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Abstract: As the proportion of new energy sources, such as wind power, in the electricity system
rapidly increases, their participation in spot market competition has become an inevitable trend.
However, the uncertainty of clearing price and wind power output will lead to bidding deviation and
bring revenue risks. In response to this, a bidding strategy is proposed for wind farms to participate
in the spot market jointly with carbon capture power plants (CCPP) that have flexible regulation
capabilities. First, a two-stage decision model is constructed in the day-ahead market and real-time
balancing market. Under the joint bidding mode, CCPP can help alleviate wind power output
deviations, thereby reducing real-time imbalanced power settlement. On this basis, a tiered carbon
trading mechanism is introduced to optimize day-ahead bidding, aiming at maximizing revenue in
both the electricity spot market and carbon trading market. Secondly, conditional value at risk (CVaR)
is introduced to quantitatively assess the risks posed by uncertainties in the two-stage decision model,
and the risk aversion coefficient is used to represent the decision-maker’s risk preference, providing
corresponding strategies. The model is transformed into a mixed-integer linear programming model
using piecewise linearization and McCormick enveloping. Finally, the effectiveness of the proposed
model and methods is verified through numerical examples.

Keywords: carbon capture; electricity spot market; bidding strategy; wind and thermal power;
conditional value at risk

1. Introduction

In the context of developing a low-carbon economy, augmenting the integration of
renewable energy into the power system and decarbonizing traditional fossil energy (e.g.,
coal and oil) are important means to achieve the goals of carbon emission reduction and
carbon neutrality as scheduled [1]. With the accelerated construction and development
of the electricity spot market, China’s renewable energy sector has essentially shifted
from the initial support phase involving benchmark electricity prices and preferential
subsidies to a subsidy-free grid-connection phase at parity [2]. The generation capacity of
renewable energy sources, including wind and photovoltaic, has experienced consistent
growth. Nevertheless, they are no longer afforded the comprehensive grid-connection
protection facilitated by the power grid; instead, they engage in competition within the
electricity spot market alongside conventional power sources.

The strong randomness and volatility of wind power output make it difficult to
accurately predict [3]. The participation of wind power in the spot market not only poses
challenges to the secure operation of the power system but also results in penalties for wind
power producers arising from the imbalances between the actual output and the winning
bid [4]. This significantly weakens the profitability of wind power companies, which is
not conducive to the enthusiasm for subsidy-free bidding and the healthy development
of new energy. By optimizing resource allocation in the market [5], the combination of
wind power with thermal power, energy storage systems, pumped storage power stations,
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and other types of flexible resources enables energy complementation. As a result, this
method efficiently alleviates the anticipated revenue losses arising from deviation penalties,
as referenced in [6–8]. For the electricity market, this approach is beneficial for solving the
problem of insufficient grid reserves, ensuring a continuous and reliable power supply,
thereby alleviating the pressure on grid dispatching. Ref. [9] discussed the participation of
“new energy + storage” power plants as independent entities in the day-ahead market by
controlling the charging and discharging behavior of the storage system to optimize the
plant’s power output. Ref. [10] considered the strong uncertainty of wind power output
and formulated a bidding strategy for the wind-storage system in the energy market and
the frequency regulation auxiliary service market, also taking into account the cycle life cost
of storage. Ref. [11] designed a data-driven classification aggregation method for electric
vehicles and proposed a day-ahead bidding strategy for the joint participation of electric
vehicle fleets and wind power in the electricity and frequency regulation markets. Ref. [12]
conducted joint bidding with demand response aggregators and wind power companies,
introducing a balancing coefficient to balance the interests of multiple entities. In the above
literature, wind power and new market entities such as energy storage collaborate to reduce
upper and lower deviations. However, as the installed capacity of new energy continues to
increase, there is still an issue with the insufficient scale of storage allocation due to high
investment costs.

As traditional market entities, hydroelectric and thermal power possess excellent con-
trollability, enabling them to meet the flexibility demands of integrating large-scale wind
power into the grid within a short timeframe. Moreover, the collaborative participation
in the market of these traditional market entities alongside wind farms also contributes
to enhancing the stability of the electricity market. Ref. [13] investigated the bidding
strategy of a coalition of multiple wind farms and pumped storage power stations, using
the Shapley value and core solution to address revenue allocation among wind-pumped
storage power stations and multiple wind farms. Hydropower is characterized by its sus-
tainability and efficiency, but it entails significant construction costs and resource demands.
Furthermore, the establishment of hydropower stations is constrained by geographical
conditions. Currently, in China’s “Three Norths” area, where wind power is developed
intensively, the power source structure is still dominated by thermal power units and
the wind–thermal bundling approach is applied to promote the grid connection of large-
capacity wind farms. Therefore, encouraging thermal power companies and new energy
companies to carry out substantive joint operations is an effective solution to promote the
high-quality development of new energy. In [14–16], thermal power units were leveraged
to offset stochastic wind power output, demonstrating that the joint bidding strategy can
effectively increase the bidding profits for both parties. Ref. [14] proposed a dual-objective
bidding strategy for wind–thermal–photovoltaic systems in the electricity and spinning
reserve markets. Ref. [15] established a multi-objective, three-stage bidding and scheduling
model for maximizing profits and minimizing carbon emissions of a wind–thermal–storage
system based on mixed-integer programming. In [16], a wind–thermal joint bidding model
was established utilizing the traditional information-gap decision theory method, with the
cogeneration units supplying reserved capacity to minimize real-time imbalances. How-
ever, traditional thermal power units have a slow ramping rate, resulting in significant costs
due to frequent starts and stops for offering adjustment services, and their high carbon
emissions are contrary to China’s current “dual carbon” targets.

