.5%, as depicted in Figure 4a,b. Chen et al. utilized Pb(SCN)2 as a lead source with
excess CH3NH3I to create microstructural islands in semi-transparent CH3NH3PbI3 solar
cells [35]. The high Pb(SCN)2 content was shown to improve film transmittance, and
obtained a PCE of 11.6%, as presented in Figure 4c. However, semi-transparent devices
with island microstructures exhibited a lower Voc due to the incomplete separation of the
electron and hole transport layers. Hörantner et al. employed a lithographic method to
optimize perovskite crystallization, preventing direct contact between the transport layers
and perovskite film. This improvement of film crystallization increased the performance of
perovskite solar cells [36].
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Figure 4. (a) Schematic diagram depicting the temporal evolution of the film wetting process.
The perovskite material is depicted in black, while the white areas denote the presence of pores.
(b) Schematic diagram illustrating the structural arrangement of a wet planar perovskite hetero-
junction solar cell [34]. Reproduced with permission: Copyright 2014, American Chemical Society.
(c) Illustration of the formation of microstructural islands in CH3NH3PbI3 semitransparent solar
cells using Pb(SCN)2 as the lead source in conjunction with excess CH3NH3I [35]. Reproduced with
permission: Copyright 2016, Royal Society of Chemistry. (d) Optical microscope image of the wide
grid and optical microscope image of the dense grid [37]. Reproduced with permission: Copyright
2015, John Wiley and Sons. (e) Schematic of the ST-PVK solar cell made by a two-step deposition
process [38]. Reproduced with permission: Copyright 2016, Royal Society of Chemistry. (f) Illus-
tration demonstrating the formation of a perovskite grid using the 1.5-step deposition method [39].
Reproduced with permission: Copyright 2013, Royal Society of Chemistry.
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Perovskite materials have been widely used in absorbing layers due to their self-
assembly process with wet deposition methods [26,40]. Aharon et al. fabricated a semi-
transparent perovskite solar cell based on mesoporous TiO2 and achieved a PCE of 0.4–5%,
as shown in Figure 4d [37]. Rahmany et al. further developed the self-assembly process
of perovskite lattices using a two-step deposition method and induced mesoporous TiO2
and Al2O3 NPs as electron transport layers (ETL). The device with the optimum PbI2
concentration of 0.5 M achieved a PCE of 8% due to the increased film coverage. A
transparent DMD back contact was utilized to fabricate semi-transparent device and achieve
a PCE of 5.5%, as shown in Figure 4e [38]. Rai et al. improved the perovskite film quality
by using a mixed cation, Cs0.2FA0.8Pb(I0.6Br0.4)3. The dipping of the hot FAI solution
could promote the formation of the grid and improve device performance and stability, as
illustrated in Figure 4f [39].

3. Transparent Electrodes

The ideal transparent electrode for ST-PVK solar cells should possess high optical
transmittance in the visible and near-infrared spectrums, low resistivity, and compatibility
with adjacent layers. Due to the ordinary thermal stability of perovskites, it is preferable
to use low-temperature processes for electrode deposition [41–43]. Various electrode
technologies have been developed to further improve the efficiency of perovskite solar cells,
including silver nanowires, carbon nanomaterials, ultrathin metals, conductive polymers,
and transparent conductive oxides. This article provides an overview of transparent
electrode applications and optimization scenarios in ST-PSCs.

3.1. Silver Nanowires

Silver nanowires (AgNWs) are becoming increasingly popular as a substitute for ITO
electrodes due to their superior mechanical and optoelectronic properties, and ability to
be produced on a large scale. The performance of AgNWs is influenced by their diameter,
length, area density, and interconnection, which affect their transmittance, resistance, and
haze [44]. Guo et al. successfully produced efficient perovskite solar cells using AgNWs
processed in a solution process as electrodes [45]. Spraying isopropanol-diluted AgNWs
showed low resistance and high transmittance and the champion device with a ZnO layer
achieved a PCE of 8.5%, as shown in Figure 5a,b. Chang et al. fabricated semi-transparent
perovskite solar cells with an efficiency of 10.8% using solution-processed AgNWs [46].
They fabricated ZnO thin films using ALD as a buffer, along with electron transport layers
to further increase the charge transport. To prevent oxidation and corrosion of AgNWs,
the ALD-deposited Al2O3 thin film was induced as a protective layer. This strategy could
significantly improve device stability while affecting efficiency and transparency, as shown
in Figure 5c,d. Hong Lin’s team proposed an Au/AgNWs bilayer electrode to prevent
halide migration from the perovskite by separating the AgNWs from the halides. The
authors used a 6 nm Au layer–AgNWs combination to improve the orientation of the
spin-coated AgNWs layers and achieve a high fill factor. Their semi-transparent perovskite
solar cell achieved an impressive PCE of 11%.
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the semitransparent device architecture, with ZnO thin film deposited by atomic layer deposition
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with permission: Copyright 2014, American Chemical Society. (f) Schematic illustration of coating
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with permission: Copyright 2013, Royal Society of Chemistry.

