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Abstract: Due to the access of distributed energy and a new flexible load, the electrical characteristics
of a new distribution network are significantly different from those of a traditional distribution
network, which poses a new challenge to the original topology identification methods. To address this
challenge, a hierarchical topology identification method based on regression analysis and knowledge
reasoning is proposed for an active low-voltage distribution network (ALVDN). Firstly, according
to the new electrical characteristics of bidirectional power flow and voltage jump caused by the
ALVDN, active power is selected as the electric volume for hierarchical topology identification.
Secondly, considering the abnormal fluctuation of active power caused by bidirectional power
flow characteristics of distributed energy users, a user attribution model based on the Elastic-Net
regression algorithm is proposed. Subsequently, based on the user identification results, the logic
knowledge reflecting the hierarchical topology of the ALVDN is extracted by the AMIE algorithm, and
the “transformer-phase-line-user” hierarchical topology of the ALVDN is deduced by a knowledge
reasoning model. Finally, the effectiveness of the proposed method is verified by an IEEE example.

Keywords: active low-voltage distribution network; Elastic-Net regression; AMIE algorithm; knowledge
reasoning; segment location; hierarchical topology identification

1. Introduction

Accurate topology identification refers to the specific connection relationship between
distribution transformers, branch terminals, lines, and users in an LVDN. It is the key to
power quality governance, digital transformation, and the transparent management of the
LVDN [1,2]. It is also the basis for the construction of high-penetration new energy access
and absorption planning, bidirectional controllable virtual power plant and V2G in the
new power system [3,4]. At present, LVDNs are connected to a large quantity of renewable
energy, especially distributed photovoltaics, and the direct impact is that the characteristics
of electricity consumption change. Additionally, users lack specific line access information.
Therefore, it is necessary to conduct new research on topology identification methods.

In view of the above problems, domestic and foreign scholars have carried out differ-
ent studies. Different from the traditional signal injection method that relies on manual
identification and new hardware devices [5–7], a lot of research has been carried out on
the identification methods of the topological relationship of the LVDN based on various
electrical information in advanced measurement systems, for instance, (1) topology identi-
fication method based on voltage characteristics. Ref. [8] realizes the phase identification of
the single-phase users by using the similarity between voltage sequence on the low-voltage
side of the distribution transformer and the users’ voltage sequence. In [9], the topology of
users in the low-voltage power distribution area and table boxes they access is obtained
by using clustering. Ref. [10] uses DTW distance to measure the similarity between the
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voltage curves of users, and it obtains the phase attribution of users after cluster analysis.
However, the above studies on topology identification based on clustering and similarity
measurement are highly dependent on the correlation between voltage, current curve shape,
and the electrical distance of low-voltage topology, and the generalization is insufficient.

(2) A topology identification method based on power and quantity characteristics: Ref. [11]
uses the time series of power and the law of power conservation to identify the
topology of the low-voltage power distribution area through principal component
analysis and convex optimization. In [12], the phase of the users can be obtained
according to the correlation analysis of the load power consumption change. Ref. [13]
uses machine learning methods to mine power data information in an advanced
measurement system to obtain the user phase attribution relationship. The methods
above realize topology identification according to the principle of power conservation
or the correlation of high frequency load changes. However, the above method
cannot adapt to the influence of the abnormal fluctuation of active power caused by
bidirectional power flow, which is caused by distributed energy.

(3) A topology identification method based on multi-target fusion and multi-source data:
These methods synthesize a variety of electrical data to realize topology identification
by means of regression and machine learning. In [14], multiple linear regression of
voltage and current data is carried out to obtain user phase attribution. Based on
data such as voltage and current data, ref. [15] synthesizes clustering and quadratic
programming methods to accomplish the user line attribution. Ref. [16] classifies
users based on voltage and current data, excludes vacant users, and uses quadratic
programming and probability distribution to realize user–phase relationship identifi-
cation. In [17], firstly, the t-SNE algorithm is used to reduce the dimension of the users’
voltage waveform, and then a multi-objective optimization of power balance and
voltage timing waveform classification is carried out to realize user–phase identifica-
tion. However, the above research can only achieve a good identification effect for the
three separate topological relationships of the traditional passive distribution network,
namely, the user–transformer relationship, user–phase relationship, and user–line
relationship, and it is difficult to obtain clearer user topology information. Moreover,
the neural network and machine learning methods have strong data dependence,
meaning it is difficult to explain the internal structure and parameter relationship,
and they lack generalization ability.

