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Abstract: In recent years, with the growing number of EV charging stations integrated into the
grid, optimizing the aggregated EV load based on individual EV flexibility has drawn aggregators’
attention as a way to regulate the grid and provide grid services, such as day-ahead (DA) demand
responses. Due to the forecast uncertainty of EV charging timings and charging energy demands,
the actual delivered demand response is usually different from the DA bidding capacity, making it
difficult for aggregators to profit from the energy market. This paper presents a two-layer online
feedback control algorithm that exploits the EV flexibility with controlled EV charging timings and
energy demands. Firstly, the offline model optimizes the EV dispatch considering demand charge
management and energy market participation, and secondly, model predictive control is used in the
online feedback model, which exploits the aggregated EV flexibility region by reducing the charging
energy based on the pre-decided service level for demand response in real time (RT). The proposed
algorithm is tested with one year of data for 51 EVs at a workplace charging site. The results show
that with a 20% service level reduction in December 2022, the aggregated EV flexibility can be used to
compensate for the cost of EV forecast errors and benefit from day-ahead energy market participation
by USD 217. The proposed algorithm is proven to be economically practical and profitable.

Keywords: aggregated electric vehicle flexibility; model predictive control; demand charge management;
day-ahead demand response energy market; cost optimization

1. Introduction

Recently, electric vehicles (EVs), which—in aggregation—often are seen as a flexible
battery resource, have been gaining popularity. With the rapid growth in EV demand, the
impact of the aggregated EV load on the grid has drawn significant attention [1]. Various
studies have offered solutions to mitigate the burden of the increasing EV load on the grid.
Exploiting the flexibility of the charging/discharging time and location is the most common
solution [2,3].

EV flexibility was first quantified by defining a flexibility index of EV aggregated
demand (FIEVAD) using the probability of the demand increase in EV charging at each time
step. The FIEVAD is bound between zero and one and reflects the extent of randomness of
EV charging behavior. With a higher FIEVAD, less of a collective trend is observed, and the
flexibility to change the collective behavior is higher [4]. Ref. [5] defined three indicators for
EV flexibility: the transferable power (TP) and transferable time (TT) indicate the potential
of an EV cluster to respond to demand response signals; the flat wave performance (FWP)
indicates the peak shaving ability of the EV cluster. These indicators were applied to
analyze different charging behaviors on weekdays and weekends.

Some studies treat EVs as controllable loads in the distribution grid and exploit their
demand-side flexibility for distribution services. EVs benefit the distribution grid through
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demand reduction during peak hours [6–8]. Ref. [9] reviewed options for a flexibility
service by EVs and discussed the technical and economic requirements. In addition to
flexibility services, ref. [10] also discussed ancillary services provided by EVs and reviewed
control architectures and state-of-the-art smart chargers.

To include flexibility in control algorithms for EV dispatch, ref. [11] proposed an
optimal control method to minimize the cost and maximize the flexibility, defined as the
upward and downward power deviation an EV charger can offer. Ref. [12] calculated the
positive and negative aggregate EV flexibility based on the maximum amount of energy
that can be postponed or consumed ahead of schedule at each time step. The sensitivity
of the flexibility time series to different combinations of control strategies, tariffs, and EV
battery capacities was studied. As the flexibility time series is time-coupled, when the EV
operating point departs from the trajectory calculated at the beginning of the day in real
time, the flexibility time series of the rest of the day changes accordingly.

To describe the aggregated flexibility, ref. [13] offered a method to approximate the
aggregated flexibility set from the Minkowski sum of individual EV flexibility sets. Since
explicitly computing the Minkowski sum is not achievable, the authors instead proposed
an inner and outer approximation which can be computed by solving a linear optimization
problem which is solvable. Ref. [14] defined the RT flexibility of the aggregated EV load
as the frequency regulation capacity assuming ancillary service participation at an EV
charging site. A model predictive control algorithm is used for co-optimization of energy
dispatch and frequency regulation with a 5 min resolution. Ref. [15] proposed a maximum
entropy feedback control algorithm for the aggregator to assess the RT-aggregated EV
flexibility and perform online cost minimizations. The algorithm was tested and proved to
be more computationally efficient and to result in a lower cost compared to the traditional
MPC control algorithm. Ref. [16] proposed a time-decoupled aggregated EV flexibility
region, which is the area between two energy trajectories: an upper trajectory, which is the
sum of the individual EV charging trajectories that meet the maximum EV battery energy,
and a lower trajectory, which is the sum of the individual EV charging trajectories that meet
the minimum customer-requested energy. Individual EV trajectories differ both by the
timing of EV charging and the ending state of the charge of the EV battery. The aggregated
EV flexibility region, in which all operating points are feasible, is bounded from above
by the aggregated upper trajectories and bounded from below by the aggregated lower
trajectories. Then, the optimal operating trajectory is chosen based on electricity prices. To
disaggregate the optimized aggregate EV load, the dumb charging, first-come-first-served
principle is applied. The results show that this online feedback scheme of aggregated EV
flexibility characterization is effective.