3.2. Carbon Nanomaterials

Carbon nanomaterials are widely used as electrodes due to their low-cost, stable, and
hydrophobic transparency, which requires improved conductivity and optical transmittance.
Zhen et al. synthesized CNT films by using the chemical vapor deposition method and
pressed them directly onto perovskite cell layers [49]. The fabricated ST-PSCs without a
hole transport layer achieved a PCE of 6.29%. However, the optical transmittance of these
films was lower than FTO, as shown in Figure 5e [47]. Li et al. [48] fabricated ST-PVK
solar cells with using a carbon lattice as the top transparent electrode. The corresponding
ST-PSCs obtained a PCE of 11.31% at minimal grid spacing. In addition, the thin layer of
multi-wall carbon nanotubes (MWCNTs) fabricated with spray coating could achieve an
efficiency of 8.21% with a transparency of 24.0%, as shown in Figure 5f.

Graphene is a popular candidate for transparent electrodes due to its high carrier
mobility and superior optical properties. It has a lower absorption rate of only 2.3% over a
broad solar spectrum [50]. Feng et al. fabricated graphene electrodes on copper foil using
CVD and transferred them to perovskite solar cells. To further enhance the conductivity of
the graphene electrodes, they deposited a layer of PEDOT:PSS. The device performance
was further enhanced by altering the layers and conductivity of the graphene electrodes, as
shown in Figure 6a,b [51].
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3.3. Ultrathin Metals

Ultrathin metal films are well-suited for large-area device manufacturing due to
their excellent conductivity. In traditional PSCs, metal electrodes are opaque and require
significant thickness reduction to achieve transparency. Several studies on ST-PSCs have
reported thin metal films (such as Al, Ag, and Au) fabricated via an evaporation method
as their top electrodes [26,34,53]. Roldán-Carmona et al. presented a semitransparent
perovskite solar cell based on the inverted structure [26]. They used ultrathin gold as the
top electrode and enhanced transparency by minimizing mirror-reflection-induced energy
loss via a LiF layer. The team created a thin and uniform perovskite absorption layer using
a thermal evaporation method, further boosting transparency under low temperatures.
Figure 6c shows that devices with an average transmittance of 29% achieved an efficiency
of 6.4%, whereas devices with a transmittance of 22% exhibited a PCE of 7.3%. Sigalit et al.
improved the transparency of semi-transparent perovskite solar cells by using a silkscreen-
printed stainless-steel net and wet deposition technology for perovskite grid creation [37].
The device transparency was controlled by altering the perovskite solution concentration
and grid hole opening. This work presented a controlled patterned perovskite layer to
produce semitransparent cells. Through adjusting the concentration of the perovskite
solutions and the size of the grid holes, the semitransparent solar cell achieved an efficiency
of 5%, as shown in Figure 6d. Lee et al. investigated the difference between Ag and Cu as
semi-transparent top electrodes in semi-transparent perovskite solar cells (ST-PSCs) [52].
They found that Cu has lower thin-film resistance than Ag, while maintaining comparable
transparency (Figure 6e,f). Chen et al. utilized an ultrathin silver film as the top transparent
electrode in perovskite solar cells and introduced a tellurium oxide layer to boost light
absorption and transmittance [54]. The TeO2/Ag electrode significantly enhanced short-
circuit current and efficiency. Their device achieved high bifacial PCEs of 21%, excellent
reproducibility, and stable performance.

Ultrathin metal electrodes usually do not meet conductivity and optical transmittance
requirements. Thus, it is necessary to balance conductivity and optical transmittance. The
metal layer is responsible for the excellent conductivity, while the transparency of the
electrode is improved by interference and anti-reflection at the multi-layer interfaces. Della
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et al. fabricated efficient perovskite solar cells with a transparent DMD (MoO3/Au/MoO3)
electrode [55]. The DMD structure, which contains interference effects between two dielec-
tric layers, enhances electrode transmittance. The research optimized the layer thickness,
resulting in a DMD electrode square drop to 13 Ω and a higher efficiency of 13.6%, as shown
in Figure 7a. A thin Au layer was introduced into the DMD structure to further achieve
excellent optical transparency and electrical conductivity. MoOx/Au/Ag arrangement
exhibited optimized band matching and increased the hole transport rate. The semitrans-
parent perovskite solar cell with the DMD electrode structure achieved an efficiency of
11.5%, as shown in Figure 7b [56].
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3.4. Conductive Polymers

PEDOT:PSS is commonly used as a transparent electrode in ST-PSCs due to its high
transmittance and conductivity. However, the hygroscopicity of PEDOT:PSS could po-
tentially damage perovskite film, which has limited its application in perovskite solar
cells [61,62]. In 2015, Bu et al. applied PEDOT:PSS thin films on perovskite solar cells
using transfer lamination and achieved an increased efficiency of 11.29% [57]. Furthermore,
similar techniques resulted in a semi-transparent perovskite cell that achieved an efficiency
of 10.1%, with a transmittance of 7.3% between 370–740 nm, as illustrated in Figure 7c. They
utilized a transfer lamination technique with plastic packaging as the transfer medium to
produce large-area PEDOT:PSS transparent electrodes.