Therefore, a hierarchical topology identification method for an active low-voltage
distribution network based on Elastic-Net regression analysis and knowledge reasoning
is proposed in this paper. Firstly, in order to avoid the impact of voltage jump caused by
distributed photovoltaics, the active power data collected by distribution terminals, branch
terminals, and smart meters are used for analysis. The Elastic-Net regression algorithm is
used to deal with abnormal active power fluctuation, and a regularization term is added on
the basis of its objective function. The connection relationship between branch terminal and
user and the user–phase relationship are calculated by regression coefficient classification.
Secondly, according to the identification results of the user attribution relationship and
the characteristics of ALVDN topology, the AMIE knowledge reasoning algorithm is used
to mine the knowledge of association rules and obtain the user information of the line
segment, so as to realize the “transformer-phase-line-user” hierarchical topology of the
ALVDN. Finally, the effectiveness of the proposed method is verified by an IEEE example.

2. Topological Description of the ALVDN

The topology relationship of the LVDN usually refers to the physical connection
line between “transformer-phase-line-user” [18,19]. In the traditional LVDN, due to uni-
directional power flow, the voltage amplitude of upstream nodes is larger than that of
downstream nodes, and the shorter the electrical distance between upstream nodes and
downstream nodes, the smaller the ∆U and the higher the similarity of voltage waveform,
otherwise, the lower the similarity.
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Various terminal devices and the topology of the ALVDN are shown in Figure 1. The
branch terminal is installed on each lead line of the branch node to collect the voltage,
current, and power of the line node, and then the data will be transmitted to the data
processing center for application analysis. It can be seen that most users in the ALVDN are
connected to the end of the line, but if some users are connected to the line section between
the adjacent branch terminals, it is difficult to identify the actual section level of users in
the LVDN only according to the power conservation.

Energies 2024, 17, x FOR PEER REVIEW 3 of 18 
 

 

2. Topological Description of the ALVDN 
The topology relationship of the LVDN usually refers to the physical connection line 

between “transformer-phase-line-user” [18,19]. In the traditional LVDN, due to 
unidirectional power flow, the voltage amplitude of upstream nodes is larger than that of 
downstream nodes, and the shorter the electrical distance between upstream nodes and 

downstream nodes, the smaller the UΔ   and the higher the similarity of voltage 
waveform, otherwise, the lower the similarity. 

Various terminal devices and the topology of the ALVDN are shown in Figure 1. The 
branch terminal is installed on each lead line of the branch node to collect the voltage, 
current, and power of the line node, and then the data will be transmitted to the data 
processing center for application analysis. It can be seen that most users in the ALVDN 
are connected to the end of the line, but if some users are connected to the line section 
between the adjacent branch terminals, it is difficult to identify the actual section level of 
users in the LVDN only according to the power conservation. 

A  B  C

A  B  C

Line segment 1

Line segment 2 Line segment 3

A  B  C

Distribution 
transformer

Transformer terminal

Branch terminal

User

User in phase A

User in phase B

User in phase C

Photovoltaic array

 
Figure 1. Topology of the ALVDN. 

This paper takes the ALVDN with nine users as an example to analyze the difference 
in electrical characteristics between ALVDN and LVDN, which is shown in Figure 2. 

The example model is built by Opendss, and the model parameters are shown in [20]. 
The active power of the user comes from the actual low-voltage user, the power factor is 
set to vary randomly within the range of 0.90~0.95, the sampling interval is 60 min, the 
installed PV capacity of the user L5 is 5 kW, and the meteorological data are from a typical 
meteorological year. The time series data of voltage and active power are obtained by 
simulating the situation of PV switching. 

L1 L2 L3
L4 L5 L6

L7 L8 L9

Distribution transformer
10kV/0.4kV

User in 
phase A

User in 
phase B

User in 
phase B

Photovoltaic 
array  

Figure 2. ALVDN topology with 9 users. 
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Figure 1. Topology of the ALVDN.

This paper takes the ALVDN with nine users as an example to analyze the difference
in electrical characteristics between ALVDN and LVDN, which is shown in Figure 2.

The example model is built by Opendss, and the model parameters are shown in [20].
The active power of the user comes from the actual low-voltage user, the power factor is
set to vary randomly within the range of 0.90~0.95, the sampling interval is 60 min, the
installed PV capacity of the user L5 is 5 kW, and the meteorological data are from a typical
meteorological year. The time series data of voltage and active power are obtained by
simulating the situation of PV switching.
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Figure 2. ALVDN topology with 9 users.

As can be seen from Figure 3, after user L5 puts in PV, its voltage curve rises to a
certain extent between 8:00 and 17:30, that is, the period when the PV output is larger than
that when the PV is not put in, and the voltage amplitude on the section at some moments
exceeds that of the upstream user L2 in the same phase. It can be seen that the access
to the distributed photovoltaics makes the bidirectional power flow in the distribution
network, and its voltage and power characteristics change, and the identification method
for distribution network topology and the users’ segment hierarchy relationship, based on
the traditional unidirectional power flow characteristics, will no longer be fully applicable.
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3. User Ownership Relationship Identification Model Based on Elastic-Net
Regression Algorithm

Elastic-Net algorithm is a linear regression model with L1 and L2 norm as a regularized
matrix. Considering that photovoltaic users are connected to the distribution network,
their electrical characteristics change, resulting in methods such as correlation analysis
and clustering no longer being applicable, and the randomness brought by photovoltaic
users will greatly affect the training effect of the neural network, machine learning, and
other methods, weakening its generalization performance. Therefore, in this paper, the
Elastic-Net linear regression algorithm is used to determine the user–phase relationship
and user–branch relationship, which lays a foundation for locating the line segments of
users in the following paper, so as to realize the hierarchical topology identification of
the ALVDN.