However, there is a lack of studies focusing on a cost-optimal EV scheduling algorithm
that exploits the aggregated EV flexibility for DA demand response under forecast uncer-
tainty. For an aggregated EV charging site with DA demand response market participation,
the actual demand response capacity delivered in RT is usually different from the DA
forecasted bidding capacity due to forecast uncertainty. To profit from the energy market, it
is crucial for aggregators to strategically exploit aggregated EV flexibility as a buffer in RT
to compensate for the forecast error and match the DA bidding demand response capacity.

In this work, we follow [16] and develop a cost-optimal EV scheduling algorithm
which consists of two parts: (1) Offline optimization, in which the EV charging station
aggregator considers demand charge management and bids in the day-ahead (DA) demand
response market based on the forecasted aggregated EV load and the recent history of EV
loads. (2) Online feedback real-time (RT) optimization (note that “real-time” here does not
refer to a real-time market, but rather an optimization run during the day to update the
DA dispatch), in which the arrival EV plug-in duration and session energy are updated
and fed back to the model predictive control scheme every 15 min. The cost-optimal
flexibility region is calculated based on defined service levels, which is the minimum
acceptable percentage of the session energy requested by the customers. In online feedback
optimization, six service levels are simulated, resulting in six scenarios of RT flexibility
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regions. RT flexibility exists due to (a) flexibility in the timing of charging, as for most EVs,
the layover duration exceeds the required charging duration, and (b) reductions in service
level. With online feedback control, the RT flexibility compensates for offline forecast errors
and maximizes profits in the DA demand response market. Our method is demonstrated
with a case study using real-world EV workplace charging data over one year. The results
show that larger service level reductions allow for compensation of revenue losses due to
offline optimization forecast errors by DA market revenue from reducing the aggregated
EV load.

The main contributions and novelty of this work are as follows:

1. A cost-optimal online feedback MPC model is proposed for EV charging site aggrega-
tors to profit from the DA energy market under forecast uncertainty by exploiting the
aggregated EV flexibility in real time;

2. A “value-stacked” cost function including multiple objectives is proposed for the
aggregator to jointly consider demand charge management, TOU energy costs, DA
market revenue, and EV charging service revenue;

3. A detailed DA market bidding strategy which allows utilizing real-time aggregated
EV flexibility to avoid under-performance during demand reduction is proposed.

The rest of the paper is organized as follows. Section 2 consists of the model structure,
including the optimization control scheme (Section 2.1), the DA demand response market
bidding strategy (Section 2.3), and the cost-optimal aggregated EV flexibility region cal-
culation (Section 2.4). The simulation results and cost analysis are presented in Section 3.
Finally, Section 4 concludes the paper.

2. Materials and Methods
2.1. Offline/Online Optimization Model Overview

Figure 1 presents the model flowchart consisting of DA/offline optimization and RT
optimization using a model predictive control (MPC) algorithm. In the optimization, the
inputs are a set of forecasted EV arrival and departure times and the energy levels of the
EV battery. From the arrival and departure time of EV i, (tai, tdi) (see the nomenclature
at the end for all variable definitions), the plug-in duration is calculated. As the model
resolution is 15 min, to be conservative, all arrival times are rounded up and departure
times are rounded down to the next quarter hour, respectively. From the arrival and
requested departure battery energy of EV i, (eai, edi), the total session energy is calculated.
From the charger power rating, the constraint of the maximum interval kWh that can be
delivered to EV i during the plug-in duration can be calculated. Note that in reality, without
ISO 15118 [17] implementation, the arrival energy is a vehicle property and is unknown
and the session energy and departure time are driver inputs and are uncertain. In addition
to the algorithm flow chart (Figure 1), a control block diagram is also presented in Figure 2.

In this case study, for the offline/DA optimization model, we assume perfect knowl-
edge of the number of EVs arriving for the following 24 h. In reality, the absolute fore-
cast error for the number of vehicles assuming a persistence forecast is 19% for the year
2022. The smart persistence forecast, which takes the historical data of the previous week-
day/weekend (including holidays) day to forecast a weekday/weekend (holiday) day,
is used to forecast the plug-in/plug-out times and the session energy of each car a day
ahead [18]. These inputs to the MPC are further modified based on the discrepancy of the
persistence forecasted and the real number of EVs; the sessions are sorted based on the EV
arrival time, and the last n sessions are repeated/excluded if there are n more/less EVs on
the current day compared to the forecast.