In the context described above, this paper studies the joint bidding strategy for wind
farms and CCPP in the spot market, taking into account imbalance costs. The transfor-
mation of traditional thermal power plants into CCPP not only results in lower carbon
emission intensity but also provides a wider operating range and faster ramping rate [17],
enhancing the environmental, efficiency, and flexibility levels of thermal power units. Con-
sequently, it can serve as an ideal low-carbon power source to implement joint bidding
with wind power. On this basis, a tiered carbon trading mechanism is introduced to reduce
carbon emissions from thermal power units to achieve the maximum economic benefits in
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both electricity and carbon markets. The conditional value at risk (CVaR) is introduced to
quantify various uncertainties, allowing decision-makers to set an appropriate risk aversion
coefficient according to their risk tolerance, thus coordinating profit and risk optimization.
Finally, the effectiveness of the proposed model is verified through numerical examples.

2. Theory and Methods
2.1. Mechanism Analysis of Flexible Operation of CCPP

Post-combustion carbon capture technology separates CO2 directly from the flue gas
produced by fuel combustion in boilers, capturing it through three stages: absorption,
desorption, and compression. This technology has reached a mature state and is widely
applied [18]. However, there is a coupling issue between the scrubber and the stripper
in CCPP. Specifically, when the ratio of flue gas entering the scrubber from the venting
channel to that directly discharged into the atmosphere remains constant, the CCPP cannot
independently adjust the energy distribution of the carbon capture facilities. The sole
available control option is the adjustment of power output in the CCPP. This results
in conflicts between the loads of the generation system and the carbon capture system,
posing a challenge for CCPP to harmonize the relationship between carbon capture energy
consumption and net power output.

To address these challenges, this paper introduces an integrated, flexible operating
mode for CCPP. The carbon flow and energy flow within a CCPP are shown in Figure 1.
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Figure 1. Carbon flow and energy flow of CCPP under the integrated, flexible operation mode. 
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Figure 1. Carbon flow and energy flow of CCPP under the integrated, flexible operation mode.

This mode introduces two solvent storage tanks between the scrubber and the stripper,
disrupting the traditional balance of solvent volumes within each. Firstly, the proportion
of flue gas passing through the scrubber can be adjustable by the venting channel. The
CO2-containing flue gas has intimate contact with liquid absorbent within the scrubber.
Meanwhile, CO2 is absorbed by the MEA (monoethanolamine) solvent. Subsequently, the
“rich” solvent, containing a higher concentration of CO2, is directed to the stripper, where
it desorbs the CO2 and regenerates the “lean” solvent. A significant amount of thermal
energy is required during the regeneration of the solvent during this process. The “lean”
solvent is then recirculated back to the scrubber for the next absorption cycle, ensuring a
strictly equal bidirectional flow of solvent between the scrubber and the stripper. During
the above process, the “rich” solvent storage tank can store the “rich” solvent from the
scrubber and pump it to the stripper for further processing when needed. By introducing
these auxiliary facilities and decoupling the loads of power generation and carbon capture
facilities, the CCPP is able to control the volume of CO2 captured, thus giving the CCPP
the opportunity to be operated flexibly [19].
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The formula for calculating the mass of CO2 captured by the carbon capture system is
generally represented as follows:{

EQ,t = ηγtEG,t + EH,t
EG,t = BGPG,t

, (1)

where EG,t represents the carbon emissions of the thermal power unit before being captured
at hour t. η stands for the carbon capture efficiency. γt denotes the proportion of flue gas
entering the scrubber through the venting channel at hour t. BG is the carbon emission
coefficient of the thermal power unit, representing the CO2 emission intensity per unit of
gross power output. EH,t is the mass of CO2 released by the “rich” solvent storage tank at
hour t, with CO2 mass related to the solvent volume as follows:

d f ,t =
EH,t MMEA

ερ f σf MCO2

, (2)

where df,t represents the volume of “rich” solvent pumped out from the “rich” solvent
storage tank at hour t. MMEA is the molar mass of the MEA solution. MCO2 is the molar
mass of CO2. E is the quantity of desorption in the stripper. ρf and σf, respectively, denote
MEA solvent concentration and density.

The gross power output of the generation system equals the sum of the net power
output and the power consumed by the carbon capture system. When the gross power
output is fixed, an increase in power consumption by the carbon capture system leads
to a decrease in the net power output. This enhances the spinning reserve capacity of
the thermal power unit, ensuring greater flexibility and reliability. Under the integrated,
flexible operation mode, the solvent storage tank can provide additional CO2. This allows
the carbon capture facilities to capture more CO2, resulting in increased capture energy
consumption. As a result, the thermal power unit is capable of achieving a significant
reduction in its net power output, enabling the CCPP to possess an extended range for net
output adjustment.

Compared to conventional coal-fired power units, where the generation cycle is
limited by their large thermal inertia and boiler state changes require significant time, the
carbon capture facilities in post-combustion CCPP operate downstream of the generation
system, providing greater independence. This independence allows for direct adjustment
of the energy supply to the carbon capture system, enabling rapid adjustments to the net
power output. Additionally, it can store CO2, which is not to be treated in the stripper,
so the thermal power unit can provide more power for the load during the peak load
period. The carbon capture power plant can realize “energy time shifting” by adjusting
the solvent storage, effectively resolving the contradiction between power generation and
carbon capture.