The proposed user ownership relationship identification method for an active low-
voltage distribution network needs to meet the following assumptions:

(1) In the ALVDN to be identified, the active power data information of all users accessing
the station area can be monitored, and there are no unrecorded users.

(2) There is no “power theft” phenomenon in the station area, and in a long enough time
range, there are no empty room users showing zero power characteristics.

3.1. Data Representation

In the active low-voltage power distribution area to be identified, the power data
collected by the smart meter of the branch terminal are expressed in matrix form as follows:

PT = [PT,A, PT,B, PT,C] (1)

where PT represents the three-phase active power matrix on the low-voltage side of
the transformer, the active power time series vector of phase ϕ can be expressed as
PT,ϕ = [PT,ϕ,1, PT,ϕ,2, . . . , PT,ϕ,i, . . . , PT,ϕ,m], ϕ = {A, B, C}, and m represents the collection
quantity of active power data.

PF =



PT,1,1 PF,1,2 · · · PF,1,j · · · PF,1,n+1
PT,2,1 PF,2,2 · · · PF,2,j · · · PF,2,n+1

...
...

...
...

PT,i,1 PF,i,2 · · · PF,i,j · · · PF,i,n+1
...

...
...

...
PT,m,1 PF,m,2 · · · PF,m,j · · · PF,m,n+1


(2)
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where PF is the active power matrix of the branch terminal, PF,i,j represents the sum of the
three-phase active power of the jth branch terminal at sampling time i, n represents the
number of branch terminals in the active low-voltage distribution network to be identified,
and PT,i,1 represents the sum of the three-phase active power of the low-voltage side of
the transformer at sampling time i. It can be regarded as the upstream branch terminal
of the ALVDN to be identified and incorporated into the active power matrix of the
branch terminal.

PB =



PB,1,1 PB,1,2 · · · PB,1,l · · · PB,1,k
PB,2,1 PB,2,2 · · · PB,2,l · · · PB,2,k

...
...

...
...

PB,i,1 PB,i,2 · · · PB,i,l · · · PB,i,k
...

...
...

...
PB,m,1 PB,m,2 · · · PB,m,l · · · PB,m,k


(3)

where PB is the active power matrix of the user, PB,i,l represents the active power of the lth
user at sampling time i, and k represents the number of users in the ALVDN to be identified.

3.2. Identification of User–Phase Relationship Based on Elastic-Net Regression Algorithm

In the ALVDN, the power data collected by the distribution transformer, the branch
terminal, and the user should meet the law of power conservation at any time point; then,
the user–branch relationship and the user–phase relationship can be expressed as

PT,ϕ = ∑
l∈k

αl,jPB,l + ε1 , ϕ = {A, B, C} (4)

Pj = ∑
l∈k

βl,jPB,l + ε2 , j = 1, 2, . . . , n (5)

where PB,l = [PB,1,l , PB,2,l , . . . , PB,i,l , . . . , PB,m,l ]
T is the active power time series vector of

the lth user, Pj = [PF,1,j, PF,2,j, . . . , PF,i,j, . . . , PF,m,j]
T represents the active power time series

vector of the jth branch terminal, and αl and βl represent the regression coefficient of the
linear equation set. αl = 1 indicates that the lth user belongs to phase ϕ of the power
distribution area, while αl = 0 indicates that the lth user does not belong to phase ϕ of
the power distribution area. βl = 1 indicates that the lth user belongs to the jth branch
terminal, while βl = 0 indicates that the lth user does not belong to the jth branch terminal,
and ε1 and ε2 are the error vectors.

This paper proposes a user–phase and user–branch relationship identification model
based on the Elastic-Net regression algorithm, and its objective function is as follows:

α̂ = argmin
α

(
∥∥PT,ϕ − αPB

∥∥2
2 + λ1ρ1∥α∥1 +

λ1(1− ρ1)

2
∥α∥2

2) (6)

β̂ = argmin
β

(
∥∥PT,ϕ − βPB

∥∥2
2 + λ2ρ2∥β∥1 +

λ2(1− ρ2)

2
∥β∥2

2) (7)

where α̂ = [α1, α2, . . . , αl , . . . , αk]
T and β̂ = [β1, β2, . . . , βl , . . . , βk]

T represent the regression
coefficient column vector obtained by Equations (9) and (10), respectively, and λ1, λ2, ρ1, ρ2
are the penalty coefficients.