For the online/RT optimization, the persistence forecasted session energy and de-
parture time of EV i are replaced with the real session energy and departure time of EV i
arriving in real time, assuming perfect knowledge of the total session energy and departure
time of EV i at the EV arrival time based on driver inputs. We further assume that the
actually dispatched session energy in the historical dataset meets 100% of the customer
requested session energy; i.e., there are no losses.
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RT optimization

DA optimization

Cost minimization
Equations (1), (2), and (3), Section 2.2

Realization
If t>1, update vi with EVs arrived at t

Daily off-line optimization
If t=1, persistence forecasted vi with perfect forecasted N

Optimization

Execution
Dispatch !",$%& 1,1: )" to the arrived EVs

*+",,-% = !",,-%
*/",,-% = !",,-% with 0 = 100%
1" = */",$%&23 − *+",$%&23

Flexibility and daily cost calculation

!",,-%(6, 1: )") = !",$%&(1,1: )")

!",$%&(1,1: )")

89(6:9, 6;9, <:9, <;9)

Forecasted 89

Real 89

t=t+1

Cost minimization
Equations (1), (2), and (3), Section 2.2

Figure 1. The structure of the model predictive control consists of DA and RT optimization. The smart
persistence forecast of arrival and departure times and energies is used for offline/DA optimization.
In the RT optimization, as EVs arrive, the optimization is updated with real inputs of the EV
arrival/departure time ta and td and energy ea and ed. Receding horizon model predictive control
(MPC) with 15 min resolution is applied given different service levels η. The inputs are in orange and
the variables/outputs are in blue. The flexibility region Ft is calculated as the difference between the
maximum and minimum operating trajectories.

Figure 2. A control block diagram of a hierarchical predictive control method.

The output is an optimal scheduling matrix with rows of 15 min time intervals during
the day, columns of N cars of the day, and entries of energy to be charged. For offline
optimization, according to the forecasted EV load profile and the baseline, the aggregator
can decide the bidding capacity and bidding price for the DA market as further discussed
in Section 2.3. For online optimization, the first time step of the output is implemented, and
the EV charging results are fed back to the MPC simulation at the next time step, which is
further discussed in Section 2.2.
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The online feedback process in the RT optimization model is illustrated in Figure 3.
The number of time steps in the MPC simulation horizon is H. At time t = t, the time stamp
of the day, both input and output matrices have H time steps, where H = T − t + 1, which
cover the time period from the following timestep until the end of the day. The orange
input matrix is the constraint of the maximum interval energy capacity of the charger for
each EV during its plug-in duration, called the availability matrix, êt (Equation (3)). The
orange matrix represents the maximum energy an EV could receive in each time interval.
At time t = t, when nt EVs have arrived, the first nt columns of the availability matrix
are calculated based on the actual arrival and departure times (gray shaded entries), and
the rest of the columns are calculated based on the persistence forecasted EV arrival and
departure times.

Figure 3. An example of the MPC shrinking horizon and the input and output matrices. At time
t = t, the MPC horizon has H time steps (gray shaded area), both matrices have H rows, and the
nt columns represent the EVs that have arrived (gray shaded entries). The remaining columns are
constructed based on the forecasted data. For the output matrix, only the first time step of the plug-in
EVs (red squared entries) is implemented. At the next time step, t = t + 1, the (nt + 1)th EV arrives,
and the (nt + 1)th column of the input matrix is updated based on the actual user input from the
newly arrived EVs at each time step.

The blue output matrix, Xt,opt (Equation (1)), is the optimal dispatch power at each
time interval for each EV. Only the first time step of the first nt columns is implemented
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(the red squared entries). At time t = t + 1, the (nt + 1)th EV arrives, and the (nt + 1)th
column of the availability matrix is replaced with the actual values based on the EV arrival
and departure times. For the output matrix, only the first time step of the first nt+1 columns
is implemented (red squared entries).

2.2. DA/RT MPC Algorithm

Both DA and RT optimization have the same objective function and constraints. The
DA optimization is simulated offline using only the forecasted inputs to determine the
DA market bids (see Section 2.3), and no EV dispatch actions are implemented, while the
feedback RT optimization includes realization, optimization, and execution stages. For
the realization stage, the forecasted inputs are updated with the real arrival/departure
time and energy for the EVs that have arrived. For the optimization stage, the MPC
model includes the Peak-Demand (PD) charge, Non-Coincident Demand (NCD) charge,
Time-of-Use (TOU) energy charge, the EV charging revenue to the aggregator paid by the
EV drivers, and the DA energy market revenue. (Demand charges are calculated on a
monthly basis. By including demand charges and the demand charge thresholds in the
daily optimization, the optimal demand charges are approached without optimizing for a
whole month at once [19]. We refer to the first two terms in Equation (1) as the PD/NCD
charge of the day.) (Note that currently, according to the CAISO demand response market
tariff, the demand response resources must have a minimum load curtailment greater than
500 kW [20], which is one order of magnitude larger than our test setup. However, for this
proof of concept, we assume that no minimum capacity is required to participate in the DA
demand response market.).

min
Xt,opt



cNCD max{max{Xt,opt1N}ht,NCD}+
cPD max(max z(Xt,opt1N), ht,PD)+

cE∆t ∑T
t Xt,opt1N−

cEV∆t ∑T
t Xt,opt1N−

cLMP,DA∆t ∑t2
t1

zDR(Xt,opt1N − L)

(1)

s.t. (1tXt,opt)i = η(edi − eai)/∆t (2)

