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Abstract: When a medium–low-speed (MLS) maglev train is braking, part of its regenerative braking
(RB) power consumption may cause a significant rise in the positive rail (PR) voltage. For RB energy
re-utilization, an RB energy feedback system (RBEFS) is a promising application, but there is still
no specific research in the field of MLS maglev trains. From this perspective, this article focuses
on identifying the PR voltage rise behavior and investigating the application of an RBEFS on the
over-voltage inhibition. Some development trends of the MLS maglev train, including the DC 3 kV
traction grid system and the speed being raised to 160~200 km/h, are also considered in the analyzed
scenarios. At first, a modeling scheme of a detailed vehicle–grid electrical power model with the
RBEFS is established. On this basis, the PR voltage rise characteristics are analyzed with consideration
of three pivotal influencing factors: RB power, PR impedance and supply voltage level. Subsequently,
to stabilize the PR voltage fluctuations, the influence rules of the RBEFS on the voltage rise and
the mutual transient voltage influences under the operating status switching for multiple vehicles
running on the same power supply section are analyzed.

Keywords: medium–low-speed maglev; regenerative braking; regenerative braking energy feedback
system; positive rail voltage rise; vehicle–grid model; multiple vehicles running

1. Introduction

Construction of a medium–low-speed (MLS) maglev trunk line is one of the most
important trends of rail transit in the future. Because the MLS maglev line is short and the
station layout is relatively dense, acceleration and deceleration of the maglev train (MT)
are frequent. When the MT is in its regenerative braking (RB) state, the part of short-time
RB power consumption that cannot be absorbed by other MTs or auxiliary devices will be
fed back to the traction grid. If such excessive energy is not properly treated, a significant
traction grid voltage rise, i.e., positive rail (PR) voltage rise, is easily caused, which results
in vehicle–grid over-voltage, insulation failure and worse power quality [1,2].

Many scholars have studied the features and utilization of RB energy consumption
of electric transportation systems. The related research focuses on the high-speed railway
(HSR) and the metro so far [3–5]. Although the MLS maglev possesses great development
prospects, there are still relatively few lines in commercial operation, and there are relatively
very few research documents related to the MLS maglev RB. However, the MLS maglev is
different from the HSRs and metros with a wheel rail system, as a linear induction motor
(LIM) is adopted. The train body is suspended on the F rail, and the train is driven by the
electromagnetic force during MT runs. Because the motor air gap of the MLS maglev is
relatively much larger and the feedback RB electric power decreases as the motor air gap
increases [6], the grid voltage rise behavior of the MLS maglev is different from those with
a rotating motor and needs to be clarified.

Further, the increases in the running speed and the supply voltage level are two
important development trends of the MLS maglev. The highest running speed has reached
140 km/h in the Chinese Changsha maglev line. However, the development of the MLS
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maglev to a connection line between a city center and suburb area requires a 160~200 km/h
speed to accommodate the corresponding functions. In addition, although the supply
voltage level of DC 0.75 kV or DC 1.5 kV has been generally adopted, the construction
of a DC 3 kV system has excellent prospects due to the advantages of fewer substations,
lower traction waste, etc. Some scholars have studied the RB issues of a DC 3 kV traction
grid [7–10]. The main focus has been on energy conservation. The design or improvement
of substations, regenerative inverter or energy storage system has been studied in detail to
achieve this goal. Nevertheless, the voltage rise in the RB scenario of a DC 3 kV system has
not specifically been studied in the relevant literature. Compared to the present highest
train speed and supply voltage level of the MLS maglev, both the speed being raised to
160~200 km/h and the voltage being raised to DC 3 kV bring about greater challenges in
RB over-voltage control.