For this proposed model, if ρ = 0, it is equivalent to Ridge regression model, that is,
the L1 norm is introduced to ensure the accuracy of regression results and the speed of
processing active power data of users and branch terminals when the power measured
value of PV users is small. If ρ = 1, it is equivalent to the Lasso regression model, that is,
by introducing L2 norm to obtain the regression analytic solution, a more stable regression
effect of the user–ownership relationship of the ALVDN can be obtained [21]. Further, the
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coordinate descent method is used to optimize the objective function of the Elastic-Net
regression algorithm. The pseudo-code of the model is shown in Algorithm 1.

Algorithm 1: User ownership relationship based on Elastic-Net regression

Input: Branch terminal active power P; User active power PB; Penalty coefficient λ, ρ; Maximum
iterations s
Output: Model regression coefficient vector γ(γm+1

1 , γm+1
2 , . . . , γm+1

k )

1. Procedure ElasticNetModel();
2. m = 0← initialize the number of iterations;

3. Initialize the regression coefficient vector γ̂ = argmin
γ

(∥P− γPB∥2
2 + λρ∥γ∥1 +

λ(1−ρ)
2 ∥γ∥2

2)

4. for l = 1 to k do

γ
(0)
l ← 0 ;

5. Update the regression coefficient γ(0) = [γ
(0)
1 , γ

(0)
2 , . . . , γ

(0)
k ];

6. while (iterations ≤ s) do
for t = 1 to k do

γm+1
t = argmin

γt

(γm
1 , . . . , γm

t , . . . , γm
k )

m = m + 1;
7. return γ(γm+1

1 , γm+1
2 , . . . , γm+1

k );
8. End Procedure;

4. ALVDN Segment Location Model Based on AMIE Knowledge Reasoning Algorithm
4.1. Workflow of AMIE Knowledge Reasoning Algorithm

The AMIE knowledge reasoning algorithm is a tool for mining association knowledge,
which can be used to mine association knowledge between devices in the ALVDN and assist
topology segment location. For the convenience of description, the following definition
is made: r(x, y) represents the associated knowledge between devices, where x represents
the subject of the associated knowledge, r represents the relationship of the associated
knowledge, and y represents the object of the associated knowledge. For any relation r,
each subject x has at most one object y, which can be expressed as

∀x :|{y : r(x, y)}|≤ 1 (8)

Then, any associated knowledge r(x, y) can be backed up by different knowledge
bodies {B1, . . ., Bn}, that is

B1 ∩ B2 ∩ . . . ∩ Bn ⇒ r(x, y) (9)

The specific workflow chart of the AMIE knowledge reasoning algorithm proposed in
this section for the association knowledge mining of the ALVDN is shown in Figure 4.
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4.2. Association Knowledge for Users’ Segment Location in ALVDN

It can be seen from Figure 1 that in the ALVDN, distribution terminals, branch termi-
nals, and users can be regarded as nodes, and cable lines as edges, and the physical model
of the ALVDN can correspond to the graph model.

The complete connection information of graphs is often described by an adjacency
matrix. The adjacency matrix is a two-dimensional matrix containing the connection
information in the graph. For a graph model G with n nodes, a n× n adjacency matrix
A = (αij) is defined, where the element αij can be expressed as

αij =

{
1 i f (i, j) ∈ E
0 i f (i, j) /∈ E∨ i = j

(10)

where E represents the edge set of the graph, whose elements represent the connection
state of nodes i and j in the graph model. When i is connected to j, its value is 1; otherwise,
it is 0. For an undirected graph, its adjacency matrix is a symmetric matrix. Figure 5
shows the relationship between a simple radial distribution network and its corresponding
adjacency matrix.
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Sk is defined as the set of users belonging to branch terminal k. ST,ϕ is regarded as
the set of users belonging to the phase ϕ; it can be calculated and analyzed based on the
Elastic-Net regression algorithm in the previous section. SB,k is the set of branch terminal
k and its upstream connected branch terminals, lk is the layer where branch terminal k
resides, and Lk is the set of users connected to the line segment of the upstream adjacent
layer branch terminal k.

The existing topological models of the ALVDN are radial and do not contain the
ring structure. Based on the characteristics of the tree topology structure, in the ALVDN,
the association knowledge is mined by the AMIE knowledge algorithm according to the
user–branch set Sk and the user–phase set ST,ϕ.

Knowledge 1: The branch terminal with the largest number of elements in set Sk is
the root node, which is the distribution transformer terminal, and there is no upstream
branch terminal.

Knowledge 2: If no subset of a set other than itself belongs to Sk, the branch terminal
is a leaf node, that is, there is no downstream branch terminal.

Knowledge 3: If the user set Sa belonging to branch terminal a is a subset of the user set
Sb belonging to branch terminal b, then branch terminal b is the upstream branch terminal
of branch terminal a.