2.2. Joint Bidding Strategy for Wind Farms and CCPPs

The generation alliance of wind and thermal power makes bidding decisions at two
stages: the day-ahead market and the real-time balancing market. The day-ahead market
bid is based on disclosed market information, generation cost functions, forecasted market
clearing price, and wind power output. In the first stage, the day before the operation,
the generation alliance submits its offering curve that aligns its economic interests to the
electricity trading institution. In the MCP (market clearing price) mechanism, the settlement
of all the winning generators is based on the unified clearing price λ. Since the capacity
of the generation alliance only accounts for a small ratio in the whole market transaction,
it is not a determinant of the market clearing price. Its bidding behavior exerts minimal
impact on the system’s marginal electricity price. Therefore, this paper assumes that the
generation alliance acts as a price taker in the market. Thus, it only needs to submit power
bid quantities instead of bidding curves to the market. In the second stage, the power
generation plan formulated in the day-ahead market is put into action. Given the existence
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of forecasting errors, the CCPP performs rapid and precise control of real-time power
output on an operational day, ensuring that the actual generation quantities align closely
with the scheduled quantities in the day-ahead plan. When the actual electricity deviation
of the wind farm surpasses the adjustment capability of the CCPP, the generation alliance
enters the real-time balancing market. The imbalance price is used for the settlement of
imbalanced electricity, which involves shortages or surpluses of electricity in real time.

Currently, the spot market mechanism in China is not yet mature. To prevent specu-
lators from exploiting the arbitrage between day-ahead and real-time price differences, a
dual-pricing mode is adopted in the real-time balancing market to incentivize participants
to enhance their forecasting capabilities and provide reliable electricity supply [13]. The
penalty coefficients meet the following conditions:

0 ≤ πdown ≤ 1 ≤ πup, (3){
λdown

t = πdownλda
t

λ
up
t = πupλda

t
, (4)

where πdown and πup, respectively, represent the penalty coefficients for positive and
negative imbalances. λda

t represents the day-ahead market clearing price. λdown
t and λ

up
t

represent the positive and negative imbalance prices, respectively.
The two-stage decision-making framework is illustrated in Figure 2; the uncertainties

of clearing prices and wind power output are modeled via a set of scenarios. Assume that
the forecast errors of random variables follow a normal distribution, and the scenarios
are generated via random sampling from the probability distribution. Subsequently, a
Kantorovich distance-based scenario reduction technique is utilized to establish a set
of typical scenarios and their corresponding probabilities. The bidding strategy aims
to maximize expected profits and minimize risk as multi-objectives. The risk aversion
coefficient is determined based on the risk tolerance levels of generators. The optimal
solution is calculated by combining all scenarios along with their respective probabilities.
The wind power uncertainty is described through scenarios where the CCPP adjusts its
actual net power output based on wind power variations within each scenario.
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2.3. Conditional Value at Risk

Should the day-ahead forecast results deviate significantly from the actual values, it
can lead to a significant divergence between actual and expected profits. To mitigate the
adverse impact of risks on the bidding model, CVaR is utilized as a risk measurement
indicator to assess risk, thereby bolstering the robustness of the model. Unlike value at risk
(VaR), which focuses on estimating the maximum potential loss within a confidence level,
CVaR considers the expected value of losses that exceed the VaR threshold.

The loss function f (x,y) is related to the decision vector and uncertain vector. Here,
x represents the decision variables, and y denotes the random variables associated with
risk factors. When the joint probability density function p(y) of y is known, the conditional
value at risk function under continuous distribution can be formulated as follows:

Fβ(x) =
1

1 − β

∫
f (x,y)≥zβ(x)

f (x, y)p(y)dy, (5)

zβ(x) = min{z ∈ R : ψ(x, z) ≥ β}, (6)

where β is the confidence level. zβ represents the VaR value at confidence level β. ψ(x,α)
denotes the probability that f (x,y) does not exceed the threshold z. Fβ(x) is the expected
value of f (x,y) exceeding the VaR.

To address the integral problem, we can utilize a set of sampled scenarios to obtain an
equivalent calculation formula for CvaR under discrete distribution as follows:

Fβ(x, α) = zβ +
1

1 − β

N

∑
s=1

ϕs[ f (x, y)− zβ]
+, (7)

[ f (x, y)− zβ]
+ = max[ f (x, y)− zβ, 0

]
, (8)

where N is the total number of sampled scenarios. Φs is the probability of the scenario s.
CVaR is often used as a risk measure for cost-based loss functions. A smaller CVaR

implies a lower level of tail cost, indicating a relatively better risk profile. For benefit-based
functions, the loss function could be defined as the portion where actual benefits fall below
expected benefits [20]. For ease of calculation, this paper defines CVaR as the average
benefit when the outcome falls beyond a specified confidence level. CVaR provides a
measure of the expected benefit in extreme adverse scenarios, focusing solely on the tail of
the distribution beyond the chosen confidence level. The formula is articulated as follows:

XCV(β) = XV(β)− 1
1 − β

N

∑
s=1

ϕs

{
XV(β)− Es

}+
, (9)

where XV represents the VaR, which is the variable in the decision model. Es is the benefit
corresponding to scenario s. XCV represents the average benefits that are less than the
XV threshold.

To facilitate calculation, auxiliary variables εs (s = 1, 2, . . ., N) are introduced to relax
Equation (9), resulting in a linearized calculation formula for CVaR as follows:

XCV(β) = XV(β)− 1
1 − δ

N

∑
s=1

ϕsεs, (10)

XV(β)− Es ≤ εs, (11)

εs ≥ 0. (12)



Energies 2024, 17, 1714 7 of 19

2.4. Two-Stage Joing Bidding Model Based on CVaR
2.4.1. Objective Function

The objective function of the joint bidding decision model can be expressed as follows:

maxF =
N

∑
s=1

ϕsEs + δXCV(β), (13)

Es = RDA
s + RPH

s − CG
s − CM

s − CO
s − CE

s , (14)

where Es is the profit function, XCV is the conditional value at risk. δ is the risk aversion
coefficient, with δ > 0 indicating an attitude towards risk aversion. It reflects the balance
between expected profit and the degree of profit fluctuation, simplifying multi-objective
optimization into a single objective through a weighted sum method. RDA

s is the day-ahead
market revenue under scenario s. RPH

s is the real-time balancing market revenue under
scenario s. CG

s , CM
s , CO

s , and CE
s , respectively, represent the fuel cost, solvent loss cost,

start-up and shutdown cost, and carbon trading cost under scenario s.