The current treatment method targeted for the MLS maglev is to release the excess
RB energy in the form of heat energy via a ground resistance absorption device [11], but it
results in energy waste and increases the temperature in the tunnel. To better accommodate
the RB energy, measures of energy storage [12–15] and energy feedback [16–18] have been
proposed for the various types of railway transit systems. Compared to the energy storage
applications, the energy feedback system exerts three advantages: First is the high efficiency.
Excessive RB energy can be directly fed back to the AC system through the RBEFS, and
the traction grid energy utilization rate can be greatly improved [17,18]. Second is the
cheaper price. The energy storage system is relatively large and expensive, and is more
suitable for 600 V and 750 V traction grids at present [19,20]; the price of the RBEFS is also
becoming cheaper with the development of high-power semiconductor IGBTs. The third is
the smaller space. Because the power transistor switching frequency is relatively high, the
filter volume capacity can be designed to be relatively small [21]. Therefore, the RB energy
feedback system (RBEFS) can be considered a promising application for the MLS maglev.
Figure 1a and Figure 1b, respectively, depict the application of different regenerative energy
processing methods on the MLS system. Figure 2 displays the site photo of the RBEFS.

For the grid voltage rise caused by the RB, relevant research is relatively scarce
compared to energy management research. And the on-site test and the software simulation
are the main methods. For HSRs, the modeling and simulation of the influences of RB on
the catenary voltage were studied on a train passing through a long downhill section [20].
For the metro, the analysis of over-voltage in the DC catenary has predominantly been
conducted through simulations [22], and various approaches including train timetable
optimization, energy storage systems and feedback systems have been compared to avoid
the over-voltages [16]. An important part of these methods such as the control strategy of
energy storage systems was also exclusively analyzed or improved by some scholars to
control the line voltage [23].

For the application of the RBEFS on the RB influences of electric transport trains, re-
lated research focuses on energy conservation rather than controlling grid voltage rise [24].
Mathematical modeling and digital simulation are the main research approaches in terms
of suppressing voltage rises. Some scholars have investigated the optimal electrical param-
eters, action threshold or control strategies of the RBEFS [18,25,26] to achieve the excess
energy feedback, mitigate the grid voltage rise and accelerate the steady-state recovery
after response. The RBEFS control strategies have been given much attention [27]. In [27],
different control schemes were investigated to increase the energy utilization efficiency by
adjusting the catenary DC voltage in the inverter. Some scholars have also attempted to
design new control schemes considering the grid voltage rise inhibition [26].

In the field of the MLS maglev, there are relatively few relevant studies, and the
scholars involved have only implemented the theoretical study on the application of
braking resistance and super-capacitor energy storage devices, and the optimization of
operational diagram, with the purpose of lowering energy consumption [11,28]. In the
above studies, the grid voltage rise has not been addressed; their focus is on the traction
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grid rather than train, and the vehicle part is very simplified in the modeling; there is no
research on the application of an inverter RBEFS.
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Figure 2. Site photo of RBEFS of urban rail line.

Figure 3 shows the limitations of previous relevant research and works and those of
this article. As an extension of previous works, this article focuses on the modeling of the
MLS maglev vehicle–grid electric power system with an inverter RBEFS. The PR voltage
rise and its inhibition with the RBEFS are evaluated considering the different RB scenarios.
The contributions of this study can be summarized as follows.

(1) A detailed modeling scheme of the vehicle–grid electrical power system with the
RBEFS is established for the MLS maglev. The maglev motor characteristics are incor-
porated to accurately present the difference between wheeled and maglev transport,
and the AC properties and energy dispersal path are considered in detail.

(2) Important development prospects of the MLS maglev, namely, the DC 3 kV traction
grid and 160~200 km/h vehicle speed, are firstly considered influence factors to
reveal the grid voltage rise behavior and the influence of over-voltage inhibition with
the RBEFS.

The remainder of this article is organized as follows. In Section 2, a modeling scheme
of a vehicle–grid electrical power system with the RBEFS is proposed. Then, the PR voltage
rise behavior is analyzed with consideration of three pivotal influencing factors, RB power,
PR impedance and supply voltage level, in Section 3. In Section 4, multiple operating
scenarios are further considered, and the effect of the inverter RBEFS on the PR voltage rise
inhibition is investigated. Conclusions are drawn in Section 5.
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2. Vehicle–Grid Electrical Power Modeling Considering the RBEFS

A typical Chinese MLS maglev line is taken as an example, and a model for the
vehicle–grid electrical power system with the RBEFS is established in this section. The
model contains the vehicle–grid part and the RBEFS part. A DC 3 kV voltage level and a
160 km/h~200 km/h MT speed are also included.