0 < Xt,opt < êt/∆t (3)

where Xt,opt, a T − t + 1 × N matrix, is the optimal dispatch matrix for all forecasted EVs
from time t to T. Xt,opt is bounded between zero and the maximum charger capacity, êt, as
EV discharging is not considered in this study. 1N is a N × 1 vector with all entries being
one. 1t is a 1 × T − t + 1 vector with all entries being one. z is the filter for peak hours. cNCD,
cPD, cE, and cEV are the NCD rate, PD rate, TOU energy rate, and EV charging site energy
rate; cLMP,DA is the DA demand response price for the offline DA/online RT optimization;
ht,NCD is the highest actual EV load during the prior days of the month till time t; ht,PD is the
highest actual EV load during the peak demand hours during the prior days of the month
till time t; L is the baseline reference load for the DA/RT demand response market; zDR is
0/1 if it is a non-event/event hour; η is the service level of both individual and aggregated
charging sessions; and êt is the maximum charger energy capacity in a 15 min interval. In
the execution stage, only the first time step of the output matrix Xt,opt is implemented, and
at time t = t, when nt cars have arrived, the nt plugged-in EVs are dispatched accordingly.
The dispatched EV energy is updated and sent back to the MPC feedback loop into the
realization stage as the updated state for the RT optimization in the next time step.

The service level is decided in the RT optimization and defines what percentage of
EV load will be fulfilled. Here, for simplicity, all users agree to the same service level and
the service level is fixed for the entire duration of the simulation. Multiple scenarios are
simulated with six service levels of 100%, 80%, 60%, 40%, 20%, and 0%. A lower service
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level, i.e., a larger flexibility region, which is further defined in Section 2.4, provides the
aggregator a higher chance to profit from the DA market.

At the end of the daily simulation, for each service level, the implemented dispatch
is used to calculate the flexibility region and the corresponding total cost. Note that in
an operational setting, the service level could differ at each time step and the forecasted
flexibility region should be calculated in RT. However, in this work, for simplicity and to
demonstrate the influence of different flexibility regions on forecast error compensation and
DR market net revenue, six fixed service levels are simulated and analyzed in retrospect.

2.3. Bidding Strategy and Market Settlement for the DA Demand Response Market

The following bidding strategy is applied: if the forecasted load (at 100% service level)
is lower than the baseline load, the aggregator bids at a price equal to the floor price (the
floor price is the on-peak and off-peak monthly minimum market clearing prices published
by CAISO [21,22]) and the capacity of the difference between the baseline and the forecasted
load [19]. (The baseline is calculated on an hourly basis: for the nth hour on a weekday,
the baseline hour is the average of the previous ten non-event nth hours of the weekdays.
Likewise, for the nth hour on a weekend day or a holiday, the baseline hour is the average
of the previous four non-event nth hours of the non-event weekends/holidays.) Note that
the actual demand response payouts are based on the market price (not the floor price).
Bidding at the floor price is reasonable as the forecasted load is lower than the baseline.
That is, the cost of demand “reduction” is zero as there is no loss in EV charging revenue.
Details are provided in the results section with a case study.

Mathematically, based on the offline optimization results, the bidding price at hour
h, cbid,h, and the bidding capacity at hour h, pbid,h, for the DA market are:

cbid,h =

{
c if Lh > Y0,h

c̄ otherwise.
(4)

pbid,h = Lh − Y0,h (5)

where c is the floor locational marginal price (LMP), and c̄ is the ceiling LMP, which is USD
1/kWh (or USD 1/kW, as the DA market has a resolution of one hour) for the CAISO market.
L is the hourly average of the baseline load L, and Lh is the hourly baseline load at hour h.
Y0 is the DA forecasted load X0,opt1N , Y0 is the hourly average of Y0, and Y0,h is the DA
forecasted hourly load at hour h. With this bidding strategy, the aggregator has control over
the market participation hours as the floor/ceiling LMP is almost always lower/higher than
the DA LMP, and thus a floor/ceiling bidding price almost always results in an event/non-
event hour. In Equation (5), the forecasted demand response capacity is the difference
between the baseline Lh and the forecasted aggregated EV demand Y0,h as the output from
the offline optimization at t = 0. At t = T, the DA demand response settlement contains
two parts: the settlement from demand reduction based on the bidding capacity, SDA, and
the settlement (penalty) from overperforming (underperforming), SRT. The settlements are
calculated based on DA/RT LMP, cLMP,DA, and cLMP,RT, respectively, as

SDA = |min(L − X0,opt1N , L − XT,imp1N)|∆tcLMP,DA, (6)

SRT = (XT,imp1N − X0,opt1N)∆tcLMP,DA. (7)

The total daily settlement is the sum of SDA and SRT. In both Equations (6) and (7),
the time resolution is 15 min. (The raw data of DA and RT LMP are collected on an hourly
and 5 min basis, respectively. For consistency, all variables are calculated on a 15 min basis,
which matches the dispatch output of the optimization model.) Here, the settlements are
calculated based on the baseline of the 100% service level simulation, assuming no service
reduction for the baseline days. While the baseline is usually calculated based on the
previous ten non-event weekdays or four non-event weekend days [17], here, for simplicity,
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no historical market participation is assumed and the baseline is calculated based on the
prior 10/4 days.