RDA
s =

T

∑
t=1

λda
s,t Pbid

y,t , (15)

RPH
s =

T

∑
t=1

(λdown
s,t Pdown

y,s,t − λ
up
s,t Pup

y,s,t), (16)

where T is the number of hours. Pbid
y,t represents the bidding quantity at hour t. Pdown

y,s,t and

Pup
y,s,t, respectively, represent the positive and negative imbalance electricity under scenario

s at hour t.
The operating costs of CCPP primarily consist of power generation costs, depreciation

costs of carbon capture facilities, and MEA solvent loss costs. Generation costs mainly arise
from the energy supplied to the carbon capture system and the net output. The depreciation
costs of carbon capture facilities and storage tanks are constants and are unrelated to the
operation state of the CCPP; thus, they are not considered in the model.

(1) Fuel Cost for Thermal Power Units

CG
s =

T

∑
t=1

[a(PG,s,t)
2 + bPG,s,t + Us,tc], (17)

where a, b, and c are the quadratic, linear, and constant coefficients of the coal cost function
for the thermal power generation unit. Us,t is a binary variable representing the on/off
status of the thermal power unit at hour t, where 0 and 1 represent shutdown and start-up,
respectively. PG,s,t is the gross output power at hour t under scenario s.

(2) Solvent Loss Cost

During the carbon capture process, the daily solvent loss of the MEA solution is
calculated as follows:

CM
s =

T

∑
t=1

crgrEQ,s,t, (18)

where cr is the solvent cost coefficient. gr is the operating loss coefficient. EQ,s,t is the mass
of CO2 being captured at hour t under scenario s.

(3) Carbon Trading Cost

The carbon trading market organizes the buying and selling of carbon emission
rights among market members, thereby incentivizing power generators subject to carbon
emissions assessments to manage power generation and carbon emissions, promoting
carbon reduction on the generation side. If a power generator’s actual carbon emissions



Energies 2024, 17, 1714 8 of 19

exceed government-issued carbon allowances, additional carbon emission rights must
be purchased. Conversely, if a power generator holds more carbon allowances than its
actual emissions, it can sell the surplus carbon allowances. This paper breaks down carbon
trading costs on a daily basis, recording actual carbon emissions and settling carbon trading
costs at the end of each electricity spot market cycle. The quantity of carbon allowances
involved in trading in the carbon market is as follows:

Eact,s − Eceq,s =
T

∑
t=1

(EG,s,t − EJ,s,t − PG,s,tZceq), (19)

where Eact,s represents the actual carbon emissions under scenario s. Eceq,s represents
the carbon allowances under scenario s. Zceq is the carbon emission baseline per unit of
electricity for the thermal power unit. EG,s,t is the carbon emissions of the thermal power
unit at hour t under scenario s. EJ,s,t is the mass of CO2 captured at hour t under scenario s.
γs,t is the proportion of flue gas entering the scrubber at hour t under scenario s.

A tiered carbon trading mechanism establishes distinct intervals for the trading of
carbon emission rights. When the purchased quantity of carbon emission rights surpasses
a certain interval, the carbon trading price increases accordingly. Compared to a uniform
pricing mechanism, the tiered pricing mechanism can strengthen penalties for exceeding
carbon emissions and incentives for carbon reduction. The cost calculation model for tiered
carbon trading is as follows:

CE
s =



−λ(2+σ)d + λ(1 + 2σ)(Eact,s − Eceq,s + 2d),
−Eceq,max ≤ Eact,s − Eceq,s ≤ −2d
−λd + λ(1 + σ)(Eact,s − Eceq,s + d),
−2d ≤ Eact,s − Eceq,s ≤ −d
λ(Eact,s − Eceq,s),−d ≤ Eact,s − Eceq,s ≤ d
λd + λ(1 + τ)(Eact,s − Eceq,s − d),
d ≤ Eact,s − Eceq,s ≤ 2d
λ(2+τ)d + λ(1 + 2τ)(Eact,s − Eceq,s − 2d),
2d ≤ Eact,s − Eceq,s ≤ 3d
λ(3 + 3τ)d + λ(1 + 3τ)(Eact,s − Eceq,s − 3d),
3d ≤ Eact,s − Eceq,s ≤ EG,max − Eceq,max

, (20)

where λ is the carbon trading benchmark price. τ is the penalty coefficient for tiered carbon
trading. σ is the compensation coefficient for tiered carbon trading. d is the interval length
of carbon emission rights.

(4) Start-up and Shutdown Costs for Thermal Power Units

CO
s =

T

∑
t=1

[Us,t(1 − Us,t−1) + Us,t−1(1 − Us,t)]co, (21)

where co represents the cost of a single start-up or shut-down of the thermal powerunit.

(5) Operating Costs of Wind Farms

CW
s =

T

∑
t=1

cwPrt
w,s,t, (22)

where cw represents generation cost coefficients for wind farms.

2.4.2. Constraints

(1) Power Balance Constraint

Prt
c,s,t + Prt

w,s,t − Pbid
y,t = Pdown

y,s,t − Pup
y,s,t, (23)
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where Prt
c,s,t and Prt

w,s,t, respectively, represent the net power output of the CCPP and the
actual power output of the wind farm under scenario s at hour t.