3.5. Transparent Conductive Oxides (TCO)

Transparent conductive oxides (TCOs) showed significant electronic and optical char-
acteristics, including transmittance of over 85%, marking them as prominent transparent
electrodes. The most commonly used TCOs are indium tin oxide (ITO), indium zinc oxide
(IZO), and aluminum-doped zinc oxide (AZO). TCOs are usually deposited through sputter-
ing methods, but this method can potentially harm the perovskite absorptive layer [63,64].
Refining the deposition techniques can protect the underlying materials when employ-
ing regulated sputtering parameters to mitigate damage to the electrode layer. Heo et al.
laminated PEDOT:PSS as the interface layer on ITO transparent electrodes to fabricate
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semitransparent perovskite solar cells. The device using P3HT for hole transport achieved
efficiencies of 12.8% due to its strong light absorption. Conversely, those using PTAA regis-
tered a higher efficiency of 15.8%, as shown in Figure 7d [58]. A suitable buffer between
the perovskite absorbing layer and the TCO electrode can reduce sputtering damage. Bush
et al. fabricated ITO/ZnO dual layers with ZnO nanoparticles as the buffer layer. However,
significant interface potential barriers existed at the interface due to the unmatched work
functions of ZnO and ITO, hindering electron extraction. Using AZO nanoparticles that
match the ITO work function as the buffer layer, the researchers overcame the barriers and
improved device efficiency [59]. With an inverted structure, the resulting semitransparent
perovskite solar cell achieved an efficiency of 12.3%, as shown in Figure 7e [59].

IOH/ITO is another TCO that has received significant attention. Werner et al. used
thermal evaporation to create a 10 nm molybdenum oxide protective layer and introduced a
110 nm thick IOH/ITO transparent conductive film primer via sputtering. They achieved an
efficiency of 14.5% for the single-junction semi-transparent perovskite solar cell by tuning
all layer thicknesses and using the perovskite absorption layer fabrication method [65]. IZO
and AZO films showed high transmittance in the long-wave range, making them suitable
for transparent electrodes with high mobility. Werner et al. fabricated a 120 nm IZO trans-
parent electrode using sputtering, achieving a high transmittance of 97% in the 400–1200 nm
range. After integrating a molybdenum oxide buffer, the semi-transparent perovskite solar
cell with IZO improved efficiency from 9.7% to 10.3%, as shown in Figure 7f [60]. Wahl
et al. fabricated an inverted semitransparent perovskite solar cell by sputtering IZO directly
onto the electron transport layer, and achieved an efficiency of 13% [66]. Fu et al. fabricated
a 400 nm AZO transparent electrode via sputtering and obtained an higher efficiency of
16.1% with an average transmittance of 80.4% within the 800–1200 nm range [67]. Yoon
et al. fabricated a semitransparent perovskite solar cell using gallium- and titanium-doped
indium oxide (IO:GT) between the electron transport layer and the transparent electrode
and increased the power conversion efficiency of ST-PSC from 8.59% to 17.90% [68]. The
device performance of ST-PVK solar cells is summarized in Table 1.

Ideally, transparent electrodes should have several key properties for semi-transparent
perovskite and tandem solar cells. Transparent electrodes are expected to fabricate at low
temperatures, and exhibit excellent electrical conductivity, high optical transparency, good
chemical stability, and compatibility with adjacent layers. Silver nanowires (AgNWs) have
gained attention due to their desirable properties, including high electrical conductivity
and optical transparency of up to 90%. They can be easily synthesized with a large-scale
solution-based method. However, a major drawback is the reaction between AgNWs and
halide ions in perovskite materials, leading to the formation of silver compounds. The
reaction will form harmful AgI, leading to a degradation in device performance. Carbon
nanotubes (CNTs) are a good candidate for transparent electrodes due to their excellent
electrical conductivity and stability. However, the transparency of CNTs is lower than other
materials, and they exhibit higher resistance. Graphene has good optical transparency, but
poor stability and electrical conductivity. When considering ultra-thin metal electrodes, it is
necessary to incorporate suitable buffer layers to achieve a balance between these properties.
Furthermore, the implementation of a DMD structure has shown promise in improving the
stability of ultra-thin metal electrodes. Conductive polymers represent another option for
transparent electrode materials. They can be synthesized using cost-effective solution-based
methods, but their environmental stability is limited. Transparent conducting oxides (TCO)
are the most common transparent electrodes due to their high electrical conductivity and
optical transparency. To prevent damage to the perovskite absorber layers, it is necessary
to incorporate suitable buffer layers between the perovskite absorber and TCO electrode
interfaces when directly sputtering TCO onto them.
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Table 1. Summary of semi-transparent perovskite solar cells.