2.1. Modeling of the Vehicle–Grid Electrical Power System
2.1.1. Traction Grid Part

The running of the MLS maglev train requires frequent acceleration and deceleration,
leading to rapid fluctuations in traction current amplitudes across a wide range. Moreover,
changes in current direction occur within the reflex system as the train’s position shifts or
when the RB initiates. These factors indicate that the DC rail transit electrical power system
exhibits AC characteristics. To ensure precise calculation results, the model must consider
not only resistance parameters but also AC properties, involving PR inductance (L0), PR
capacitance-to-ground (C0) and coupling conductance between PR and negative rail (NR)
voltage (C12). L0 is determined to be equal to µ/8π, where µ represents rail permeability,
while C0 and C12 are derived according to [29]. C0 = 2πε0

ln(2h0/r0)

C12 = 2πε0
ln(D12/d12)

(1)

where ε0 is the rail dielectric coefficient, h0 is the rail height, r0 is the rail radius, d12 is the
distance between PR and NR, and D12 is distance between PR and image of NR.

The original parameters of the Chinese Changsha MLS operation maglev line are
considered the standard original parameters for the modeling and estimating in this article.
The rail-earth leakage resistance G0 is extremely large and its unit length value is set to
107 Ω/m based on the line. Because the contact rail material is steel–aluminum alloy
and the rail area is almost 82 cm2, the unit length conductor rail resistance R0 is set to
0.16279 Ω/km. As depicted in Figure 4, each train body (TB) carries two pairs of collector
shoes and one MT is composed of three TBs. NR’ is the image of NR. The distance between
two collector shoes in the same TB is about 5.9 m, while the distance between two adjacent
collector shoes in the adjacent TBs is around 6.6 m.
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2.1.2. Vehicle Part

The MT traction drive system is elaborately constructed. As depicted in Figure 4, the
MT is suspended using a combination of several electromagnet coils, with electromagnetic
force being produced by a compact LIM [30]. Each frame is fitted with one LIM stator
and two inverters. The LIM rotor, distributed along the running track, corresponds to the
expanded secondary side of the rotating motor.

The motor is approximated by the rotating motor module, ensuring that its input and
output characteristics align with those of the LIM. The output rated power and frequency
range are 68.3 kVA and 4 kHz, respectively. In comparison to the rotating motor, the LIM
has a larger air gap, leading to increased excitation consumption and additional end effects.
Consequently, this results in a lower power factor and reduced efficiency [31]. Considering
these factors, the power factor and efficiency are established at 0.65 and 0.6, respectively.

In addition, the position of each drive unit on the TB is involved. In the analyzed
maglev line, the constant slip-frequency control mode is adopted in the inverter and each
TB carries five suspension frames. The copper wire with the 120 mm2 area is used to
connect adjacent TBs and its resistance is considered between adjacent TB modules.

2.2. Modeling of the RBEFS

A three-phase voltage-type PWM inverter that is widely used in urban rail transit
is considered the RBEFS in the model. It is composed of a PWM inverter, filter, isolation
transformer, rectifier transformer, SVPWM pulse trigger module and inverter drive module.
The inverter aims to invert the traction grid DC voltages into the three-phase AC voltages.
The filter aims to lower the harmonic contents in the current feedback. The isolation
transformer aims to avoid the direct flow of the DC-side current into the AC system under
the short-circuit fault. The three-phase bridge IGBT/Diodes inverter is adopted and the
transformer transformation ratio at the grid side is set to 1180 V/35 kV.