The power generation status of the alliance under each scenario s and each hour t
exists in one of three states: overgeneration, undergeneration, or the amount of output
exactly equal to the bid quantities. Thus, the constraints for positive/negative imbalance
power must meet the constraint Pup

y,s,tP
down
y,s,t = 0. To avoid introducing Boolean variables,

the constraint conditions are equivalently transformed as follows.

Pup
y,s,t ≥ Pbid

y,t − Prt
c,s,t − Prt

w,s,t, (24)

Pdown
y,s,t ≥ Prt

c,s,t + Prt
w,s,t − Pbid

y,t , (25)

Pup
y,s,t ≥ 0, Pdown

y,s,t ≥ 0. (26)

(2) Bidding Quantity Constraints

0 ≤ Pbid
y,t ≤ Pc,max + Pw,max, (27)

where Pc,max and Pw,max, respectively, refer to the maximum net power output of the
thermal power unit and the capacity of the wind farm.

(3) Gross Power Output Constraints for Thermal Power Units

Us,tPG,min ≤ PG,s,t ≤ Us,tPG,max, (28)

where PG,max and PG,min, respectively, denote the maximum and minimum technical power
output of the thermal power unit.

(4) Ramp Rate Constraints of Thermal Power Units

{
PG,s,t−PG,s,t−1 ≤ PUR
PG,s,t−1−PG,s,t ≤ PUR

, (29)

where PUR represents the maximum ramp rate of the thermal power unit.

(5) Start-up and Shutdown Constraints for Thermal Power Units


t+Ton

min−1
∑

k=t
Us,k ≥ Ton

min(Us,t − Us,t−1)

t+Toff
min−1
∑

k=t
(1 − Us,k) ≥ Toff

min(Us,t−1 − Us,t)

, (30)

where Ton
min and Toff

min, respectively, represent the minimum continuous operating and
shutdown durations.

(6) Operation Constraints for CCPPs


PG,s,t = Prt

c,s,t + Pccs,s,t
Pccs,s,t = PB,t + PI,s,t
EJ,s,t = ηγs,tEG,s,t
EQ,s,t = EJ,s,t + EH,s,t
PI,s,t = φEQ,s,t

, (31)

where Pccs,s,t represents the carbon capture system energy consumption under scenario
s at hour t. PB,t is the fixed energy consumption of the carbon capture system, which is
considered a constant value resulting from structural changes in the power plant. PI,s,t is
the operating energy consumption of the carbon capture system under scenario s at hour t.
φ is the power consumption per unit of CO2 captured.
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The constraints for the proportion of flue gas entering the scrubber and the captured
CO2 mass by the carbon capture system at each hour t are as follows:

0 ≤ γs,t ≤ 1, (32)

0 ≤ EQ,s,t ≤ ηBGµmaxPG,max, (33)

where µmax represents the maximum operation state coefficient of the stripper and compressor.

(7) Solvent Storage Tank Capacity Constraints

The formula for calculating the volume of the rich and lean solvent in the storage
tanks is as follows: {

VF,s,t = VF,s,t−1 − df,s,t
VP,s,t = VP,s,t−1 + df,s,t

, (34)

where VF,s,t and VP,s,t represent the volume of the rich and lean solvent in the storage tanks,
respectively, under scenario s at hour t.

These volumes satisfy the following constraints:
0 ≤ VP,s,t ≤ VLSP,max
0 ≤ VF,s,t ≤ VLSP,max
VF,s,24 = VP,s,24 = VLSP,inv
VF,s,0 = VP,s,0 = VLSP,inv

, (35)

where VLSP,max represents the maximum capacity of the storage tanks. VLSP,inv refers to the
initial volume of the rich and lean solvent in the storage tanks.

(8) CVaR constraints are as shown in Equations (11) and (12).

3. Model Solution Strategy

The solving process of the mixed-integer nonlinear programming (MINLP) model is
relatively complex, resulting in higher computational costs and longer computation time.
The complicated model with nonconvex and nonlinear features was transformed into a
stochastic mixed-integer linear programming (MILP) model so that the previous bidding
problem could be solved directly by a commercial solver.

(1) For Equation (17), a piecewise linearization approach is adopted, with the specific
process as follows. Based on the required accuracy, the power output of thermal power
units is discretely divided into L intervals on average:

Pd,min = Pd,1 < Pd,2 < . . . Pd,L = Pd,max

PG =
L+1
∑

q=1
wqPd,q

, (36)

where Pd,q represents the breakpoints of the q interval. Pd,min and Pd,max are, respectively, 0
and PG,max. wq are L+1 continuous auxiliary variables introduced. The additional constraint
conditions to be incorporated are as follows:

w1 + w2 + . . . + wL+1 = 1
z1 + z2 + . . . + zL = 1
w1 ≥ 0, w2 ≥ 0, . . . , wL+1 ≥ 0
w1 ≤ z1, w2 ≤ z1 + z2, . . . ,
wL ≤ zL−1 + zL, wL+1 ≤ zL

, (37)

where [z1,z2,. . .,zL] are L binary auxiliary variables.
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The nonlinear function in Equation (17) can be approximated by the following lin-
earization function:

f (PG) =
L+1

∑
q=1

wq f (Pd,q), (38)

where f is the nonlinear function for the squared term in Equation (17).
(2) For the tiered carbon trading cost function in Equation (20), by introducing con-

tinuous variable [g1,g2,. . .,g7] and binary variable [a1,a2,. . .,a6], the linearized function for
carbon trading costs can be derived as follows:

Eact − Eceq =
7
∑

i=1
gi∆Ei

CE,L =
7
∑

i=1
giCE(∆Ei)