Absorber Transparent Electrode Eg (eV) Voc (V) Jsc (mAcm−2) FF (%) PCE (%) Year Ref.

FA0.92MA0.08PbI3 IZO 1.53 1.14 24.07 80.40 22.04 2023 [69]
CsPb0.6Sn0.4I2Br ultrathin Ag 1.54 0.87 22.67 71.73 14.17 2023 [30]

CH3NH3PbI3 LiF/Au 1.55 1.04 13.43 52.50 7.31 2014 [26]
CH3NH3PbI3 AgNWs 1.55 0.96 15.87 69.68 10.55 2015 [46]
CH3NH3PbI3 DMD 1.55 0.99 20.40 58.00 13.60 2015 [55]
CH3NH3PbI3 PEDOT:PSS 1.55 0.97 16.00 65.40 10.10 2015 [57]
CH3NH3PbI3 ITO 1.55 1.10 19.30 74.00 15.80 2015 [58]
CH3NH3PbI3 IZO 1.55 0.87 17.50 68.00 10.36 2015 [60]
CH3NH3PbI3 ultrathin Ag 1.55 0.95 12.10 71.00 8.20 2016 [28]
CH3NH3PbI3 ITO 1.55 0.95 16.50 77.00 12.30 2016 [59]
CH3NH3PbI3 IOH/ITO 1.55 1.02 16.20 79.30 13.10 2016 [65]
CH3NH3PbI3 ultrathin Ag 1.55 0.91 21.40 71.00 13.80 2017 [35]
CH3NH3PbI3 ultrathin Au 1.55 1.16 19.80 79.90 18.30 2020 [70]

FAPbI3 IZO 1.55 1.13 24.00 84.20 22.90 2023 [71]
CH3NH3PbI3 CNTs 1.56 0.84 16.40 49.00 6.69 2014 [47]
CH3NH3PbI3 ultrathin Ag 1.56 1.06 14.56 71.78 11.05 2019 [52]
CH3NH3PbI3 ultrathin Cu 1.56 1.01 16.19 73.05 11.95 2019 [52]

CH3NH3PbI3−xClx AgNWs 1.57 0.96 13.18 66.80 8.49 2015 [45]
CH3NH3PbI3−xClx Graphene 1.57 0.95 17.75 71.72 12.03 2015 [51]
CH3NH3PbI3−xClx DMD 1.57 1.05 14.60 75.10 11.50 2015 [56]

MAFAPbI3−xClx IZO 1.57 1.06 23.05 78.52 19.24 2022 [72]
FA0.95MA0.05Pb(I0.95Br0.05)3 ITO 1.57 1.08 23.33 77.28 19.48 2022 [73]

(5-AVA)0.05(MA)0.95PbI3 MWCNT 1.58 0.87 18.10 52.10 8.21 2017 [48]
Cs0.1FA0.9PbI2.865Br0.135 ITO 1.58 0.71 20.00 73.40 15.30 2018 [74]

Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 ITO 1.58 1.06 21.52 77.50 17.70 2019 [75]
FA0.87Cs0.13Pb(I0.87Br0.13)3 IO:GT 1.63 1.12 19.28 82.90 17.90 2022 [68]

Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 IZO 1.63 1.13 20.40 83.0 19.20 2023 [76]
FA0.83Cs0.17Pb[I1−yBry]3 ITO 1.65 1.16 19.70 78.70 18.00 2020 [77]

Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 ITO 1.65 1.08 19.40 78.10 16.30 2018 [78]
Cs0.05FA0.8MA0.15PbI2.55Br0.45 IZO 1.65 1.11 20.50 78.60 17.90 2020 [79]

MA0.10Cs0.10FA0.80Pb(I0.78Br0.22)3 ITO 1.65 1.22 20.29 77.56 19.15 2023 [80]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(PF6)x IZO 1.67 1.19 19.57 80.56 18.70 2022 [81]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(BF4)x IZO 1.67 1.18 19.54 80.08 18.66 2022 [81]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 IZO 1.68 1.16 21.40 81.10 20.13 2023 [82]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 ITO 1.68 1.26 18.43 76.36 17.76 2023 [83]

Cs0.2FA0.8Pb(Br0.4I0.6)3 ultrathin Au 1.68~1.74 0.92 15.71 70.00 10.03 2018 [39]
Cs0.05FA0.70MA0.25PbI2.25Br0.75 IZO 1.71 1.12 22.21 81.25 20.25 2022 [84]

Cs0.15(CH5NH2)0.85Pb(I0.71Br0.29)3 ITO 1.72 1.22 15.40 73.40 13.80 2019 [85]
FA0.83Cs0.17PbI2Br ITO 1.72 1.10 18.07 74.10 14.70 2019 [75]

Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br IZO 1.72 1.20 17.50 76.30 16.10 2020 [86]
FA0.83Cs0.17Pb(I0.7Br0.3)3 ITO 1.72 1.19 18.35 70.00 15.42 2022 [87]
FA0.83Cs0.17Pb(I0.6Br0.4)3 ultrathin Au 1.75 1.19 17.80 69.70 14.70 2018 [88]

CsxFA1−xPb(IyBrzCl1−y−z)3 IZO 1.77 1.24 18.82 79.58 18.57 2022 [32]
CsPbBr3 PEDOT:PSS 2.3 1.38 6.15 70.51 5.98 2018 [27]

Cs0.1FAxPbI2+xBr0.1 ultrathin Ag / 1.17 10.65 78.09 9.77 2023 [33]

4. Charge Transport Layer Regulation

The efficiency of perovskite solar cells is related to the mobility and work function
of the charge transport layer. The appropriate selection of charge transport layer could
significantly enhance carrier transport and device performance. It is important to incorpo-
rate a charge transport layer with good conductivity and strong energy level alignment
with the perovskite. Jae et al. substituted the typical PEDOT:PSS with CuSCN as the hole
transport layer and employed CH3NH3PbI3 as the perovskite absorber layer, resulting
in ST-PSCs with a PCE of 10% [89]. The valence band of CuSCN is well aligned with
that of CH3NH3PbI3, minimizing the barrier for effective charge extraction, as shown in
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Figure 8a,b. Sun et al. described an additive engineering strategy to enhance the p-type
conductivity of CuSCN HTLs [72]. The introduction of n-butylammonium iodide could
increase Cu2+ formation and the number of Cu vacancies, boosting hole concentration and
conductivity. Additionally, this additive promoted the solubility of the CuSCN precursor
solution, resulting in a uniform layer and a high PCE of 19.24%, as shown in Figure 8c.
Recently, Jeong et al. proposed a device architecture for sputtering damage-free semitrans-
parent perovskite solar cells (PSCs) [73]. In this architecture, a p-type NiOx nanoparticle
overlayer on perovskite acts as a hole transporting and buffer layer to avoid sputtering dam-
age. The NiOx-based semi-transparent PSCs exhibited exceptional durability, achieving a
PCE of 19.5%.
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Figure 8. (a) Device structure diagram and (b) band diagram of solution-treated CuSCN as the hole
transport layer [89]. Reproduced with permission: Copyright 2015, John Wiley and Sons. (c) The
device structure diagram of BAI as a CuSCN hole transport layer additive [72]. Reproduced with
permission: Copyright 2022, American Chemical Society. (d) Diagram depicting the process flow
for device fabrication: 1⃝ Conventional growth leading to distinct perovskite and PCBM layers, and
2⃝ PCBM-assisted growth resulting in a perovskite-PCBM hybrid structure [90]. Reproduced with

permission: Copyright 2013, Royal Society of Chemistry. (e) Device configuration of inverted planar
perovskite solar cells, along with C60(CH2) (Ind) as the electron transport layer (ETL) and the surface
modifier (DEA) for NiO anode modification [91]. Reproduced with permission: Copyright 2016, John
Wiley and Sons.

Currently, titanium dioxide (TiO2), tin dioxide (SnO2), and zinc oxide (ZnO) are widely
used as electron transport layers. In inverted perovskite solar cells, the electron transport
layer usually adopts n-type organic semiconductors like fullerene and its derivatives, which
possess excellent film uniformity and electron mobility. Li et al. developed semi-transparent
perovskite solar cells by using a simple low-temperature PCBM-assisted perovskite growth
method [90]. The devices exhibited good transparency in the visible light wavelength range
and achieved a PCE of 9.1%, as shown in Figure 8d. Xue et al. [91] used fullerene derivative
as an electron transport layer and NiOx as a hole transport layer to achieve a PCE of 12.6%,
as shown in Figure 8e. Recently, Yu et al. adopted ALD SnOx as a buffer layer to avoid
sputtering damage and achieved a PCE of 20.25% [84]. Meanwhile, they found that the
conventional PCBM inhibits ALD SnOx layer-by-layer growth, whereas introduced reaction
sites activate the PCBM layer.