2.4. Aggregated EV Flexibility

The aggregated EV flexibility is defined as the operating region between the maximum
and the minimum cost optimal aggregated EV load time series X̂t,opt1N , X̌t,opt1N :

Ft = X̂t,opt1N − X̌t,opt1N . (8)

where X̂t,opt is the optimal dispatch matrix based on the 100% session energy satisfaction
level, referred to as the service level, and X̌t,opt is the optimal dispatch matrix based on
the minimal service level. For demonstration purposes, we assume the minimal service
level is known and constant throughout the simulation, and six predetermined service
levels—100%, 80%, 60%, 40%, 20%, and 0%—are simulated. With this setup, the economic
benefit of exploiting the flexibility region is discussed based on the cost optimal dispatch
results for each service level, and the impact of service level reduction in demand response
market revenue is analyzed.

In real market operation, the aggregator would navigate the conflicting objectives of
satisfying the users’ energy demand and maximizing demand response market revenue. If
the demand response market prices are unattractive, i.e., the DA LMP is smaller than the
net EV charging revenue (the difference between the TOU energy rate paid to the utility
and the EV charging rate paid by the EV users), then the aggregator would operate at
100% service level to maximize charging station revenue (and utilization). If the demand
response market prices are attractive, then the aggregator would attempt to reduce the
service level as much as possible. But there are limits to reducing the service level without
risking customer dissatisfaction. In practice, the aggregator could either guarantee a certain
service level (e.g., 50%) to all users in their terms and conditions and then freely operate
between that service level and 100%. Alternatively, the aggregator could design a market
that allows users to communicate their desired charging energy and flexibility at certain
remuneration levels. Then, the aggregator could optimize service levels around the user
flexibility and price elasticity.

However, note that both of these situations require the aggregator to know the state
of charge of the battery upon arrival. Unfortunately, at present, most aggregators do not
know the EV battery’s state of charge. The ISO 15118 standard [17] is designed to change
that by allowing bidirectional communication between the EV and the charging station.
Without this, operators would have to rely on driver communications, e.g., through a
mobile application, which are notoriously inaccurate and subject to driver manipulation.
For example, the drivers could overstate their energy demand only to get paid for the
operator not being able to meet it.

In summary, our assumptions are as follows: (1) The optimization input is based on
persistence forecasted EV loads, assuming perfect knowledge of the number of EVs. (2) The
optimization input is updated in real time based on the EV arrival/departure energy level
and arrival/departure time, which are assumed to be known at the EV arrival time. (3) For
the bidding strategy, if the forecasted load is lower than the baseline, we assume that the
cost of demand (service) reduction is negligible.

3. Results
3.1. Data and Algorithm

The algorithm was implemented in Python (version 3.10) using the cvxpy solver. The
runtime for 1 year of charging dispatch is 2.5 h on an Intel Core i7-4790 CPU at 3.60 GHz,
32.0 GB.

The model was tested with PowerFlex EV charging data from 2022 at the UC San
Diego campus with 5 Tesla chargers (with a maximum power capacity of 10.3 kW) and
46 AeroVironment/Webasto DX chargers (with a maximum power capacity of 6.7 kW).
The chargers are located at Athena garage and Gilman parking structure on UC San Diego
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campus. The Gilman parking structure presents a typical workplace charging site, serving
staff, faculty, and students at nearby office buildings, labs, and classrooms. The Athena
garage serves medical facilities and experiences different charging profiles due to the 12 h
shifts of many medical workers and shorter-duration patient and visitor traffic. A total of
502,023 sessions were recorded in 2022.

The utility tariffs are as follows: cNCD, cPD, cE [23], and cEV are USD 24.48/kW and
USD 28.92/kW in summer; USD 19.23/kW in winter; USD 0.107/kWh for off-peak hours
and USD 0.126/kWh for peak hours; and USD 0.150/kWh, respectively. The threshold,
hNCD (hPD), is the highest actual EV load up to time t (during peak demand hours) of the
month. The DA and RT market prices are the DA and interval locational marginal prices at
UC San Diego obtained from CAISO OASIS [24].