In the model of the PWM inverter, Equation (2) is required for the capacitance value
at the IGBT DC side to meet the voltage tracking speed requirement and limit the load
disturbance exerted on the power system as much as possible. C ≤ tr

∗
0.74RL

C ≥ Udc
2∆UmaxRL

(2)

where tr
∗ is the time required for the DC-side voltage to rise from the initial value to

the rated value; RL is the load rated resistance; Udc is the DC-side voltage; ∆Umax is the
maximum allowable voltage fluctuation range on the DC side. Due to the above limitations
and the factors of overall dimension, cost and service life, I set C = 20,000 µF.
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The inductance value at the IGBT AC-side meets the requirements of (3). L ≥ TS
( 2

3 Udc + Usm
)

L ≤ UdcUsm cos ϕ
ωPL

fres
(3)

where TS is the switching cycle; Usm is the maximum voltage value at the AC side; ∆imax is
the allowable maximum current fluctuation value, usually 10% of the rated value of the
medium-voltage grid; φ is the AC-side phase angle; PL is the converter rated power.

The regulation method of the SVPWM and digital proportional integral PI control of
the voltage outer loop and current inner loop are adopted in the control circuit. In the filter
model, the LCL-type filter is involved due to the favorable filtering effect.

In Figure 5, L1 and Lg in order are the inductances of the inverter side and isolation
transformer side. The transfer function is calculated as

ig(s)
ui(s)

=
1

CgL1Lgs3 +
(

Lg + L1
)
s

(4)

The designed resonant frequency of the RBEFS should be large enough to avoid the
resonance and the following principles need to be satisfied.

(1) The voltage drop caused by the filter inductance is larger than or equal to 10% of the
medium-voltage grid rated voltage.

(2) The resonance peak value should appear in the medium-frequency band. Therefore,
the resonant frequency, fres, shall meet the following requirement: fres =

1
2π

√
L1+Lg
L1LgCg

10 f1 < fres < fSW/2
(5)

where f 1 and f SW in order are the IGBT switching frequency and grid frequency.
The on–off frequency of the switching device is the main reason for the harmonics

generated during the action of the inverter. To weaken the harmonics and import the high-
frequency current parts into the capacitance, the capacitive reactance of Cg shall satisfy
Equation (6). Meanwhile, since the reactive power should be less than 5% of the rated
power, the value of Cg should meet Equation (7).

XCg<< XLg, XCg =

(
1

10
∼ 1

5

)
XLg (6)

Cg ≤ 1
3
× λP

2π f1Em
2 (7)

where λ is the ratio of the fundamental reactive power to the active power; P is the active
power rated value; f 1 is the switching frequency; Em is the traction grid phase voltage.

Considering the above, L1, Lg and Cg are, respectively, set to 0.65 mH, 0.15 mH and
300 µH.
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2.3. Integration Model and Its Verification

Combining the above two parts, the final model of the electrical power system with the
RBEFS is built using the MATLAB/Simulink software 2016a package, as seen in Figure 6.
In the part of the vehicular traction drive system, the target commands of output torque
and rotor speed are set to simulate the running scenarios of traction, coasting and braking
and their time.
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In this paper, the PR voltage is marked as uP and its maximum value is uPmax. Let us
assume that the supply voltage is 3000 V and the RB is generated at 0.8 s, where the MT
speed is reduced from 200 km/h to 50 km/s. The simulation results of the equivalent rotor
speed v0, the equivalent motor output torque Te and uP are shown in Figures 7 and 8. As
RB occurs, v0 is adjusted from 135 rad/s to 30 rad/s, Te is changed into a negative value
and its maximum absolute value reaches 2189.8 N·m. For v0, Te and uP, their amplitude
variation tendencies during the RB should be consistent for the MLS maglev and the metro
due to the similar DC traction electrical power supply system. Therefore, by comparing
the waveforms of Figures 7 and 8 with those of a metro train measured in [18], the close
similarity proves the validity and feasibility of the presented model.
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3. Analyses of Positive Rail Voltages under Multiple Interfering Factors

The electric energy flow direction is from a high potential to a low potential. As
RB energy is returned, since the traction grid voltage at the traction substation is almost
unchanged, the PR conductor voltage drop during the transmission of RB energy will in-
evitably lead to the PR voltage rise at the MT location. Therefore, RB power, PR impedance
and substation voltage level are three pivotal factors affecting the voltage rise. The model
built in Section 2 is used to analyze the influence of these three factors in this section. The
maximal voltage rise percentage compared to the average voltage (AVG) amplitude before
RB is marked as ∆UP. The total simulation time is 1.4 s and the beginning moment of RB is
0.8 s. The action voltage of the RBEFS U0 is set to 1680 V.