, (39)

where ∆Ei represents the breakpoints of Eact − Eceq. The constraint conditions for the
auxiliary variables g and a are as follows:

g1 + g2 + . . . + g7 = 1
a1 + a2 + . . . + a6 = 1
g1 ≥ 0, g2 ≥ 0, . . . , g7 ≥ 0
g1 ≤ a1, g2 ≤ a1 + a2, . . . ,
g6 ≤ a5 + a6, g7 ≤ a6

. (40)

(3) In Equation (21), for the binary product term of two binary variables x1x2, a contin-
uous auxiliary variable z is introduced. Then, the constraints equivalent to z and x1x2 are
as follows: 

z ≥ x1 + x2 − 1
z ≥ 0
z ≤ xi, i = 1, 2

. (41)

(4) For the bilinear term γEG in Equation (31), McCormick envelope linear relaxation
is used to replace it, thereby reconstructing the original problem into an equivalent convex
problem [21]. The specific expressions are as follows:

h ≥ γLEG + γEG
L − γLEG

L

h ≥ γUEG + γEG
U − γUEG

U

h ≤ γUEG + γEG
L − γUEG

L

h ≤ γEG
U + γLEG − γLEG

U

, (42)

where the superscripts U and L, respectively, indicate the upper and lower limits of the variable.

4. Results and Discussion

The case study uses a 600 MW CCPP and a 370 MW wind farm. The detailed param-
eters for the thermal power unit of the carbon capture plant are shown in Appendix A,
Table A1, and the parameters for the carbon capture facilities are referenced from [22]. The
generation cost coefficient of the wind farm is CNY 100/MWh. The penalty coefficients for
positive and negative imbalances are 0.4 and 1.6, respectively. The carbon emission baseline
per unit of electricity is 0.7 t/(MW·h), with a carbon trading benchmark price of CNY 100/t,
a compensation coefficient of 0.1, and a penalty coefficient of 0.2. The interval length of
carbon emission rights is 2000 t. The forecast results for wind power output and day-ahead
clearing price are shown in Figure 3, with standard deviations of the forecast errors set at
25% and 15%, respectively. The Monte Carlo method is used for random sampling to gen-
erate 1000 wind power out and price scenarios. Employing scenario reduction techniques,
the scenarios are reduced to 10 typical ones, each with its corresponding probability. The
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risk aversion coefficient δ = 1, and the CVaR confidence level β = 0.95. The model is solved
using MATLAB software R2016b and the Gurobi optimizer 10.0.0.

4.1. Analysis of Bidding Results

Figure 3 illustrates the results of joint bidding under the risk-averse strategy. As
depicted in Figure 3, from hours 5 to 9, wind power is abundant, and the predicted power
output of the wind farm is substantial, yet the bidding quantities are relatively low. This is
attributed to the lower electricity price during this period, which is close to the marginal
cost of the thermal power unit, so the bidding quantities are relatively low. At the same time,
in periods when the electricity price is high, the bidding quantities increase to maximize
revenue from electricity sales. This enables the generation alliance to achieve profitability
throughout the entire day. Additionally, limited by weather conditions such as wind
speed, the inclusion of the thermal power unit also somewhat weakens the counter-peak
characteristics of wind power, enabling the generation alliance to respond to clearing price
signals and formulate an hourly generation plan. It is evident that the hourly bidding
quantities align approximately with the trend of electricity price changes, thereby favoring
a responsive approach to meet the market load demand.
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Figure 3. Optimized bidding results in the day-ahead market.

The bidding strategy takes into account revenues from both the day-ahead market
and real-time balancing market settlements, providing a comprehensive decision-making
perspective. The balancing market aims to eliminate imbalanced electricity. Given the strict
penalties for generation shortage and wind curtailment, day-ahead bidding is conservative.
Under an individual bidding strategy, the wind farm submits a generation plan based on
the optimization results considering day-ahead revenues and real-time balancing market
revenues for the scenario set. In the case of individual bidding by the CCPP, it assumes
no power output deviation. Due to the higher costs associated with the thermal power
unit compared to wind power, the CCPP facilitates the integration of wind power into the
grid, thereby reducing overall operating costs. This results in joint bidding yielding higher
profits than individual bidding, with lower risks associated with joint bidding compared to
individual bidding.

According to Table 1, the total expected profits and total CVaR for individual bidding
are CNY 1675.3 thousand and CNY 1547.6 thousand, respectively, while for joint bidding,
they are CNY 1790.9 thousand and CNY 1647.9 thousand, with gains of CNY 115.6 thousand
and CNY 100.3 thousand, respectively. Given the prioritization of wind power for grid
integration under this strategy, thermal power inevitably stands to lose the profits it would
have gained under individual bidding during the coordination process. Without adequate
compensation, participating in joint bidding would be contrary to the interests of thermal
power stakeholders. Using the Shapley value [23] to fairly allocate the total profits, Table 2
shows the profit for each member. The expected profit for wind power is CNY 875.3
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thousand, an increase of 7.07%, while for thermal power, it is CNY 915.6 thousand, an
increase of 6.74%. The analysis above demonstrates that the adoption of Shapley’s value
ensures mutually beneficial outcomes for participating members.

Table 1. Expected profit of individual bidding and joint bidding.

Wind Power Thermal Power Total Expected Profits Total CVaR

Unit Thousand (CNY) Thousand (CNY) Thousand (CNY) Thousand (CNY)

Individual
bidding 817.5 857.8 1675.3 1547.6

Joint bidding 875.3 915.6 1790.9 1647.9

4.2. Comparison of Different Cases

This section considers the deployment of power generation alliance options. Three
cases are considered: case 1 adopts the integrated flexible CCPP, equipped with solvent
storage tanks. Case 2 employs a traditional CCPP, lacking solvent storage tanks. Case 3
refers to a conventional thermal power plant without carbon capture facilities.