3.2. Daily Profile on 7 December 2022
3.2.1. EV Load and Demand Charges

Figure 4 shows the actual and simulated aggregated EV loads with different control
schemes and different service levels on 7 December 2022. The simulated (uncontrolled)
dumb charging, with 100% service level, is denoted as V0G100% (dotted black); the actual
PowerFlex controlled, 100% service level load profile of the day is denoted as V1Greal,100%
(dashed black). PowerFlex operates chargers based on [25], but since actual site demand
charges are not assessed only by the EV charging load, the optimization function differs
and the optimization performance in this paper does not reflect the skill of the PowerFlex
algorithm. The smart persistence forecasted offline optimal load with 100% service level,
as the output of the DA optimization, also referred to as the forecasted optimal load, is
denoted as V1Gopt,100%,off (dashed light blue). The baselineopt (dashed blue) is the average
of the V1G optimal implemented load over the previous 10 weekdays (in the simulations)
with 100% service level. We assume market participation during hours when the baselineopt
is higher than the forecasted optimal load. Baselineopt is referred to as the dispatch baseline
in the rest of the paper.
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Figure 4. Aggregated EV loads with different control schemes on 7 December 2022: simulated dumb
charging (V0G100%, black dotted), real PowerFlex controlled (V1Greal,100%, black dashed), and simulated
cost optimal MPC (V1Gopt,η%,imp, red solid/dashed) loads with different service levels (η = 100%, 80%,
60%, 40%, 20%, and 0%.) The dispatch baseline (blue dashed) is higher than the forecasted load (light
blue dashed) for fifteen hours of the day (4:00–10:00, 11:00–12:00, 16:00–24:00), and the total DA demand
response market settlements during these hours are USD 54.53/USD 46.15/USD 58.92 for the forecasted,
implemented—100% service level, and implemented—80% service level case, respectively.
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Due to forecast errors, the implemented optimal load with 100% service level,
V1Gopt,100%,imp (solid light red line), does not match the forecasted optimal load trajectory,
V1Gopt,100%,off. V0G100%, V1Greal,100%, and V1Gopt,100%,imp are the loads controlled by three
different schemes, i.e., simulated dumb charging, real PowerFlex-controlled charging, and
the simulated cost optimal MPC proposed in this study, respectively. With the cost optimal
control, demand charge management is conducted by shaving the peak load based on the
thresholds (104 kW for NCD and 41 kW for PD based on EV energy demand between 1 and
6 December) to avoid additional demand charges. The monthly cost analysis is discussed
in Section 3.3.

As all chargers are workplace charging stations with few cars plugged in after 16:00 h,
a plateau lasting from around 9:00 to 16:00 h is observed for all forecasted/implemented
optimal loads, with a higher aggregated EV load and potentially more flexibility from
service reductions during 9:00–16:00 h. As the PD charge rate (USD 28.92/kW) is higher
than the NCD charge rate (USD 24.48/kW), and the PD period lasts for only five hours
(16:00–21:00) compared to 24 h for the NCD period, the total demand charge cost can
be reduced by shifting energy from the PD period to outside of the PD period [26]. The
forecasted optimal load is reduced from 11:00 to 12:00 as this market event hour has
a higher DA LMP compared to the adjacent hours. While avoiding demand charges,
i.e., controlling the non-coincident demand/peak demand to be no higher than the non-
coincident demand/peak demand thresholds, the cost optimal MPC successfully lowers
the total cost by reducing the load during hours with a higher DA LMP to increase the DA
market settlement.

3.2.2. Demand Response Market Revenue

Based on the bidding strategy (Section 2.3), the floor price is submitted for the hours
when the dispatch baseline is higher than the forecasted load. There are fifteen such event
hours on 7 December (4:00–10:00, 11:00–12:00, 16:00–24:00 h), and the forecasted DA total
market settlement is USD 54.53. The algorithm shifts energy from 11:00–12:00 h and early
morning and late afternoon hours to the 10:00–11:00 and 12:00–16:00 h intervals without
market participation. In real time, due to forecast errors, the optimal dispatch deviates
from the offline optimal trajectory. Every 15 min, the EV inputs of arrival time, departure
time, and energy demand are updated and the optimal setpoint changes accordingly. For
event hours with a lower/higher implemented load than the forecasted load, the overper-
formed/underperformed demand response capacity will be rewarded/penalized based on
the RT price, which is the 5 min interval LMP (Equation (7)). On the 7 December, out of the
fifteen hours, only two hours (9:00–10:00 and 11:00–12:00) result in a reward from overper-
formance, and the remaining thirteen hours receive a penalty due to underperformance.
As a result, the DA market settlement with 100% service level is USD 46.15, which is the
sum of the demonstrated demand response capacity payment of USD 44.74 and the sum
of the rewards (from overperformance during 9:00–10:00 and 11:00–12:00) and penalties
(from underperformance during the remaining hours) of USD 1.42. To reduce penalties and
increase rewards, the EV charging site aggregator could exploit EV flexibility by reducing
the service level to compensate for the load forecast error.

3.2.3. Increasing Demand Response Market Revenue through Cost-Optimal Aggregated
EV Flexibility

The aggregated EV flexibility region is the area between V1Gopt,100%,imp and the η%
service level load time series, V1Gopt,η%,imp (Equation (8)). All operating points in the
flexibility region are feasible [16] and cost optimal. As discussed in Section 3.2, due to
forecast errors, the DA market settlement is USD 8.38 (=USD 54.53 − USD 46.15) less than
the forecasted market revenue. For the case with 80% service level, the aggregated EV
flexibility region is the area between V1Gopt,100%,imp and V1Gopt,80%,imp. By reducing the
dispatch energy by 20% (93 kWh), the total DA market settlement becomes USD 58.92,
which is the sum of the demonstrated demand response bid payment of USD 49.81 and
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the reward/penalty from overperformance/underperformance of USD 9.11. Meanwhile,
by reducing the service level from 100% to 80%, the EV charging service revenue reduc-
tion is USD 3.75 (=79 kWh × USD 0.043/kWh + 14 kWh × USD 0.024/kWh). That is, in
real time, if the operator chooses to exploit the flexibility region by reducing the dispatch
energy by 20% for all charging sessions, the aggregated EV flexibility results in a net rev-
enue of USD 9.02 (=USD 58.92 − USD 46.15 − USD 3.75). If the service level is allowed to
further decrease below 80%, with a larger flexibility region, the market settlement is further
increased but the EV charging service revenue is further decreased. The tradeoff and the
cost analysis for December 2022 are discussed in the next section.