Knowledge 4: The number of elements in SB,k is equal to its layer lk, and the branch
terminals of adjacent layers can be judged by lk.

Knowledge 5: If the levels of branch terminal a and branch terminal b satisfy la − lb = ±1,
respectively, and the intersection of SB,a and SB,b is either of them, then αab = 1 in the
adjacency matrix A with branch terminals as nodes, that is, the two branch terminals are
connected. Otherwise αab = 0, meaning there is no connection between two terminals.
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Among the five points of knowledge excavated above, Knowledge 1 and 2 are used to
determine the distribution transformer terminal and the last branch terminal, Knowledge
3 and Knowledge 4 are to infer the set and level of the branch terminal and its upstream
connected branch terminal through the identification results of the user ownership relation-
ship, and Knowledge 5 is used to further determine the connection relationship of each
branch terminal of the adjacent layer.

4.3. User Segment Location Model Based on AMIE Knowledge Reasoning Algorithm

The user set Sk and ST,ϕ are obtained through Elastic-Net regression, and some effective
association knowledge is obtained through AMIE algorithm mining. Knowledge reasoning
is carried out to obtain the specific connection relationship of each branch terminal and
realize the specific segment positioning of users, and to finally determine the hierarchical
topology of the ALVDN. The pseudo-code of the model is represented in Algorithm 2.

Algorithm 2: User Segment Location Model Based on AMIE Knowledge Reasoning Algorithm

Input: user set of branch terminal Sk; user set of phase ST,ϕ
Output: adjacency matrix A of Hierarchical topology in ALVDN

1. Procedure AMIE();
2. for k = 1 to n do

Sk ← Calculate and retain the set that contains the most elements
3. St ← the set with the largest number of elements is the distribution transformer terminal;
4. SB,k, SB,m ← initialize the empty set;
5. for k = 1 to n do

SB,k ← update the branch terminal k into the set;
for l = 1 to n do

if Sl ⊇ Sk ∪ Sl ̸= Sk
SB,k ← update the branch terminal l into the set;

6. SB,k ← obtain the set of each branch terminal and its upstream connected branches;
7. SB,k ← sort the set Sk in descending order;
8. for m = 1 to n do

for l = 1 to n do
if Sl ⊇ Sk ∪ Sl ̸= Sk

break;
else

SB,m ← update the branch terminal m into the collection;
9. for k = 1 to n do

lk = SB,k ← branch terminal level is the number of elements contained in the set
SB,k;

10. A← Initialize the adjacency matrix to the 0 matrix;
11. for k = 1 to n do

for m = 1 to n do
if (lk − lm = ±1) ∪ (SB,k ∩ SB,m = SB,k or SB,m)

αkm = 1;
else

αkm = 0;
12. A← obtain the adjacency matrix containing all the branch terminal connection

relationships;
13. for k = 1 to n do

Lk = Sk − ∑
αkl = 1
ll − lk = 1

Sl ;

14. Lk ← get the set of user for segment of each branch terminal;
15. for k = 1 to n do

Lk,ϕ = Lk ∧ ST,ϕ

16. Lk,ϕ ← get the user–phase relationship for each segment;
17. End Procedure;
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5. Results and Discussion
5.1. Example Parameter Description

To prove the feasibility of the proposed method, a simulation experiment on the IEEE
European Low Voltage Test Feeder using Opendss 3.23.1 is discussed in this section. The
system has a nominal voltage of 400 V, a radial topology, and a base frequency of 50 Hz. It
contains 55 single-phase users, including 21 phase A users, 19 phase B users, and 15 phase
C users. The sampling interval of load curves is 1 min, and a total of 1440 sampling points
are obtained in 1 day. This system does not meet the requirements of the ALVDN test in
this paper, so the above system is modified with reference to the literature [22]:

(1) In the time series of power flow, the original power factor is constant, being 0.95,
which is too idealized, so the power factor is randomly distributed in the range of
0.90–0.95. In addition, photovoltaic output is added based on the above system, and
meteorological data are taken from typical meteorological years. The sampling interval
of the load curve is set to be 15 min and 5 min, and there are 96 and 288 sampling
points in one day, respectively.

(2) Users L7, L14, L19, L25, L26, L27, L35, L47, and L55 connect to PV as PV users and
are configured with bidirectional active smart meters. Among them, the photovoltaic
power generation system adopts the constant power control mode, the installed
capacity is set at 3.0 kW–3.6 kW, and the penetration ratio of distributed energy
is simulated by setting different switching modes of photovoltaics. The switching
situation is shown in Table 1, and the corresponding permeabilities of distributed
energy are 8.6%, 18.4%, and 27.7%, respectively.

Table 1. Photovoltaic user configuration.