5. Component Modification

The four-terminal perovskite/silicon tandem solar cells provide a significant advan-
tage given their independent subcells. The band gap of perovskites for 4T perovskite/Si
tandem solar cells exhibit a large range from 1.5 eV to 1.79 eV. Along with the band gap, op-
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tical coupling is important to increase the performance of tandem solar cells. Furthermore,
perovskite materials are crucial in enhancing solar cell efficiency. Table 1 summarizes the
components of semi-transparent perovskite solar cells with different band gaps. MAPbI3
is firstly used alongside semi-transparent perovskites with a band gap of 1.55 eV due
to its sample film process and excellent performance. Bailie et al. fabricated a 4T per-
ovskite/silicon tandem solar cell with a PCE of 17% based on MAPbI3 perovskites [41].
Ren et al. fabricated a perovskite top cell with MAPbI3 components and combined it
with PERC solar cells to achieve a tandem solar cell with a PCE of 22.4% [92]. Wide band
gaps could obtain high efficiency with a large Voc and thin perovskite film, which could
promote silicon to absorb more light and achieve high tandem efficiency. Additionally, the
addition of Cs and FA could significantly enhance the stability of wide-bandgap solar cells.
Yoon et al. fabricated FA0.87Cs0.13Pb(I0.87Br0.13)3 perovskite as top subcell and combined
it with gallium and titanium-doped indium oxide (IO:GT) as a transparent electrode to
achieve a tandem PCE of 23.35% for a four-terminal tandem solar cell [68]. The all-inorganic
perovskite cell CsPbBr3 with a bandgap of 2.3 eV can also serve as the top cell in 4T per-
ovskite/Si tandem solar cells. Chen et al. fabricated a semi-transparent CsPbBr3 perovskite
solar cell by using the double-source vacuum co-evaporation method and achieved a Voc
of 1.44 V [27].

6. The Semi-Transparent Perovskite/Silicon Four-Terminal Tandem Solar Cell

Four-terminal perovskite/Si tandem solar cells are expected to break the limitations of
single-junction solar cells and promote the industrialization of perovskites. The highest
theoretical PCE for 4T perovskite/Si tandem solar cells is 45%. Silicon solar cells, which are
prominent in the solar cell market, present feasible options for commercialization in tandem
solar cells. Perovskite solar cells are suitable as the top cell in perovskite/Si tandem solar
cells due to their tunable band gap. A typical PVK solar cell has two classifications: PIN-
structured PVK top cell (Figure 9a) and NIP-structured PVK top cell (Figures 9b and 10a).
Based on the crystal structure of silicon, the subcells can be classified into different types
of solar cells, such as passivated emitter backfield contact solar cell (PERC) (Figure 9d),
interdigital back contact solar cell (IBC), silicon heterojunction solar cell (SHJ) (Figure 9b),
and tunneled oxide passivated contact solar cell (TOPCon) (Figure 9c).

For the choice of the top subcell, NIP perovskite solar cells were expected to obtain bet-
ter electrical transport and improved current collection. On the other hand, PIN structures
exhibit unique light trapping capabilities, reduce recombination losses, and are suitable for
specific manufacturing processes. Philipp et al. [93] achieved a transmittance of over 55% in
the near-infrared region using a non-metallic ITO transparent electrode on a CH3NH3PbI3-
based NIP PVK top cell. They fabricated 4T PVK/Si tandem solar cells based on a SHJ
bottom cell, resulting in an improved current density and a PCE of 13.4%, as shown in
Figure 10b,c. Werner et al. [94] fabricated 4T PVK/Si tandem solar cells based on the
perovskite CH3NH3PbI3 and SHJ solar cell, resulting in PCEs of 23.0% and 25.2% for 1 cm2

and 0.25 cm2, respectively, as shown in Figure 10d. Yao et al. [32] introduced ADDC to
improve perovskite film quality and fabricated a semitransparent PSC with an efficiency of
18.6%. They further fabricated a 4T perovskite/Si tandem solar cell based on SHJ solar cells
with a PCE of 30.24%. Aydin et al. [95] developed a transparent Zr-doped indium oxide
(IZRO) electrode to achieve a superior near-infrared response compared to commercial
ITO. The 4T PVK/Si tandem solar cell demonstrated an efficiency of 26.2%. Yoon et al. [68]
proposed gallium and titanium doped indium oxide (IO:GT) as a substitute for indium tin
oxide (ITO) in the ETL of ST-PSCs to obtain better charge transport and Schottky barrier
formation due to lower work function. The introduction of the IO:GT electrode achieved
an average visible transmittance of 21.9%, and the corresponding tandem solar cell reached
an efficiency of 23.35%.
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Figure 9. Schematics of 4T PVK/Si tandem architectures: (a) NIP structured PVK top cell/SHJ
bottom cell [70]. Reproduced with permission: Copyright 2019, John Wiley and Sons. (b) PIN
structured PVK entire cell/SHJ bottom cell [95]. Reproduced with permission: Copyright 2019, John
Wiley and Sons. (c) NIP structured PVK entire cell/TOPCon bottom cell [80]. Reproduced with
permission: Copyright 2023, Elsevier Inc. (d) PIN structured PVK entire cell/PERC bottom cell [96].
Reproduced with permission: Copyright 2023, Elsevier B.V. (e) EQE spectra of a NIP structured
PVK/Si tandem cell [95]. Reproduced with permission: Copyright 2019, John Wiley and Sons.
(f) The J-V characteristics of ST-PVK and opaque PVK solar cells [70]. Reproduced with permission:
Copyright 2019, John Wiley and Sons.