Comparing the bidding results of each case with an individual wind farm, as shown in
Table 2, it is evident that case 1 achieved the best results in both economic and low-carbon.
The expected profit for case 1 increased by CNY 62.2 thousand and CNY 140.7 thousand
compared to cases 2 and 3, respectively. Additionally, carbon trading costs decreased
by CNY 622.5 thousand and CNY 1050.3 thousand, respectively, confirming that CCPPs
have significantly lower carbon emission intensity compared to conventional thermal
power plants.

Due to the fact that both case 1 and case 2 supply energy for the carbon capture
system, the fuel costs are higher than those of case 3. However, the differences between
the revenues from day-ahead market bidding and the total costs for case 1 and case 2
are, respectively, CNY 1810.8 thousand and CNY 1765.2 thousand, while for case 3, it is
only CNY 1715.6 thousand. Thus, the economic feasibility of carbon capture power plants
is ensured.

The carbon trading costs under conditions without and with solvent storage tanks
are CNY 96.7 thousand and CNY −525.8 thousand, respectively, and the solvent loss costs
are CNY 57.0 thousand and CNY 128.1 thousand, respectively. This implies that solvent
storage tanks have increased the amount of CO2 that can be captured. The amount of net
carbon emissions for case 1 is lower than the amount of corresponding carbon allowances,
allowing the CCPP to benefit in the carbon trading market and thus bringing additional
revenue. Furthermore, case 3 submitted the least total bidding amount in the day-ahead
market compared to case 2. The reason is that the conventional thermal power plant has a
high carbon emission intensity, and to avoid incurring high carbon trading costs from the
tiered carbon trading mechanism, they reduced the electricity generation amount. Case 1′s
total bidding amount is less than case 2, allowing it to provide greater adjustment capacity
during the real-time stage.

The individual wind farm’s positive and negative imbalances settlement in the balanc-
ing market were CNY 51.8 thousand and CNY −182.3 thousand, respectively, while for
case 3, they were CNY 16.7 thousand and CNY −82.2 thousand, respectively. This indicates
that the joint bidding mode can mitigate wind power output deviations. The imbalance
settlements for the three cases decreased in sequence, with case 1′s imbalance settlements
being CNY 1.8 thousand and CNY −21.7 thousand, respectively. This demonstrates that
case 1 has the smallest imbalance of electricity amount, thus promoting wind power grid
integration to a greater extent. It also further illustrates that CCPPs consider solvent storage
tanks to offer a more flexible operation, with a stronger capability to facilitate the integration
of wind power compared to conventional thermal power plants and traditional CCPPs.
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Table 2. Comparison of different cases.

Unit Case 1 Case 2 Case 3 Individual Wind Farm

Total Bidding Amount MWh 13238 14947 14105 4012
Day-Ahead Market Revenue Thousand (CNY) 5123.0 5663.4 5477.2 1358.4

Fuel Cost Thousand (CNY) 3299.6 3334.3 2726.7 —
Solvent Loss Cost Thousand (CNY) 128.1 57.0 — —

Start-up and Shutdown Costs for
Thermal Power Units Thousand (CNY) 0 0 100.0 —

Carbon Trading Cost Thousand (CNY) −525.8 96.7 524.5 —
Total Cost Thousand (CNY) 3312.2 3898.2 3761.6 410.3

Positive Imbalance Settlement Thousand (CNY) 1.8 3.3 16.7 51.8
Negative Imbalance Settlement Thousand (CNY) −21.7 −39.7 −82.2 −182.3

Expected Profit Thousand (CNY) 1790.9 1728.7 1650.2 817.5

4.3. Analysis of Risk Preference

This section explores the expected profits and CVaR values under different risk aver-
sion coefficients, with δ values ranging from 0 to 10. Figure 4 illustrates the efficient frontier
curve of CVaR, where a δ value of 0 represents a risk-neutral attitude, focusing solely on
maximizing bidding profits. It is observed that the joint bidding strategy, when not consid-
ering risk, achieves a maximum expected profit of CNY 1799.4 thousand, which is CNY 23.5
thousand higher than the strong risk-averse joint bidding strategy (δ is 10). The purpose of
risk aversion is to reduce the expected profit gap between different scenarios by sacrificing
economic benefits. Hence, the resulting CVaR value when δ is 10 is CNY 1653.3 thousand,
which is an increase of CNY 41.7 thousand compared to the situation when δ is 0.
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Figure 4. CVaR efficient frontier.

As the δ value increases, the expected profit exhibits a declining trend, while CVaR
shows an ascending trend. This implies a positive correlation between risk and profit,
wherein decision-makers aiming for higher profits also face greater risks. Within the δ
range of 1 to 10, the decision-making objective shifts from balancing profits and risks
(δ = 1) to placing a stronger emphasis on risk (δ > 1). As δ increases, the CVaR value
grows, accompanied by a significant decrease in expected profits. The bidding strategy
becomes more focused on the tail of the profit distribution under a given confidence level.
Therefore, it is necessary to measure the risk attitude of decision-makers in bidding and find
the optimal balance between risk and revenue, thereby formulating appropriate bidding
strategies for market participants.