Photovoltaic Permeability/% L7 L14 L19 L25 L26 L27 L35 L47 L55

8.6
√ √ √

18.4
√ √ √ √ √ √

27.7
√ √ √ √ √ √ √ √ √

(3) Smart meters capable of monitoring active power are set in branch nodes 25, 101, 114,
280, 475, 666, and 745 to simulate branch monitoring in real ALVDN.

The specific topology graph of the modified example is shown in Figure A1 of
Appendix A.

5.2. Hierarchical Topology Identification Process

Set the PV user configuration mode. Take the PV penetration rate of 8.6% as an
example, the active power time series of the three-phase of the distribution transformer
terminal, the three-phase of the branch terminal and the single-phase user are collected,
respectively, through the temporal power flow calculation, and the hierarchical topology
structure identification of the ALVDN is carried out based on this.

(1) Identification of User Ownership Relationship

Based on the obtained active power–time curve, the distribution transformer power
matrix PT, the branch terminal power matrix PF and the user power matrix PB are con-
structed, respectively. Each active power time vector PF,j in the branch terminal power
matrix PF is selected successively as the dependent variable and the user power matrix PB
as the independent variable. These are calculated via Elastic-Net regression. The penalty
coefficient is set to λ = 0.0015, ρ = 0.5, and the regression coefficient results of each branch
terminal and user are shown in Figure 6.
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Similarly, the active power time series PT,ϕ of each phase in PT is selected successively
as the dependent variable and the user power matrix PB as the independent variable. These
are calculated via Elastic-Net regression. The penalty coefficient of Elastic-Net regression
is set as above, and the regression coefficient results of each phase and user are shown in
Figure 7.
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According to the above Elastic-Net regression results and the user ownership relation-
ship analyzed in Section 3.2, the relationship between each branch terminal and the user, as
well as the user–phase relationship, can be obtained, as shown in Tables 2 and 3.

Table 2. Identification result of the relationship between branch terminal and user.

Branch
Terminal Set User Number

K1 SK1

L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14,
L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26,
L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38,
L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50,

L51, L52, L53, L54, L55
K2 SK2 L1, L3

K3 SK3

L2, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16,
L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28,
L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40,
L41, L42, L43L44, L45, L46, L47, L48, L49, L50, L51, L52,

L53, L54, L55
K4 SK4 L13, L14, L15, L16, L17
K5 SK5 L7, L8, L9, L10, L11, L12

K6 SK6

L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29,
L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41,
L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53,

L54, L55

K7 SK7
L18, L20, L22, L23, L25, L29, L30, L31, L33, L34, L35, L36,

L37

K8 SK8
L24, L26, L27, L28, L32, L38, L39, L40, L41, L42, L43, L44,

L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55
K9 SK9 L29, L31, L33, L35, L36, L37

K10 SK10 L25, L30

K11 SK11
L39, L40, L41, L42, L43, L45, L47, L50, L51, L52, L53, L54,

L55
K12 SK12 L43, L47
K13 SK13 L46, L48, L49
K14 SK14 L50, L52, L53, L55

Table 3. Identification result of the user–phase relationship.

Phase Set User Number

A ST,A
L1, L3, L4, L5, L9, L14, L20, L21, L22, L25, L29,
L30, L31, L34, L46, L48, L49, L51, L52, L54, L55

B ST,B
L2, L6, L7, L10, L11, L13, L15, L23, L26, L35, L36,

L37, L38, L40, L41, L44, L45, L50, L53

C ST,C
L8, L12, L16, L17, L18, L19, L24, L27, L28,

L32, L33, L39, L42, L43, L47

As shown above, SK1, SK2, ..., SK14, respectively, represent the users contained in the
branch terminal, and ST,A, ST,B, ST,C, respectively, represent the users contained in the
phases A, B, and C in the distribution transformer.

(2) User segment location

Based on the identification results of the relationship between the branch terminal and
the user and the user–phase relationship obtained in Section (1) of this section, the specific
user–line relationship is obtained by applying the user segment location model based on
the AMIE knowledge reasoning algorithm introduced in Section 4.3.

The following takes the K5 branch terminal as an example. Firstly, the empty set SB,K5
of the branch terminal K5 and its upstream connected branch terminals is defined. It can
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be seen from Table 2 that the user set SK5, belonging to branch terminal K5, is a subset
of the user sets SK5, SK3, SK1, respectively, belonging to branch terminals K5, K3, and K1.
Then, with Knowledge 3, the branch terminals K5, K3, and K1 are grouped together into
the set SB,K5. Similarly, by repeating the above steps for other branch terminals, a series
of sets SB,k containing the corresponding branch terminals can be obtained. According to
Knowledge 4, the number of elements in the branch terminal set is the layer lk where the
branch terminal resides, as shown in Table 4.

Table 4. The number set of the branch terminal and its upstream connected branch terminal.