3.1. Influence of RB Power

RB may begin at different MT speeds v and the slope path is inevitable in some maglev
lines. In the Chinese Fenghuang MLS maglev line, the lines with the gradients i < 10, 10 ≤ i
< 20 and i ≥ 25, respectively, account for 28.83%, 9.03% and 62.14% of the total line, and the
highest i is 51 (i represents the thousand fraction ‰ of the ramp gradient). Since both v and
i are important variables affecting RB power, the PR voltage rises under the different v and
i are analyzed here when the distance from the MT to the substation is set to 2 km and the
common traction supply voltage U = 1.5 kV is considered.

3.1.1. Comparison of Different MT Speeds

The waveforms of the PR voltage uP under v = 120, 160 and 200 km/h and the
relations between the UPmax, the ∆UP and the v of 80~200 km/h are shown in Figure 9.
When the MT begins to decelerate at a higher speed, more kinetic energy is available to
be converted into electrical energy. Moreover, at higher speeds, the higher efficiency of
energy conversion leads to a more effective transfer of energy back to the grid. The above
leads to a higher ∆UP, which conforms with the analyzed influence trend in Figure 9b.
UPmax is increased from 1746 V to 1852.1 V as v varies from 80 km/h to 200 km/h. And
the corresponding ∆UP increases from 16.87% to 23.97%, as shown in Figure 9b. The AVG
amplitude after stabilization during RB is higher with the increased v, increasing from
1527 V (v = 120 km/h) to 1544 V (v = 200 km/h), as shown in Figure 9a.
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3.1.2. Comparison of Different Downhill Slope Gradients

As the MT goes downhill at constant speed v, the following relationship is satisfied:

−Fb(v)− MFi + MF0(v) = 0 (8)

where M is the MT mass, Fb(v) is the braking force required for the MT to run at constant v
when the gradient is i‰, Fi is the additional resistance, Fi = i, and F0 is the basic resistance
comprising air resistance, the current collector resistance and electromagnetic resistance. F0
is expressed by

F0 =

{
1.36mv (v < 5m/s)
10 f + 5.312m + (0.277m + 1.64)v + (1.708 − 0.003m)v2 (v > 5m/s)

(9)

where m is each TB mass, f is the current collector resistance, f = µF0, µ is the fric-
tion coefficient between the current collector and conductor rail, and F0 is the current
collector pressure.

Based on (8), RB power PRB is obtained by PRB = η1η2F0v, where η1 is the generator
conversion efficiency and η2 is the energy feedback efficiency from the inverter to the
traction grid. Then, motor rotor speed v0 and motor output torque Te under different i
are calculated and substituted into the model of Figure 6. The i in the range of −36~−20
is considered to analyze the slope influence on the PR voltage rise when v = 200 km/h is
maintained. Their corresponding ω* in the LIM model are shown in Table 1.

Table 1. Model target command parameter values under different gradients (RB conditions).

i‰ v0/(rad/s) i‰ v0/(rad/s) i‰ v0/(rad/s)

−20‰ 138.3162 −22‰ 138.6897 −24‰ 139.0642
−26‰ 139.3284 −28‰ 139.5931 −30‰ 139.8583
−32‰ 140.1240 −34‰ 140.4603 −36‰ 140.8395

The waveform of UP under i = −20, −28 and −36 and the relationship between Upmax
and i are simulated in Figure 10. It is obvious that the steeper slope requires the larger RB
power when the MT goes downhill, resulting in a more severe voltage rise. The UPmax
(∆UP) increases from 1871.4 V (25.26%) to 1924.0 V (28.78%) as i = −20~−36, as shown
in Figure 10b. The AVG value after stabilization during RB is becomes higher as the
downhill becomes steeper, increasing from 1549 V (i = −20) to 1568 V (i = −36), as shown
in Figure 10a. By comparing Figures 9 and 10, as v = 200 km/h, the UPmax is 1852.1 V for a
smooth road and 1871.4 V for the least steep slope with i = −20. It shows that the voltage
rise on the downhill path is higher than that on a smooth road. In addition, I can ascertain
from Figures 9b and 10b that the effect of v on the voltage rise is more prominent than the
effect of slope.
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3.2. Influence of PR Impedance