3.3. Monthly and Annual Cost Analysis

The optimization results for December 2022 are shown in Appendix A, and the cost
analysis for December 2022 is shown in Table 1. Comparing the load profiles with three
different control algorithms, V0G100%, V1Greal,100%, and V1Gopt,100%,imp, the implemented
load controlled by our algorithm has the lowest demand charges of USD 4658 (=USD
3473 NCD + USD 1185 PD). The total costs are dominated by the NCD and PD charges.
That is, with our control algorithm, EV charging is operated at a much lower cost. The
benefits associated with EV flexibility are further evaluated according to different service
levels below.

At a 100% service level (V1Gopt,100%,imp in Figure 4), the flexibility region is zero, and
the December monthly market reward is USD 648 (= a bid payment of USD 1036 minus a
USD 388 penalty from underperformance). Due to forecast errors, the market settlement is
USD 767 (= USD 1415 − USD 648) smaller than the expected offline DA market settlement.

With a 20% service level reduction (V1Gopt,80%,imp in Figure 4), the flexibility region is
the cost-optimal operating area between the V1Gopt,100%,imp and the V1Gopt,80%,imp trajecto-
ries. The operator demonstrates a DA demand response capacity by exploiting the flexibility
region to compensate for the forecast error and receives USD 345 (=USD 993 − USD 648)
in additional market revenue.

By further reducing the service level, the flexibility region is increased, allowing the
operator to further benefit from higher market settlements. For example, by reducing
the service level from 80% to 0% (V1Gopt,0%,imp in Figure 4), the flexibility region is the
entire area under the V1Gopt,100%,imp load trajectory. The total market settlement for a
0% service level is USD 2091 (with USD 1414 from the bid payments and USD 676 from
overperformance).

Note that in Table 1, demand charges do not play a role in choosing the cost optimal
service level for the six V1G opt scenarios, as the charging sites are expected to be operated
at a 100% service level in most hours of the month (when market prices are not favorable).
Therefore, the trade-off between EV service revenue losses and demand response market
rewards is the primary factor considered by the operator to choose the cost optimal service
level. As shown in the last column, V1G opt with lower service levels has higher sums of
EV service revenue and demand response rewards. This is because, in December 2022, the
EV service net revenue rate (USD 0.043/kWh for off-peak hours and USD 0.024/kWh for
on-peak hours) was often lower than the demand response market rates (average DA LMP
of USD 0.26/kWh and RT LMP of USD 0.24/kWh).

An annual cost analysis of the trade-off between the market settlement revenue and
the EV service reduction losses is shown in Table 2. A 20% service level reduction is used
as an example. The increase in the total DA market reward is higher than the increase
in the EV service reduction cost in August, September, and December 2022. That is, by
reducing the service level from 100% to 80%, the operator receives positive net benefits
from exploiting the aggregated EV flexibility. For the other months, demand response
market rates are too small to justify reductions in the service level over the entire month.
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Table 1. Aggregator costs and revenues in December 2022. Negative net EV service cost and DA demand response market costs indicate income from these sources.

Non-Coincident
Demand

Charge [USD]

Peak Demand
Charge [USD]

TOU Energy Cost
[USD] Taxes [USD] Net EV Service

Cost [USD]

DA Demand
Response Market

Cost [USD]

Total Dispatched
Energy [kWh]

EV Service
Revenue + Demand
Response Rewards

[USD]

V0G100% 4976 1230 1733 573 −678 - 16,075 678
V1Greal,100% 9111 2134 1749 865 −670 - 16,127 670

V1Gopt,100%,off 3473 1185 1720 482 −675 −1415 15,971 2090
V1Gopt,100%,imp 3473 2673 1748 570 −664 −648 16,075 1312
V1Gopt,80%,imp 2791 2140 1403 458 −536 −993 12,927 1529
V1Gopt,60%,imp 1969 1953 1054 356 −401 −1225 9695 1626
V1Gopt,40%,imp 1298 1308 703 237 −267 −1507 6464 1774
V1Gopt,20%,imp 652 770 351 125 −133 −1800 3232 1933
V1Gopt,0%,imp 0 0 0 0 0 −2091 0 2091

Table 2. Monthly revenue and cost increment with an 80% service level in the year 2022. The red color in the last two columns indicates months when the revenue
from market participation exceeds losses from EV service reduction.