Set Branch Terminal Number Layer

SB,K1 K1 1
SB,K2 K1, K2 2
SB,K3 K1, K3 2
SB,K4 K1, K3, K4 3
SB,K5 K1, K3, K5 3
SB,K6 K1, K3, K6 3
SB,K7 K1, K3, K6, K7 4
SB,K8 K1, K3, K6, K8 4
SB,K9 K1, K3, K6, K7, K9 5
SB,K10 K1, K3, K6, K7, K10 5
SB,K11 K1, K3, K6, K8, K11 5
SB,K13 K1, K3, K6, K8, K13 5
SB,K12 K1, K3, K6, K8, K11, K12 6
SB,K14 K1, K3, K6, K8, K11, K14 6

The adjacency matrix A is initialized as empty, and the connection relation of branch
terminal K1 is used as an example. According to Knowledge 1, the branch terminal K1
has the largest number of owning users, and it is the distribution transformer terminal.
For branch terminals K1 and K2, they satisfy lK1 − lK2 = −1 and SB,K1 ∩ SB,K2 = SB,K2.
According to Knowledge 5, αK1,K2 = 1, so branch terminals K1 and K2 have a connection
relationship and are the parent node and child node, respectively. For branch terminals
K1 and K4, lK1 − lK4 ̸= ±1, and according to Knowledge 5, αK1,K2 = 0, so there is no
connection relationship between branch terminals K1 and K4. Similarly, by traversing the
relationship with other branch terminals from small to large according to the number of
layers on which the branch terminals are located, the connection relationship and level
information of each branch terminal of the ALVDN can be finally obtained, as shown in
Figure A2 of Appendix A.

Further, taking the line section in Figure A2 of Appendix A as an example, it can be
seen that the user–line segment location between adjacent layers can be reached by using
the difference value in the user set belonging to the connecting branch terminal. The user
belonging to LK1 is LK1 = SK1 − (SK2 + SK3). For a branch terminal without a child node
at the end of a line, the owning user of the line segment is the set of users belonging to this
branch terminal. Take line segment LK2 as an example, the owning user of LK2 is LK2 = SK2.
By traversing all branch terminals, users of each line segment can be obtained.

Since the phase of each user has been identified in Section (1), the user–phase relation-
ship of each line segment can be obtained by gaining the intersection of the user set for
each line segment and the user set for each phase. For the owning users of line segment
LK4, the users belonging to phase A are LK4,A = LK4 ∩ ST,A. Similarly, the users of phase
B and C can also be obtained in this way. Finally, the topology identification results are
shown in Table 5.
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Table 5. Topology identification result based on the method proposed in this paper.

Line
Segment

User Number

Phase A Phase B Phase C

LK1 / / /
LK2 L1, L3 / /
LK3 L4, L5 L2, L6 /
LK4 L14 L13, L15 L16, L17
LK5 L9 L7, L10, L11 L8, L12
LK6 L21 / L19
LK7 L20, L22, L34 L23 L18
LK8 / L26, L38, L44 L24, L27, L28, L32
LK9 L29, L31 L35, L36, L37 L33
LK10 L25, L30 / /
LK11 L51, L54 L40, L41, L45 L39, L42
LK11 / / L43, L47
LK13 L46, L48, L49 / /
LK14 L52, L55 L50, L53 /

5.3. Method Performance Analysis

The accuracy of the topology identification method can be obtained by comparing
the user information of each phase of the line segment based on the method in this paper
with that of the actual line segment, and calculating the ratio of the number of correctly
identified users to the total number of users.

This section mainly studies the effect of topology identification using the proposed
method in different scenarios. Among them, the construction of the scene mainly considers
three indicators, including photovoltaic permeability, measurement error rate, and data
length, and it then analyzes the impact of these indicators on the topology identification
accuracy. Among the above three indicators, photovoltaic permeability can be simulated
by controlling photovoltaic switching, as shown in Table 1. The measurement error rate
mainly refers to the accuracy grade of the commonly used active power meters, and it is set
to the ranges of ±0.2%, ±0.5%, ±1.0%, ±2.0%, ±3.0%, and ±4.0%, respectively. In order
to consider the metering synchronization error, the delay offset of the 0–10 s power value
is set, and the corresponding Gaussian noise is added to replace the actual power flow
data. For each noise with zero mean and fixed variance, the Monte Carlo method is used
to generate the measurement error distribution scenario. In terms of data length, we set
the sampling intervals of 15 min and 5 min, respectively, and the total number of sampling
points to be 96 and 288. When the sampling interval is 5 min, the meteorological data are
expanded according to the interpolation method in reference [23]. Three indicators are
used to construct different scenarios, and the average topology identification accuracy of
the proposed method can be obtained through 100 simulation experiments in each scenario,
as shown in Table 6.

Table 6. Hierarchical topology identification accuracy in different scenarios.