For the DC traction grid system, the unit length PR impedance in the whole line can
be regarded as a constant value and the distance from the MT to the substation (marked
as l) determines the PR impedance. The impedance always changes as the MT runs and
thus the PRB is different for the different RB occurrence moments. Therefore, it is necessary
to assess the voltage rise range considering the RB occurrence locations. In addition, the
traction power supply mode is the second pivotal influencing factors for the impedance.
The unilateral power supply mode in the Chinese Xinzhu maglev line and the bilateral
power supply mode in the Chinese Changsha maglev line are compared in this part.

3.2.1. Comparison of Different RB Occurrence Locations

A unilateral power supply system is considered. According to the present operation
line, l = 0.5~5 km is selected to be analyzed. PR voltage rises under l = 0.5~5 km with
0.5 km intervals are, respectively, simulated and the results are presented in Figure 11.
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As mentioned before, the higher l leads to the higher PR impedance and the higher
voltage drop between the substation and MT. As the PR voltage at the substation is almost
unchanged at 1500 V, it is obvious that the higher PR voltage drop forms the higher UPmax
at the train’s location. Contrary to this rule, the higher line voltage drop enables the lower
voltage received by the MT when the train is in the stable interval. It is proven in Figure 11
that the relationship between UPmax and l (1835.5 V, 1852.1 V and 1939.5 V for 0.5 km, 2 km
and 5 km) and the relationship between PR stable voltage and l (1546 V, 1544 V and 1540 V
for 0.5 km, 2 km and 5 km) are contrasting.

3.2.2. Comparison of Different Power Supply Modes

Assuming that all of the distances from the train to the nearby substations are the
same, the PR voltage fluctuations under the unilateral and bilateral power supply modes
are compared in Figure 12. Compared to the unilateral mode, the PR impedance between
the substation and MT is relatively lower and the PR voltage drop is relatively smaller for
the bilateral mode. This results in a higher UPmax and a lower stable PR voltage amplitude
during RB. In addition, by comparing Figures 11b and 12b, the influence caused by the
power supply mode is significantly lower than that of the RB occurrence location. This
proves that more attention should be paid to the RB occurrence position when only the
traction grid impedance is considered to lower the voltage rise.
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power supply; (b) bilateral power supply.

3.3. Influence of Supply Voltage Level

Focusing on the influence of the traction electric power supply mode, the DC 3 kV
mode, one development trend of the MLS maglev, is compared with the traditional
DC 1.5 kV mode here. According to the results in Figure 13, the UPmax reaches 1852.1 V
and 3865.7 V, respectively, which is 23.97% and 28.99% higher than the AVG amplitudes
before RB, i.e., 1494 V and 2997 V. This illustrates that the transient voltage rise in the
beginning of RB is proportional to the supply voltage.
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4. Analyses of Positive Rail Voltage Rises under the RBEFS Influence

The PR voltage rises caused by the multiple RB running scenarios are compared before
and after the RBEFS is put into use. The comparisons aim to elucidate the voltage rise
inhibition role of the RBEFS. Meanwhile, the development trends of the urban rail system,
i.e., DC 3 kV and 160~200 km/h, are involved, and the influences of different supply
voltage levels U and MT speeds v on the inhibitions are compared.

4.1. Multiple Cases of Single-Train Operation

The total simulation time, the RB occurrence moment and the distance from the MT
to the substation are, respectively, set to 1.4 s, 0.8 s and 2 km. Based on the previous
application of the RBEFS, the RBEFS action voltages U0 are, respectively, set to 1680 V and
3360 V for U = 1.5 kV and U = 3 kV.