4.4. Analysis of the Flexible Operation Characteristics of CCPP

The power generation alliance needs to strategically determine its power output based
on the bidding quantities and day-ahead clearing price. Figure 5 illustrates the actual power
output of the wind farm and CCPP. Between hours 1 to 6, in cases where wind power
output exceeds its forecast, the CCPP minimizes wind power curtailment by reducing its
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net power output. The carbon capture system can serve as a dispatchable load. From hours
5 to 10, the net power output of the thermal power unit is significantly below its minimum
technical output. Between hours 18 and 24, the CCPP compensates for the shortage in
wind power output, aiming to closely align the actual power generation quantities of the
generation alliance with the day-ahead bidding quantities (day-ahead generation plan).
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ing low electricity price periods, as the output of the thermal power unit decreases, the 
amount of CO2 produced by the plant also decreases. Consequently, a carbon capture 
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To further investigate the flexible operation mechanism of CCPP, an analysis of the
power output and carbon flow is conducted. As shown in Figure 6, the net power output
of a CCPP is the difference between its gross power output and the energy consumption of
the carbon capture system. During low electricity price periods, it is observed that CCPP
tend to increase the energy supply to carbon capture systems. This strategy is motivated by
the opportunity to capture CO2 and obtain revenue by selling the excess carbon allowances
in the carbon trading market.
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Conversely, during periods of high prices, the CCPP increases its net power output
by raising its gross output and reducing the energy supply to the capture system. This
strategy is motivated by the significantly higher revenue in the electricity spot market
during these times, making it economically advantageous to sell electricity. In summary,
the analysis reveals that the generation preferences of the CCPP depend on electricity prices.
By adjusting the energy supply to the carbon capture system, the CCPP can flexibly modify
net power output, enabling it to operate at an economically optimal point. The adoption
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of distinct strategies during peak and off-peak electricity prices is crucial for maximizing
profits throughout the entire operational cycle.

As indicated by Figure 7, the scrubber and stripper of the integrated flexible CCPP no
longer operate synchronously due to the installation of the solvent storage tank. During
low electricity price periods, as the output of the thermal power unit decreases, the amount
of CO2 produced by the plant also decreases. Consequently, a carbon capture system,
functioning as a dispatchable load to absorb excess electricity, may not have a sufficient
supply of CO2 for capture during such periods. From hours 4 to 11, as depicted in Figure 7,
there is a reduction in the volume of the “rich” solvent in the tank, as solvents from the
scrubber and “rich” solvent tank are transferred to the stripper. This leads to a substantial
increase in carbon capture energy consumption, leading to a significant reduction in the
net power output of the CCPP.
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Figure 7. Distribution of carbon flow in CCPPs.

During peak electricity price periods, the CCPP requires a higher net power output
to meet the day-ahead generation plan. Simultaneously, the plant will also produce a
significant amount of CO2. The CCPP increases the flue gas entering the scrubber and
stores the absorbed CO2 inside the “rich” solvent tank. This not only reduces emissions of
CO2 into the atmosphere but also reduces the energy supply to the carbon capture system
by storing CO2 without immediate capture. As a consequence, during these periods, the
volume of solvent processed within the stripper decreases, resulting in an increase in the
net power output of the CCPP. Finally, the volumes of both the lean and rich solvents in the
storage tank are restored to their initial levels at the end of the cycle, ensuring the long-term
operation of the carbon capture system.

4.5. Comparison of Results between MILP and MINLP

Table 3 compares the solution results of the MILP and MINLP models using the
Gruobi optimizer. As shown in Table 3, compared to the MILP model, which was solved
in 15.61 s, the MINLP solution was obtained in 1443.37 s. Regarding results accuracy,
the MILP optimization results in an objective function value of 3438.9, while MINLP
optimization yields a value of 3440.8, with a mere difference of 1.9 between the two.
The difference between the two objective function values is rather small. As depicted in
Figure 8, the optimal bidding electricity quantities in the day-ahead market obtained from
MILP and MINLP are rather similar. In summary, based on the comparison of the exact
optimal solution between the MILP and MINLP approaches, MILP can find acceptable
exact solutions in our bidding problem much faster, demonstrating that the MILP approach
holds advantages over the MINLP technique from the viewpoint of solution time.
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Table 3. Comparison of solution results between MILP and MINLP.

Solution Time/s Objective Functions/
Thousand (CNY)

Expected Profit/
Thousand (CNY)

MILP 15.61 3438.9 1790.9
MINLP 1443.37 3440.8 1792.0
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5. Conclusions

Currently, China is in the early stages of constructing electricity spot markets and
carbon trading markets. In anticipation of wind power participating in the electricity spot
market in the future, a two-stage decision-making model is established, which combines
CCPP and wind farm bidding in the spot market to mitigate the imbalance costs under the
uncertainty of wind power output. The specific conclusions are as follows:

(1) Compared to individual bidding, the joint wind-thermal bidding strategy reduces
risk while obtaining excess profits in the spot market.

(2) This paper compares three cases and verifies that the integrated flexible CCPP has clear
advantages in terms of economy, low carbon emissions, and wind power integration.
This is attributed to the installation of a solvent tank, which not only enhances the
flexibility of the CCPP but also improves energy utilization efficiency. Thus, it deeply
reduces carbon emissions while optimizing economic benefits.

(3) The decision model facilitates risk control, providing a comparative result for decision-
makers to choose different risk coefficients. A risk-averse model has been established,
demonstrating a proportional relationship between risk and profit. This can provide a
better reference for market bidding.

(4) This study considers wind farms and CCPPs as price takers jointly participating in
the spot market. As regional market trading rules continue to evolve and develop,
and with the increasing share of renewable energy participation in the market, future
work will focus on the price-making strategies of power generators.
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Appendix A

Table A1. Parameters of thermal power units.

Parameter Unit Value Parameter Unit Value

Coal Cost Coefficient a CNY/MW2·h 0.012 Carbon Emission Intensity t/MW·h 1.16
Coal Cost Coefficient b CNY/MW·h 250 Ramp Rate MW/h 100
Coal Cost Coefficient c CNY 8700 Per Start-up and Shutdown Cost Thousand CNY 50

Maximum Technical Output MW 600 Minimum Start-up and Shutdown Time h 4
Minimum Technical Output MW 200
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