PERC, IBC, and TOPCon solar cells are commonly used as bottom cells in 4T per-
ovskite/Si tandem solar cells. PERC solar cells passivate the rear contact and could reduce
reflection and surface recombination, resulting in improved efficiency and lower produc-
tion costs. IBC solar cells minimize front surface electron shading to enhance efficiency and
result in higher manufacturing costs. The TOPCon solar cell introduced a micrometer-scale
tunnel oxide passivation layer in the contact area to reduce electron-hole recombination,
thereby improving the open-circuit voltage and fill factor. However, the preparation process
and material costs of the TOPCon solar cell are much higher than other Si cells. Duong
et al. [97] meticulously explored electrical and optical power losses across cells, resulting in
an NIP-structured PVK top cell utilizing an ITO electrode with over 80% infrared trans-
parency. Perovskite/Si tandem solar cells based on PERL cells have achieved an efficiency
of 20.1% due to their better light absorption properties. Duong et al. [86] synthesized an
innovative PVK top cell and reduced surface defects by introducing MABr surface passiva-
tion. They further combined this with a PERL cell to fabricate a 4T perovskite/Si tandem
solar cell with an efficiency of 26.2%. Mehedad et al. [98] fabricated a 4T perovskite/Si
tandem solar cell with an intruding ZnO buffer layer and combined it with the PERT cell,
resulting in an efficiency of 21.1%, as shown in Figure 10e. Manoj et al. [74] applied optical
simulation to devise a 4T perovskite/Si tandem solar cell structure which minimizes light
leakage on both textured and flat Si surfaces. The perovskite/Si tandem solar cells based
on the IBC bottom cell achieved an efficiency of 25.5%. Manoj et al. [85] introduced an
innovative approach by placing an ALD-processed Al2O3 passivation layer between the
PVK layer (Cs0.15(CH5NH2)0.85Pb(I0.71Br0.29)3) and the spiro HTL to successfully reduce
the nonradiative recombination, resulting in a high Voc of 1.22 V. The 4T perovskite/Si
tandem cell with an Al2O3 passivation layer and IBC bottom cell yielded efficiencies of
27.1% (0.13 cm2) and 25.3% (4 cm2). Zhang et al. [78] fabricated the 4T perovskite/Si tandem
solar cells based on the IBC cell and achieved an efficiency of 25.7% with a near-infrared
transmittance of 92%. Chai et al. [82] used Pb(SCN)2 and MACl additives to improve high
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film quality. They found that the introduction of Pb(SCN)2 could improve crystallinity
and generate excess PbI2, while the introduction of MACl could react with the excess PbI2
to create MAPbI3−xClx. The 4T perovskite/TOPCon silicon tandem device achieved an
impressive efficiency of 30.91% and excellent stability. Ajeet et al. [79] conceived a TOP-
Con sub-cell and stacked a Cs0.05FA0.8MA0.15PbI2.55Br0.45 PVK top cell, engineering a 4T
PVK/Si tandem solar cell that delivered 26.7% efficiency. Recently, Wu et al. [76] proposed
a method to reconstruct the ITO surface using an HF and subsequent UVO treatment.
This method selectively removes undesired terminal hydroxyls and hydrolysis products,
enhancing SAM adsorption and preventing direct contact with the perovskite layer. The
4T perovskite/Si tandem solar cell obtained an efficiency of 28.4%. A summary of 4T
perovskite /Si tandem solar cells is presented in Table 2.
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Figure 10. (a) Structural image of the top cell: NIP structured PVK solar cell and bottom cell [99].
Reproduced with permission: Copyright 2018, American Chemical Society. (b) Schematic of the
mechanically stacked four-terminal tandem and (c) current loss spectra separated into the top cell
and bottom cell current losses [94]. Copyright 1999, Royal Society of Chemistry (Great Britain).
(d) Structural image of NIP structured PVK top cell/SHJ bottom cell [93]. Reproduced with per-
mission: Copyright 2016, American Chemical Society. (e) EQE of PVK solar cells by atmospheric
pressure spatial atomic layer deposited ZnO [98]. Reproduced with permission: Copyright 2018, John
Wiley and Sons. (f) Corresponding certified J–V data (1 cm2 aperture area) [86]. Reproduced with
permission: Copyright 2020, John Wiley and Sons.

Table 2. Summary of 4T PVK/Si tandem solar cells.

Absorber Eg (eV) PVK
Structures

Silicon
Structure

Transparent
Electrode PCE (%) Year Ref.

CH3NH3PbI3 1.55 NIP SHJ ITO 13.4 2015 [94]
CH3NH3PbI3 1.56 NIP SHJ IZO 25.2 2016 [93]
CH3NH3PbI3 1.55 NIP PERL ITO 20.1 2016 [97]

FA0.83Cs0.17Pb(I0.6Br0.4)3 1.75 NIP SHJ ultrathin Au 20.3 2018 [88]
Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 / PIN IBC ITO 25.7 2018 [78]

Cs0.1FA0.9PbI2.865Br0.135 / NIP IBC ITO 25.5 2018 [74]
Cs0.15(CH5NH2)0.85Pb(I0.71Br0.29)3 1.72 NIP IBC ITO 27.1 2019 [85]

CH3NH3PbI3 1.55 PIN SHJ IZRO 26.2 2019 [95]
Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.58 NIP PERC ITO 25.5 2019 [75]

FA0.83Cs0.17PbI2Br 1.72 NIP PERC ITO 22.4 2019 [75]
CH3NH3PbI3 1.55 NIP SHJ ultrathin Au 27 2020 [70]
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Table 2. Cont.