Forecasted
Market

Revenue [USD]

DA Market
Settlement, Bid
Payment, 100%
Dispatch [USD]

DA Market
Settlement,
Ver/Under-

Performance,
100%

Dispatch [USD]

Total DA Market
Settlement, 100%
Dispatch [USD]

DA Market
Settlement,

Capacity
Demonstrated,

80%
Dispatch [USD]

DA Market
Settlement,

Over/Under-
Performance, 80%
Dispatch [USD]

Total DA Market
Settlement, 80%
Dispatch [USD]

Market
Settlement

Increment [USD]

EV Service
Reduction
Cost [USD]

February 211 169 −42 126 181 −22 159 32 105
March 333 242 −113 130 258 −65 194 64 137
April 503 335 −187 148 360 −129 231 83 146
May 425 294 −132 162 320 −80 241 79 138
June 434 329 −84 245 356 −36 321 76 134
July 491 345 −202 143 377 −111 266 122 137

August 630 424 −184 239 474 −65 410 170 148
September 893 591 −425 166 650 −266 384 218 148

October 350 186 −174 12 222 −87 135 123 163
November 589 211 299 509 239 367 606 97 146
December 1950 1036 −388 648 1127 −134 993 345 128

February–
December 6809 4162 −1632 2528 4564 −628 3940 1409 1530
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4. Conclusions

In conclusion, an aggregated EV flexibility quantification method is proposed in this
study. The proposed algorithm exploits the aggregated EV flexibility by (1) optimizing the
individual dispatch pattern considering demand charge management and demand response
market participation and (2) exploiting flexibility from reducing the session energy delivered
based on different service levels. The algorithm is practically relevant as the size of the flexi-
bility region corresponds to the service level, and any operational point inside the flexibility
region is cost optimal for the aggregator. Through the service level, EV users can provide their
acceptable service reduction without needing to input energy values, providing a user-friendly
way to transfer flexibility information between the customers and the aggregator.

The method is tested with a one-year case study. The results show that the flexibility
can not only compensate for forecast errors but can also be used by the operator to generate
revenue in the DA demand response market. A service level reduction is only beneficial if
demand response revenues exceed the losses from decreased EV charging station utilization.

In terms of future work, in this study, the flexibility region was decided by the service level,
which is an input in the optimization model, and six different service levels were analyzed.
In real-world scenarios, the operator needs to switch between different service levels when
operating in real time. As a result, the service level needs to be included in the online feedback
decision-making process. For true cost optimization, externalities such as customer satisfaction
and revenue-sharing also need to be considered for the operator to choose the service level.

The current optimization does not consider carbon emission costs. Different carbon
emission costs will be simulated to study the impact of carbon prices and the resulting
emission reductions. Such future work will offer an optimal EV scheduling scheme consid-
ering both economic and environmental impacts. Finally, a better forecast model for the EV
load is expected to increase market revenue.
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Nomenclature
The following nomenclature are used in this manuscript:

Symbol Meaning Unit
c/c̄ Floor/ceiling bid price for the energy market USD/kWh
cbid,h Bid price submitted to demand response market by aggregator USD/kWh
cDRP Day-ahead (DA) market demand response price USD/kW
cE Time-of-use retail energy price USD/kWh
cEV Cost of EV charging billed to drivers USD/kWh
cLMP,DA/cLMP,RT DA/RT locational marginal price USD/kWh
cNCD/cPD Non-coincident demand/peak demand charge rate USD/kW
DA Day-ahead -
∆t Simulation time resolution: ∆t = 15 min min
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eai/edi EV arrival/departure energy kWh
emi Maximum EV battery capacity kWh
êt Maximum charger interval charging capacity kWh
η Service level (=EV energy delivered/requested by the driver) %
Ft Aggregated EV flexibility region at time t kWh
H The number of time steps in the MPC simulation horizon -
ht,NCD/ht,PD Non-coincident demand/peak demand threshold kWh
1N An N × 1 vector with all entries being one -
1t A 1 × (T−t + 1) vector with all entries being one -
L Baseline aggregator reference load in 15-minute resolution kW
L Hourly average of L, i.e., hourly baseline load kW
Lh Hourly baseline load at hour h kW
nt The number of arrived cars at time t -
Pbid,h Aggregator bidding capacity kW
RT Real time -
SDA DA market settlement, bid payment USD
SRT DA market settlement, over/under performance USD
t A time stamp of the day -
tai/tdi EV arrival/departure time -
T Number of intervals of the day: T = 96 -
Y0 DA forecasted aggregated EV load series kW
Y0 Hourly average of Y0, i.e., DA forecasted hourly load kW
Y0,h DA forecasted hourly load at hour h kW
Xt,opt Optimization output EV dispatch matrix kW
X̂t,opt Optimal dispatch matrix with 100% service level kW
X̌t,opt Optimal dispatch matrix with minimum service level kW
z Binary filter for peak hours (from 4 to 9 pm) -
zDR DA market binary filter for non-event/event hours -

Appendix A
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Figure A1. Monthly results of the aggregated EV loads with different control schemes: dumb charging
(V0G100%, black dotted), PowerFlex-controlled (V1Greal,100%, black dash), and cost minimal MPC
(V1Gopt,η%,imp, red solid/dash) with different service levels (η = 100%, 80%, 60%, 40%, 20% and 0%).
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