4.1.1. Different MT Speeds

The supply voltage level U is set to 3 kV. Figures 14–16 compare the influences of the
RBEFS on the PR voltage fluctuations under the different v (120, 160 and 200 km/h). It
is observed that the feedback device plays a remarkable role in lowering the voltage rise.
As v = 200 km/h, the feedback device reduces the UPmax from 3850.1 V to 3384.8 V. The
inhibition comparisons for the ∆UP at v = 80, 120, 160 and 200 km/h are concluded in
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Table 2, showing that the inhibition percentage keeps increasing as the v increases, both for
UPmax or the stable PR voltage amplitude during RB.
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Table 2. Comparison of PR voltage rise percentages during RB under different v.

v (km/h) With the RBEFS Without the RBEFS Inhibition Percentage

Maximum amplitude

80 12.62% 19.86% 7.24%
120 12.61% 21.64% 9.03%
160 12.65% 25.68% 13.03%
200 12.67% 28.47% 15.80%

Stable AVG amplitude

80 0.37% 1.37% 1.00%
120 0.43% 1.77% 1.34%
160 0.40% 2.27% 1.87%
200 0.40% 2.77% 2.37%

4.1.2. Supply Voltage Levels

Figure 17 shows the analytical results of v = 200 km/h and the traction supply voltages
U = 1.5 and 3 kV. Before the feedback device is put into use, the maximal voltage amplitudes
in order reach 1852.1 V and 3865.7 V, which are 23.97% and 28.99% higher than the AVG
amplitudes before RB. After the feedback device is introduced, the maximal amplitudes in
order reach 1679.7 V and 3384.8 V, only 12.43% and 12.67% higher than the AVG amplitudes
before RB (see Figure 17). This comparison shows that the inhibition is affected by the U.
From Table 3, it can be seen that the inhibition percentage is significant greater as the U is
higher for the maximum value at the beginning of RB.
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Table 3. Comparison of PR voltage rise percentages during RB under different U.

U (kV) With the RBEFS Without the RBEFS Inhibition Percentage

Maximum amplitude 1.5 12.43% 23.97% 11.54%
3 12.67% 28.99% 16.32%

Stable AVG amplitude 1.5 0.23% 3.35% 3.12%
3 0.40% 2.77% 2.37%

4.2. Analyses of Multiple-Train Simultaneous Operation in Same Power Supply Section

The RB cases for the multiple MTs running in the same power supply section are
further examined. The over-voltage superimposed influences are analyzed for the case in
which two running MTs enter the opposite state (traction state vs RB state) at the same
or very close moment. The total simulation time is set to 1.4 s. Because the higher U and
higher v result in the higher PRB, I consider the most serious situation and v = 200 km/h,
U = 3 kV and U0 = 3360 V are set. Let us assume that two trains are named as 01 MT and
02 MT and their distances to the substation in the same direction are, respectively, 2 km and
3.5 km. Figure 18 shows the established simulation model based on the model of Figure 6.
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Figure 18. Vehicle–grid electrical power simulation model considering RBEFS and multiple-vehicle
running cases.

In case 1, 01 MT keeps coasting during 0~0.8 s and enters the RB state at 0.8 s, while
02 MT keeps coasting during 0~0.8 s but starts traction at 0.8 s. In case 2, the running states
of 01 MT are similar to those of case 1, while 02 MT keeps coasting during 0~0.9 s and
begins its traction at 0.9 s. In case 3, both of the two MTs are in their coasting states during
0~0.8 s and simultaneously start RB at 0.8 s.

4.2.1. Case 1

In Figure 19, before the RBEFS is introduced, the UPmax of 01 MT reaches 3193 V,
i.e., ∆UP = 6.54% compared to the stable AVG amplitude before RB (2997 V). It does not
reach the action threshold, U0 = 3360 V. Therefore, the voltage fluctuation stays the same
with or without the RBEFS. By comparing Figures 16b and 19, it can be observed that the
voltage rise of 01 MT caused by RB is significantly offset by the simultaneous traction of
02 MT. The UPmax is reduced from 3850.1 V to 3193 V.
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4.2.2. Case 2

RB energy can be utilized by a neighboring train that might be accelerating within
the same power supply section as the braking one. However, this involves a high level of
uncertainty since there is no guarantee that a train will be accelerating at the same time and
in the right location when/where RB is available. Thus, the time-lapse scenario is analyzed.