Absorber Eg (eV) PVK
Structures

Silicon
Structure

Transparent
Electrode PCE (%) Year Ref.

FA0.83Cs0.17Pb (I1−yBry)3 1.65 NIP IBC ITO 25.7 2020 [77]
Cs0.05FA0.8MA0.15PbI2.55Br0.45 1.63 PIN TOPCon IZO 26.7 2020 [79]

Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br 1.72 NIP PERL IZO 26.2 2020 [86]
CsxFA1−xPb (IyBrzCl1−y−z)3 1.77 NIP SHJ IZO 30.24 2022 [32]

FA0.87Cs0.13Pb(I0.87Br0.13)3 1.63 PIN SHJ IO:GT 23.35 2022 [68]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(PF6) x 1.67 PIN PERC IZO 27.35 2022 [81]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3–x(BF4) x 1.67 PIN PERC IZO 27.11 2022 [81]

FA0.83Cs0.17Pb(I0.7Br0.3)3 1.72 NIP SHJ ITO 23.85 2022 [87]
Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 1.63 PIN TOPCon IZO 28.4 2023 [76]

FA0.92MA0.08PbI3 1.53 NIP SHJ IZO 31.50 2023 [69]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 1.68 NIP TOPCon IZO 30.91 2023 [82]

FAPbI3 1.55 NIP PERL IZO 30.3 2023 [71]
Cs0.2FA0.8Pb(I0.8Br0.2)3 / PIN PERC ITO 26.59 2023 [96]

MA0.10Cs0.10FA0.80Pb(I0.78Br0.22)3 1.65 NIP TOPCon ITO 28.83 2023 [80]
FA0.65MA0.20Cs0.15Pb(I0.8Br0.2)3 1.68 PIN PERC ITO 26.76 2023 [83]

7. Conclusions and Outlook

This review summarized recent progress in the development of ST-PSCs and 4T-
PVK/Si tandem solar cells. It highlights the effects of the translucent structure mechanism,
transparent electrodes, charge transport layer, and perovskite component modification
in semitransparent perovskite solar cells. Furthermore, we discussed the application of
semitransparent perovskite solar cells in perovskite/Si tandem solar cells. However, there
is significant room to further develop the efficiency of 4T perovskite/Si tandem solar cells.

The development and application of ST-PSCs have received unprecedented attention
against the current low carbon and green energy backdrop. However, it is necessary
to further develop the efficiency of ST-PSCs. The main challenge is to balance the light
transmittance and perovskite film thickness. One effective strategy to increase current
density and efficiency of ST-PSCs is to fabricate thicker film, which will absorb more light
in the top cell. The high efficiency and high transmittance of ST-PSCs will further promote
the development of 4T perovskite/Si tandem solar cells.

Perovskite light-absorbing layers with optically active microstructures or nanostruc-
tures may be frequently employed to improve device performance. It is important to
prepare a buffer layer to prevent AgNWs reactions that could lead to a degradation in
device performance. More importantly, the main challenge for transparent electrodes is to
balance high conductivity and high transmittance. Additionally, the stability of ultra-thin
metals need to be further considered and can be improved by developing DMD structures.
It is necessary to develop novel structures to optimize transmittance without compromising
on performance. Transparent conductive materials with high mobility could improve the
light capture capacity of the device, and an anti-reflection layer or light management foil
could further promote the development of the perovskite/Si tandem solar cell. Regarding
the charge transport layer, it is important to investigate new materials with favorable energy
level alignment, high transparency, and high conductivity.

To further develop 4T Perovskite/Si tandem solar cells, it is essential to enhance their
efficiency and reduce their fabrication cost. Thus, it is necessary to develop large-scale
perovskite deposition processes. In recent years, spin-coating has been widely used in
the fabrication of tandem solar cells to achieve high tandem efficiency. The spin-coated
method enables the formation of high-quality perovskite films with optimized thickness and
bandgap. However, the spin-coated method is not suitable for large-scale processes. Large-
scale perovskite solar cells are typically produced using techniques such as evaporation,
spray coating, slot-dye coating, and blade coating. It is a challenge to fabricate large area
ST-PSCs with high efficiency and high transmittance.
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Despite the existence of these challenges, it is expected that researchers will continue
to develop more promising strategies to overcome them. Given ongoing improvements in
ST-PSCs and Si solar cells, it is believed that 4T perovskite/Si tandem solar cells will play
an increasingly indispensable role in solar energy and clean energy development.
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