Data
Length

Photovoltaic
Permeability/%

Hierarchical Topology Identification Accuracy/%

Measurement Error

0.2% 0.5% 1.0% 2.0% 3.0% 4.0% 6.0%

96
8.6 100 100 100 100 100 100 73.8

18.4 100 100 100 100 100 100 69.7
27.7 100 100 100 100 100 100 72.3

288
8.6 100 100 100 100 100 100 100

18.4 100 100 100 100 100 100 96.4
27.7 100 100 100 100 100 100 97.2
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It can be seen from the table that the proposed method can maintain accurate topology
identification in most scenarios. When the measurement error rate is less than 4.0%, the
proposed method can maintain the accuracy of topology identification and does not change
with an increase in photovoltaic permeability. When the measurement error rate reaches
6.0%, the accuracy of topology identification decreases significantly at the data length of
96 sampling points. This is mainly because the user segment location model, based on
knowledge reasoning, cannot accurately determine the connection relationship of each
branch terminal due to inaccurate results of user–branch relationship, which leads to errors
regarding user location in the line segment. In the repeated experiments, topological
structure identification errors occur in nearly half of the frequencies, and the accuracy
difference is large. When the data sampling points are increased to 288 points, the accuracy
rate of the proposed method is significantly improved compared with that at 96 points,
and the frequency of topology structure identification errors in repeated experiments is
significantly reduced, indicating that the accuracy rate of topology identification can be
improved to a certain extent with an increase in data length, and the proposed method can
be accurately identified under the scenario of measurement error rate. If it is within 4.0%, it
has a certain robustness. When the measurement error rate is 6.0%, with the increase in
photovoltaic permeability, the topology identification accuracy rate changes, but it does
not change much and has no direction. In addition, when the measurement error rate
is less than 4.0%, the accurate topology identification can be maintained under different
photovoltaic permeabilities, indicating that the power flow direction changes caused by
differing photovoltaic access will not affect the power conservation law. The method in
this paper can adapt to the new requirements of the ALVDN when renewable energy is
connected to the grid.

5.4. Comparative Analysis of Different Methods

At present, there are few studies related to the hierarchical topology identification
of the ALVDN, some of which use the signal injection method of carrier communication,
but it is difficult to compare these with the data analysis method adopted in this paper.
Therefore, this paper selects the method based on node voltage amplitude and branch
power state estimation in the literature [24] and the method based on branch active power
in the literature [25] as comparison methods, and it defines them as method 1 and method 2,
respectively.

Since the accuracy levels of measurement errors of smart meters in terms of voltage
and power are inconsistent, this section only considers the identification effect of different
methods based on different photovoltaic permeabilities. Among them, the photovoltaic
penetration rates, as shown above, are 8.6%, 18.4%, and 27.7%.

In different photovoltaic permeability scenarios, topological structure identification is
carried out through multiple experiments, and the mean value of the results is obtained as
the topological identification accuracy rate in this scenario, as shown in Table 7 below.

Table 7. Topology identification accuracy of different methods in different scenarios.

Photovoltaic
Permeability/%

Hierarchical Topology Identification Accuracy/%

Method 1 Method 2 Method 3

8.6 96.8 100 100
18.4 93.2 100 100
27.7 89.7 100 100

Among them, the accuracy of method 1 is not as good as that of method 2 and the
method presented in this paper. This is because when the photovoltaic system is connected
to the grid, the voltage curve of method 1 is easily affected by photovoltaic output, and it
is easy to make errors when using node voltage amplitude state estimation to locate the
users’ segment. Moreover, with an increase in photovoltaic permeability or measurement
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error rate, the accuracy of topology identification will decline. However, the proposed
method and method 2 are not affected by photovoltaic permeability, and both can accurately
identify the topology of the ALVDN. However, compared with method 2, in this method,
the initial branch node adjacency matrix is obtained without setting the night period, and
the line segment is filtered without setting the threshold value.

6. Conclusions

In order to cope with the future topology identification of the ALVDN with new energy
as the main body, and to fully tap the data of intelligent measurement terminal equipment,
this paper proposes a hierarchical topology identification method of the ALVDN based on
Elastic-Net regression and AIME knowledge reasoning. Through an analysis of examples,
we can see that the method has the following characteristics:

(1) The proposed method can identify the hierarchical topological structure of the ALVDN
accurately and effectively and obtain the specific topological structure information of
“transformer-phase-line-user”.

(2) The proposed method can accurately identify the hierarchical topology of the ALVDN
under three different photovoltaic permeabilities, and it will not be affected by bidi-
rectional power flow caused by distributed power access to the distribution network.

(3) The proposed method can be robust to measurement errors, and the accuracy of
topology identification can be improved by extending the data length.

The topology identification method proposed in this paper still has some limitations
and room for improvement: on the one hand, other network parameters and photovoltaic
measurement errors are not considered; on the other hand, this method is based on the
assumption that there are no vacant users. In the next step, on the basis of considering the
measurement error of photovoltaics, other network parameters are integrated to identify
the vacant room users, and the proposed method is further improved and perfected.
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