As depicted in Figure 20, the severe voltage fluctuation firstly appears when 01 MT
enters RB at 0.8 s, and it appears again when 02 MT begins traction at 0.9 s. Obviously,
the peak value in the second occurrence is much lower than that in the first occurrence.
Because both of the over-voltages (UPmax in order are 3808.5 V at 0.8 s and 3414.4 V at 0.9 s)
exceed the action threshold value (U0 = 3360 V), the device action is carried out to restrain
the two over-voltage peaks to 3365.0 V and 3290.5 V, respectively. It is observed in Table 4
that the inhibition percentage is positively related to the PR voltage rise. By comparing
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Figures 19 and 20b, the time-lapse over-voltage offset is far lower than the simultaneous
over-voltage offset.
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Figure 20. PR voltage fluctuations in case 2: (a) with the RBEFS; (b) without the RBEFS.

Table 4. Comparison of ∆UP of 01 MT during RB scenario in case 2.

With the RBEFS Without the RBEFS Inhibition Percentage

0.8 s 12.28% 27.08% 14.8%

0.9 s 9.79% 13.93% 4.14%

4.2.3. Case 3

By comparing Figures 16a and 21a, the simultaneous entry of two trains into the RB
status results in a more significant voltage rise, which is from 3850.1 V to 3925.6 V for the
UPmax and from 3080 V to 3180 V for the stable AVG amplitudes during RB. This illustrates
that the superimposed over-voltage effect caused by the simultaneous RB of the other MT
is very significant. By comparing Tables 2 and 5, the inhibition percentages of the UPmax
and the stable AVG amplitudes without the effect of 02 MT are, in order, 15.80% and 2.37%,
lower than those with the simultaneous RB effect (18.03% and 5.94%). This also proves that
the inhibition percentage is positively related to the PR voltage rise.
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Table 5. Comparison of PR voltage rise percentages during RB scenario in case 3.

With the RBEFS Without the RBEFS Inhibition Percentage

0.8 s 12.95% 30.98% 18.03%

0.9 s 0.17% 6.11% 5.94%
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5. Conclusions

As an advancement to the previous literature, the PR voltage behavior and the effect
of the RBEFS on the PR voltage rise inhibitions in the MLS maglev RB cases are studied.
With a detailed consideration of the AC properties and energy dispersal path, the maglev
electrical power model is built. Since the LIM air gap is different from the wheeled transport
train motor and it results in different grid voltage rise behavior, the motor characteristics
of the MLS motor are carefully incorporated in the vehicle model. The DC 3 kV traction
voltage and 160~200 km/h train speed are taken into account and the influences of braking
power, traction grid impedance and supply voltage level on the voltage fluctuations are
investigated. The PR voltage fluctuations before and after putting the RBEFS into use are
compared. The obtained results can be summarized as follows.

(1) The higher MT speed and steeper downhill slope lead to the larger RB power and
higher PR voltage rise, but the influence of the downhill slope gradient is relatively
insignificant compared to that of the speed. The voltage flow direction along the line
is different before and after RB. Higher traction grid impedance from the substation to
the MT results in a higher instantaneous PR voltage rise and a lower stable PR voltage
during RB. A higher traction voltage leads to a higher voltage rise.

(2) The inhibition percentage of the RBEFS is positively related to the PR voltage rise.
Therefore, since the increases in MT speed and traction voltage lead to the higher
voltage rise, the voltage rise inhibition percentage keeps increasing with the MT
speed and the traction voltage level both for the maximum value and the stable AVG
amplitude during RB.

(3) The offset for the PR voltage rise is very significant when two running trains on the
same power supply section simultaneously enter the opposite state (traction state vs
RB state). However, the offset amplitudes are notably lower when the offset moments
of the two MTs are inconsistent by even only 0.1 s. The superimposed over-voltage
effect is very significant when the other MT begins RB at the same time.

Based on the results of this paper, the vehicle–grid model can be further improved by
considering the linear motor electrical structure when analyzing the influence of motor
parameters on the RB over-voltages. The effects of the different inverter control approaches
and other energy re-utilization applications, such as the super-capacitor energy storage
device, will be the next focus to control the voltage rise.
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